Crop Rotation and Nitrogen Fertilizer on Nitrate Leaching: Insights from a Low Rainfall Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area
2.2. Experimental Design and Management
2.3. Soil Solution Collection
2.4. Meteorological Data
2.5. Drainage
2.6. Calculation
2.6.1. NO3− Concentration and Load
2.6.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, B.; Craswell, E. Fertilizers and nitrate pollution of surface and ground water: An increasingly pervasive global problem. SN Appl. Sci. 2021, 3, 518. [Google Scholar] [CrossRef]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Good, A.G.; Beatty, P.H. Fertilizing nature: A tragedy of excess in the commons. PLoS Biol. 2011, 9, e1001124. [Google Scholar] [CrossRef] [PubMed]
- Paerl, H.W.; Xu, H.; McCarthy, M.J.; Zhu, G.; Qin, B.; Li, Y. Gardner WS. Controlling harmful cyanobacterial blooms in a hyper-eutrophic lake (Lake Taihu, China): The need for a dual nutrient (N & P) management strategy. Water Res. 2011, 45, 1973–1983. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. FAOSTAT: Data—Fertilizers by Nutrients. Available online: https://www.fao.org/faostat/en/#data/RFN/ (accessed on 8 March 2024).
- Soumare, A.; Diedhiou, A.G.; Thuita, M.; Hafidi, M.; Ouhdouch, Y.; Gopalakrishnan, S.; Kouisni, L. Exploiting biological nitrogen fixation: A route towards sustainable agriculture. Plants 2020, 9, 1011. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. FAOSTAT: Cropland Nutrient Budget. Available online: https://www.fao.org/faostat/en/#data/ESB (accessed on 7 March 2024).
- Battye, W.; Aneja, V.P.; Schlesinger, W.H. Is nitrogen the next carbon? Earth’s Future 2017, 5, 894–904. [Google Scholar] [CrossRef]
- Rütting, T.; Aronsson, H.; Delin, S. Efficient use of nitrogen in agriculture. Nutr. Cycl. Agroecosyst. 2018, 110, 1–5. [Google Scholar] [CrossRef]
- Hussain, M.Z.; Robertson, G.P.; Basso, B.; Hamilton, S.K. Leaching losses of dissolved organic carbon and nitrogen from agricultural soils in the upper US Midwest. Sci. Total Environ. 2020, 734, 139379. [Google Scholar] [CrossRef]
- Wang, Z.H.; Li, S.X. Nitrate N loss by leaching and surface runoff in agricultural land: A global issue (a review). Adv. Agron. 2019, 56, 159–217. [Google Scholar] [CrossRef]
- Sanchez, P.A. Properties and Management of Soils in the Tropics, 2nd ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Impacts of no-tillage management on nitrate loss from corn, soybean and wheat cultivation: A meta-analysis. Sci. Rep. 2017, 7, 12117. [Google Scholar] [CrossRef]
- Federação Brasileira do Sistema Plantio Direto. Área Sob Plantio Direto. Available online: https://plantiodireto.org.br/area-de-pd (accessed on 13 December 2023).
- Fuentes-Llanillo, R.; Telles, T.S.; Soares, D., Jr.; Melo, T.R.; Friedrich, T.; Kassam, A. Expansion of no-tillage practices in conservation agriculture in Brazil. Soil Tillage Res. 2021, 208, 104877. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Save and Grow in Practice: Maize, Rice and Wheat, 1st ed.; FAO: Rome, Italy, 2016; Available online: https://www.fao.org/publications/card/en/c/b22331a7-442b-4454-a951-46cda21055e3 (accessed on 3 March 2024).
