Machine-Learning QSAR Model for Predicting Activity against Malaria Parasite’s Ion Pump PfATP4 and In Silico Binding Assay Validation †
Author Contributions
Acknowledgments
Conflicts of Interest
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rio, A.L.-D.; Llorach-Parés, L.; Perera-Lluna, A.; Avila, C.; Nonell-Canals, A.; Sanchez-Martinez, M. Machine-Learning QSAR Model for Predicting Activity against Malaria Parasite’s Ion Pump PfATP4 and In Silico Binding Assay Validation. Proceedings 2017, 1, 652. https://doi.org/10.3390/proceedings1060652
Rio AL-D, Llorach-Parés L, Perera-Lluna A, Avila C, Nonell-Canals A, Sanchez-Martinez M. Machine-Learning QSAR Model for Predicting Activity against Malaria Parasite’s Ion Pump PfATP4 and In Silico Binding Assay Validation. Proceedings. 2017; 1(6):652. https://doi.org/10.3390/proceedings1060652
Chicago/Turabian StyleRio, Angela Lopez-Del, Laura Llorach-Parés, Alexandre Perera-Lluna, Conxita Avila, Alfons Nonell-Canals, and Melchor Sanchez-Martinez. 2017. "Machine-Learning QSAR Model for Predicting Activity against Malaria Parasite’s Ion Pump PfATP4 and In Silico Binding Assay Validation" Proceedings 1, no. 6: 652. https://doi.org/10.3390/proceedings1060652
APA StyleRio, A. L. -D., Llorach-Parés, L., Perera-Lluna, A., Avila, C., Nonell-Canals, A., & Sanchez-Martinez, M. (2017). Machine-Learning QSAR Model for Predicting Activity against Malaria Parasite’s Ion Pump PfATP4 and In Silico Binding Assay Validation. Proceedings, 1(6), 652. https://doi.org/10.3390/proceedings1060652