Abstract
Graphitic carbon nitride (g-C3N4) and zinc oxide (ZnO) are two promising materials that have been extensively studied for their potential applications in the photocatalytic and biomedical fields, including biosensors, bioimaging, photodynamic therapy, and antimicrobials, because of its biocompatible nature. The synthesis of g-C3N4/ZnO nanocomposites will be achieved through hydrothermal synthesis to produce materials with enhanced photocatalytic and biomedical properties due to the development of heterojunctions. The synthesized g-C3N4/ZnO hybrid nanostructures have a band gap of around 2.85 eV to 3.01 eV. The photocatalytic activity of the composites is evaluated through the degradation of organic pollutants (MB, RB171, RhB dyes) under simulated solar irradiation, demonstrating their potential for environmental remediation. In biomedical applications, the g-C3N4/ZnO nanocomposites exhibit biocompatibility and are explored for use in antimicrobial coatings. Techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and UV–Vis(ultra-violet visible) spectroscopy are employed to analyze the crystal structure, surface morphology, particle size, chemical composition, and optical properties of the composites. The comprehensive characterization of these materials is crucial for their successful development and utilization in various technological domains.
Author Contributions
S.: Methodology, synthesis, analysis, testing, validation and language correction. Q.I.R.: Visualization, supervision and proofreading. All authors have read and agreed to the published version of the manuscript.
Funding
This research receive no external funding.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
Data are available on request.
Conflicts of Interest
The authors declare no conflicts of interest.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).