- Possamai, E.J.; Conceição, P.C.; Amadori, C.; Bartz, M.L.C.; Ralisch, R.; Vicensi, M.; Marx, E.F. Adoption of the no-tillage system in Paraná State: A (re)view. Rev. Bras. Ciência Solo 2022, 46, e0210104. [Google Scholar] [CrossRef]
- Komainda, M.; Taube, F.; Kluß, C.; Herrmann, A. Effects of catch crops on silage maize (Zea mays L.): Yield, nitrogen uptake efficiency and losses. Nutr. Cycl. Agroecosyst. 2018, 110, 51–69. [Google Scholar] [CrossRef]
- Koropeckyj-Cox, L.; Christianson, R.D.; Yuan, Y. Effectiveness of conservation crop rotation for water pollutant reduction from agricultural areas. ASABE 2021, 64, 691–704. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Hu, W.; Chau, H.W.; Beare, M.; Cichota, R.; Teixeira, E.; Moore, T.; Di, H.; Cameron, K.; Guo, J.; et al. Response of nitrate leaching to no-tillage is dependent on soil, climate, and management factors: A global meta-analysis. Glob. Chang. Biol. 2023, 29, 2172–2187. [Google Scholar] [CrossRef] [PubMed]
- Spiess, E.; Humphrys, C.; Richner, W.; Schneider, M.K.; Piepho, H.; Chervet, A.; Prasuhn, V. Does no-tillage decrease nitrate leaching compared to ploughing under a long-term crop rotation in Switzerland? Soil Tillage Res. 2020, 199, 104590. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAOSTAT: Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 13 December 2023).
- Padilla, F.M.; Gallardo, M.; Manzano-Agugliaro, F. Global trends in nitrate leaching research in the 1960–2017 period. Sci. Total Environ. 2018, 643, 400–413. [Google Scholar] [CrossRef] [PubMed]
- Nitsche, P.R.; Caramori, P.H.; Ricce, W.S.; Pinto, L.F.D. Atlas Climático do Estado do Paraná, 1st ed.; IAPAR: Londrina, Brazil, 2019. [Google Scholar]
- Bognola, I.A.; Curcio, G.R.; Gomes, J.B.V.; Caviglione, J.H.; Uhlmann, A.; Cardoso, A.; Carvalho, A.P. Levantamento Semidetalhado de Solos do Município de Londrina—PR, 1st ed.; IAPAR: Londrina, Brazil, 2011. [Google Scholar]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; de Almeida, J.A.; de Araújo Filho, J.C.; de Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos, 5th ed.; Embrapa: Brasília, Brazil, 2018. [Google Scholar]
- Soil Survey Staff. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, 2nd ed.; USDA: Washington, DC, USA; NRCS: Washington, DC, USA, 1999. [Google Scholar]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. Manual de Métodos de Análise de Solo, 3rd ed.; Embrapa: Brasília, Brazil, 2017. [Google Scholar]
- Pauletti, V.; Motta, A.C.V. Manual de Adubação e Calagem para o Estado do Paraná, 2nd ed.; SBCS: Curitiba, Brazil, 2019. [Google Scholar]
- Bajracharya, R.M.; Homagain, A. Fabrication and testing of a low-cost ceramic-cup soil solution sampler. Agric. Water Manag. 2006, 84, 207–211. [Google Scholar] [CrossRef]
- Instituto de Desenvolvimento Rural do Paraná. Dados Meteorológicos Históricos e Atuais: Médias Históricas em Estações do IDR-Paraná: Londrina. Available online: https://www.idrparana.pr.gov.br/Pagina/Dados-Meteorologicos-Historicos-e-Atuais/ (accessed on 13 December 2023).
- Soil Water Atmosphere Plant. Soil, Water, Atmosphere and Plant. Available online: https://www.swap.alterra.nl/ (accessed on 10 December 2023).
- Kroes, J.; Van Dam, J.; Bartholomeus, R.; Groenendijk, P.; Heinen, M.; Hendriks, R.; Mulder, H.M.; Supit, I.; van Walsum, P.E.V. SWAP Version 4: Theory Description and User Manual, 1st ed.; Wageningen Environmental Research: Wageningen, The Netherlands, 2017. [Google Scholar]
- Richter, G.L.; Zanon Júnior, A.; Streck, N.A.; Guedes, J.V.C.; Kräulich, B.; Rocha, T.S.M.; Winck, J.E.M.; Cera, J.C. Estimativa da área de folhas de cultivares antigas e modernas de soja por método não destrutivo. Bragantia 2014, 73, 416–425. [Google Scholar] [CrossRef]
- Guimarães, D.P.; Sans, L.M.A.; Moraes, A.V.C. Estimativa da área foliar de cultivares de milho. In Proceedings of the 24th Congresso Nacional de Milho e Sorgo, Florianópolis, Brazil, 5 September 2002; Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/34888/1/Estimativa-area.pdf (accessed on 28 February 2024).
- Pinto, V.M. Simulation of Water and Nitrogen Dynamics in a Cerrado Soil under Coffee Cultivation Using SWAP and ANIMO Models. Ph.D. Thesis, CENA/USP, Piracicaba, Brazil, 2016. Available online: https://teses.usp.br/teses/disponiveis/64/64134/tde-02022016-105753/en.php (accessed on 28 February 2024).
- Rice, E.W.; Baird, R.B.; Eaton, A.D. 4500-NO3− B. Ultraviolet spectrophotometric screening method. In Standard Methods for the Examination of Water and Wastewater, 23rd ed.; Rice, E.W., Baird, R.B., Eaton, A.D., Eds.; American Public Health Association (APHA): Washington, DC, USA, 2017; pp. 4–127. [Google Scholar]
- Rosolem, C.A.; Castoldi, G.; Pivetta, L.A.; Ochsner, T.E. Nitrate leaching in soybean rotations without nitrogen fertilizer. Plant Soil 2018, 423, 27–40. [Google Scholar] [CrossRef]
- De Wit, A. Parameter Sets for the WOFOST Crop Simulation Model. Available online: https://github.com/ajwdewit/WOFOST_crop_parameters (accessed on 13 December 2023).
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part 1—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Groenendijk, P.; Heinen, M.; Klammler, G.; Fankb, J.; Kupfersberger, H.; Pisinaras, V.; Gemitzi, A.; Peña-Haro, S.; García-Prats, A.; Pulido-Velazquez, M.; et al. Performance assessment of nitrate leaching models for highly vulnerable soils used in low-input farming based on lysimeter data. Sci. Total Environ. 2014, 499, 463–480. [Google Scholar] [CrossRef] [PubMed]
- Companhia Brasileira de Abastecimento. Série Histórica: Soja. Available online: https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras/itemlist/category/911-soja/ (accessed on 13 December 2023).
- Companhia Brasileira de Abastecimento. Série Histórica: Milho. Available online: https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras/itemlist/category/910-Milho/ (accessed on 13 December 2023).
- Companhia Brasileira de Abastecimento. Série Histórica: Trigo. Available online: https://www.conab.gov.br/info-agro/safras/serie-historica-das-safras/itemlist/category/913-trigo (accessed on 13 December 2023).
- Sah, R.O.; Chakraborty, M.; Prasad, K.; Pandit, M.; Tudu, V.K.; Chakravarty, M.K.; Narayan, S.C.; Rana, M.; Moharana, D. Impact of water deficit stress in maize: Phenology and yield components. Sci. Rep. 2020, 10, 2944. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, A.; Dong, Q.; Wang, X.; Gui, H.; Zhang, H.; Zhang, X.; Song, M. High nitrogen enhance drought tolerance in cotton through antioxidant enzymatic activities, nitrogen metabolism and osmotic adjustment. Plants 2020, 9, 178. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, J.; Liu, M.; Meng, Z.; Liu, K.; Sui, N. Nitrogen increases drought tolerance in maize seedlings. Funct. Plant Biol. 2019, 46, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Mansouri-Far, C.; Sanavy, S.A.M.M.; Saberali, S.F. Maize yield response to deficit irrigation during low-sensitive growth stages and nitrogen rate under semi-arid climatic conditions. Agric. Water Manag. 2010, 97, 12–22. [Google Scholar] [CrossRef]
- Jin, Z.; Zhuang, Q.; Wang, J.; Archontoulis, S.V.; Zobel, Z.; Kotamarthi, V.R. The combined and separate impacts of climate extremes on the current and future US rainfed maize and soybean production under elevated CO2. Glob. Chang. Biol. 2017, 23, 2687–2704. [Google Scholar] [CrossRef]
- Grzyb, A.; Wolna-Maruwka, A.; Niewiadomska, A. Environmental factors affecting the mineralization of crop residues. Agronomy 2020, 10, 1951. [Google Scholar] [CrossRef]
- Norton, J.; Ouyang, Y. Controls and adaptive management of nitrification in agricultural soils. Front. Microbiol. 2019, 10, 1931. [Google Scholar] [CrossRef]
- Jabloun, M.; Schelde, K.; Tao, F.; Olesen, J.E. Effect of temperature and precipitation on nitrate leaching from organic cereal cropping systems in Denmark. Eur. J. Agron. 2015, 62, 55–64. [Google Scholar] [CrossRef]
- Liang, X.-Q.; Xu, L.; Li, H.; He, M.-M.; Qian, Y.-C.; Liu, J.; Nie, Z.-Y.; Ye, Y.-S.; Chen, Y. Influence of N fertilization rates, rainfall, and temperature on nitrate leaching from a rainfed winter wheat field in Taihu watershed. Phys. Chem. Earth 2011, 36, 395–400. [Google Scholar] [CrossRef]
- Bowles, T.M.; Atallah, S.S.; Campbell, E.E.; Gaudin, A.C.M.; Wieder, W.R.; Grandy, A.S. Addressing agricultural nitrogen losses in a changing climate. Nat. Sustain. 2018, 1, 399–408. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. Elementos da Natureza e Propriedades do Solo, 3rd ed.; Bookman: Porto Alegre, Brazil, 2013. [Google Scholar]
- Ghiberto, P.J.; Libardi, P.L.; Brito, A.S.; Trivelin, P.C.O. Nitrogen fertilizer leaching in an Oxisol cultivated with sugarcane. Sci. Agric. 2011, 68, 86–93. [Google Scholar] [CrossRef]
- Bortolotto, R.P.; Bruno, I.P.; Reichardt, K.; Timm, L.C.; Amado, T.J.C.; Ferreira, A.O. Nitrogen fertilizer (15N) leaching in a central pivot fertigated coffee crop. Rev. Ceres 2012, 59, 466–475. [Google Scholar] [CrossRef]
- Wang, Y.; Ying, H.; Yin, Y.; Zheng, H.; Cui, Z. Estimating soil nitrate leaching of nitrogen fertilizer from global meta-analysis. Sci. Total Environ. 2019, 657, 96–102. [Google Scholar] [CrossRef]
- Hess, L.J.T.; Hinckley, E.S.; Robertson, G.P.; Matson, P.A. Rainfall intensification increases nitrate leaching from tilled but not no-till cropping systems in the U.S. Midwest. Agric. Ecosyst. Environ. 2020, 290, 106747. [Google Scholar] [CrossRef]
- Pasley, H.; Nichols, V.; Castellano, M.; Baum, M.; Kladivko, E.; Helmers, M.; Archontoulis, S. Rotating maize reduces the risk and rate of nitrate leaching. Environ. Res. Lett. 2021, 16, 064063. [Google Scholar] [CrossRef]
- Meisinger, J.J.; Palmer, R.E.; Timlin, D.J. Effects of tillage practices on drainage and nitrate leaching from winter wheat in the Northern Atlantic Coastal-Plain USA. Soil Tillage Res. 2015, 151, 18–27. [Google Scholar] [CrossRef]
- Xiao, Q.; Hu, Z.; Fu, C.; Bian, H.; Lee, X.; Chen, S.; Shang, D. Surface nitrous oxide concentrations and fluxes from water bodies of the agricultural watershed in Eastern China. Environ. Pollut. 2019, 251, 185e192. [Google Scholar] [CrossRef]
- John, A.A.; Jones, C.A.; Ewing, S.A.; Sigler, W.A.; Bekkerman, A.; Miller, P.R. Fallow replacement and alternative nitrogen management for reducing nitrate leaching in a semiarid region. Nutr. Cycl. Agroecosyst. 2017, 108, 279–296. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Nolot, J.; Raffaillac, D.; Justes, E. Cover crops mitigate nitrate leaching in cropping systems including grain legumes: Field evidence and model simulations. Agric. Ecosyst. Environ. 2015, 212, 1–12. [Google Scholar] [CrossRef]
- Nouri, A.; Lukas, S.; Singh, S.; Singh, S.; Machado, S. When do cover crops reduce nitrate leaching? A global meta-analysis. Glob. Chang. Biol. 2022, 28, 4736–4749. [Google Scholar] [CrossRef] [PubMed]
- McCoy, J.M.; Kaur, G.; Golden, B.R.; Orlowski, J.M.; Cook, D.R.; Bond, J.A.; Cox, M.S. Nitrogen fertilization of soybean affects root growth and nodulation on two soil types in Mississippi. Commun. Soil Sci. Plant Anal. 2018, 49, 181–187. [Google Scholar] [CrossRef]
- Fustec, J.; Lesuffleur, F.; Mahieu, S.; Cliquet, J. Nitrogen rhizodeposition of legumes. A review. Agron. Sustain. Dev. 2010, 30, 57–66. [Google Scholar] [CrossRef]
- Thapa, R.; Mirsky, S.B.; Tully, K.L. Cover crops reduce nitrate leaching in agroecosystems: A global meta-analysis. J. Environ. Qual. 2018, 47, 1400–1411. [Google Scholar] [CrossRef]
- Meyer, N.; Bergez, J.E.; Constantin, J.; Justes, E. Cover crops reduce water drainage in temperate climates: A meta-analysis. Agron. Sustain. Dev. 2019, 39, 3. [Google Scholar] [CrossRef]
- Zhou, S.L.; Wu, Y.C.; Wang, Z.M.; Lu, L.Q.; Wang, R.Z. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain. Environ. Pollut. 2008, 152, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Butterbach-Bahl, K. Assessment of nitrate leaching loss on a yield-scaled basis from maize and wheat cropping systems. Plant Soil 2014, 374, 977–991. [Google Scholar] [CrossRef]
- Ordóñez, R.A.; Archontoulis, S.V.; Martinez-Feria, R.; Hatfield, J.L.; Wright, E.E.; Castellano, M.J. Root to shoot and carbon to nitrogen ratios of maize and soybean crops in the US Midwest. Eur. J. Agron. 2020, 120, 126130. [Google Scholar] [CrossRef]
- Ehdaie, B.; Merhaut, D.J.; Ahmadian, S.; Hoops, A.C.; Khuong, T.; Layne, A.P.; Waines, J.G. Root system size influences water-nutrient uptake and nitrate leaching potential in wheat. J. Agron. Crop. Sci. 2010, 196, 455–466. [Google Scholar] [CrossRef]
- Qiu, J.; Shen, Z.; Leng, G.; Wei, G. Synergistic effect of drought and rainfall events of different patterns on watershed systems. Sci. Rep. 2021, 11, 18957. [Google Scholar] [CrossRef] [PubMed]
- Bauwe, A.; Tiemeyer, B.; Kahle, P.; Lennartz, B. Classifying hydrological events to quantify their impact on nitrate leaching across three spatial scales. J. Hydrol. 2015, 531, 589–601. [Google Scholar] [CrossRef]
- Sarkar, S.; Mukherjee, A.; Senapati, B.; Duttagupta, S. Predicting potential climate change impacts on groundwater nitrate pollution and risk in an intensely cultivated area of South Asia. ACS Environ. Au 2022, 2, 556–576. [Google Scholar] [CrossRef]
- Greaver, T.L.; Clark, C.M.; Compton, J.E.; Vallano, D.; Talhelm, A.F.; Weaver, C.P.; Band, L.E.; Baron, J.S.; Davidson, E.A.; Tague, C.L.; et al. Key ecological responses to nitrogen are altered by climate change. Nat. Clim. Chang. 2016, 6, 836–843. [Google Scholar] [CrossRef]
pH * | C | P | K | Ca | Mg | Al | H + Al | SB | CEC | V | |
---|---|---|---|---|---|---|---|---|---|---|---|
g dm−3 | mg dm−3 | cmolc dm−3 | % | ||||||||
Fall/winter 2018 | 5.1 | 15.8 | 8.6 | 0.3 | 4.4 | 2.4 | 0.0 | 5.4 | 7.0 | 12.4 | 56.7 |
Spring/summer 2018/2019 | 4.9 | 17.3 | 12.5 | 0.4 | 4.5 | 2.3 | 0.1 | 5.9 | 7.1 | 13.0 | 54.1 |
Fall/winter 2019 | 5.1 | 15.7 | 8.8 | 0.3 | 4.2 | 2.1 | 0.0 | 5.1 | 6.6 | 11.6 | 56.4 |
Spring/summer 2019/2020 | 4.9 | 15.9 | 10.0 | 0.3 | 4.2 | 2.2 | 0.2 | 5.7 | 6.6 | 12.3 | 53.8 |
Crop Season | Rotation | Cultivated Species | Sowing–Harvesting | N rates 4 | Fertilization 5 |
---|---|---|---|---|---|
Fall/winter 2018 | Diversified | millet | Mar 13, 2018–Apr 24, 2018 | 30 30 40 | Mar 13, 2018 Apr 3, 2018 Apr 18, 2018 |
crop mix 1 | Apr 26, 2018–Aug 21, 2018 | 20 | Jun 28, 2018 | ||
Simplified | corn | Mar 8, 2018–Aug 14, 2018 | 30 40 60 | Mar 8, 2018 Apr 3, 2018 Apr 18, 2018 | |
Spring/summer 2018/2019 | Diversified | Intercropping 2 | Oct 29 3, 2018–Mar 25, 2019 | 50 75 75 | Oct 29, 2018 Nov 29, 2018 Dec 12, 2018 |
Simplified | soybean | Oct 30, 2018–Mar 25, 2019 | 12 | Oct 30, 2018 | |
Fall/winter 2019 | Diversified | buckwheat | Mar 26, 2019–Apr 30, 2019 | 0 | --- |
wheat | May 9, 2019–Sep 5, 2019 | 20 41 | May 9, 2019 May 29, 2019 | ||
Simplified | corn | Mar 26, 2019–Aug 8, 2019 | 10 61 | Mar 26, 2019 Apr 29, 2019 | |
Spring/summer 2019/2020 | Diversified | Soybean | Oct 25, 2019–Mar 12, 2020 | 12 | Oct 25, 2019 |
Simplified | Soybean | Oct 25, 2019–Mar 12, 2020 | 12 | Oct 25, 2019 |
Evaluation Season | Crop Season | Species | Period | Dates |
---|---|---|---|---|
2018/ 2019 | Fall/winter 2018 | D 1—millet D—crop mix 3 S 2—corn | 1 | 3/22/2018–3/28/2018 |
2 | 3/28/2018–4/20/2018 | |||
3 | 4/20/2018–8/28/2018 | |||
Fallow | --- | 4 | 8/28/2018–9/19/2018 | |
5 | 9/19/2018–9/25/2018 | |||
6 | 9/25/2018–10/2/2018 | |||
7 | 10/2/2018–10/10/2018 | |||
Spring/summer 2018/2019 | D—intercrop 4 S—soybean | 8 | 10/10/2018–11/21/2018 | |
9 | 11/21/2018–11/27/2018 | |||
10 | 11/27/2018–12/18/2018 | |||
11 | 12/18/2018–12/27/2018 | |||
12 | 12/27/2018–1/10/2019 | |||
2019/ 2020 | Fall/winter 2019 | D—buckwheat D—wheat S—corn | 13 | 5/9/2019–5/14/2019 |
14 | 5/14/2019–5/28/2019 | |||
15 | 5/28/2019–5/30/2019 | |||
16 | 5/30/2019–6/4/2019 | |||
17 | 6/4/2019–6/12/2019 | |||
18 | 6/12/2019–7/10/2019 | |||
19 | 7/10/2019–11/12/2019 | |||
Spring/summer 2019/2020 | D—soybean S—soybean | 20 | 11/12/2019–11/19/2019 | |
21 | 11/19/2019–11/29/2019 | |||
22 | 11/29/2019–12/19/2019 | |||
23 | 12/19/2019–12/27/2019 | |||
24 | 12/27/2019–1/15/2020 |
Crop Season | Rotation | Species | N Fertilization Management 1 | Yield (kg ha−1) |
---|---|---|---|---|
Fall/winter 2018 | Diversified | millet | 0 | 5411 |
N | 6024 | |||
crop mix 2 | 0 | 7144 | ||
N | 8290 | |||
Simplified | corn | 0 | 4763 | |
N | 5182 | |||
Spring/summer 2018/2019 | Diversified | Intercropping 3 | 0 | 7301 |
N | 7930 | |||
Simplified | soybean | 0 | 3545 | |
N | 3147 | |||
Fall/winter 2019 | Diversified | buckwheat | --- | 1894 |
wheat | 0 | 2622 | ||
N | 2858 | |||
Simplified | corn | 0 | 2614 a | |
N | 2039 b | |||
Spring/summer 2019/2020 | Diversified | soybean | 0 | 3351 |
N | 3519 | |||
Simplified | soybean | 0 | 3849 | |
N | 3662 |
Mean Leachate NO3− Concentration (mg L−1) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018/2019 | 2019/2020 | |||||||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
0 | 15.6 (1.36) | 21.6 (2.13) | 13.3 (1.61) | 1.7 b (0.19) | 1.7 b (0.24) | 1.7 b (0.23) | 2.1 (0.24) | 2.8 (0.15) | 2.8 (0.27) | 2.9 a (0.24) | 3.2 a (0.27) | 2.8 ns (0.32) | 2.7 (0.29) | 2.6 (0.27) | 2.8 (0.20) | 2.7 (0.20) | 2.6 ns (0.29) | 3.3 (0.40) | 3.6 ns (0.27) | 3.0 a (0.22) | 2.6 a (0.22) | 2.7 (0.13) | 3.1 (0.43) | 2.7 (0.41) |
N | 17.6 (1.83) | 27.4 (3.52) | 17.2 (2.47) | 2.4 a (0.28) | 2.7 a (0.30) | 2.5 a (0.31) | 2.7 (0.26) | 2.6 (0.24) | 2.5 (0.31) | 2.0 b (0.20) | 2.0 b (0.17) | 2.5 ns (0.23) | 2.4 (0.36) | 2.5 (0.37) | 2.8 (0.51) | 2.5 (0.44) | 2.4 ns (0.35) | 3.1 (0.43) | 2.6 ns (0.45) | 1.7 b (0.16) | 1.7 b (0.12) | 2.2 (0.18) | 2.4 (0.38) | 2.0 (0.20) |
S | 15.3 (1.70) | 22.4 (3.71) | 14.3 (2.65) | 2.0 ns (0.34) | 2.0 ns (0.37) | 1.9 ns (0.31) | 2.1 (0.30) | 2.7 (0.19) | 2.9 (0.24) | 2.6 ns (0.34) | 2.9 ns (0.28) | 3.0 a (0.28) | 2.4 (0.23) | 2.5 (0.19) | 3.0 (0.23) | 2.8 (0.26) | 2.8 ns (0.28) | 3.5 (0.41) | 3.1 ns (0.30) | 2.3 ns (0.17) | 2.2 ns (0.18) | 2.4 (0.13) | 2.9 (0.40) | 2.6 (0.32) |
D | 17.8 (1.47) | 26.5 (2.08) | 16.3 (1.57) | 2.1 ns (0.20) | 2.4 ns (0.26) | 2.4 ns (0.30) | 2.6 (0.21) | 2.6 (0.21) | 2.4 (0.31) | 2.2 ns (0.18) | 2.3 ns (0.32) | 2.2 b (0.19) | 2.7 (0.40) | 2.6 (0.41) | 2.6 (0.48) | 2.4 (0.40) | 2.2 ns (0.32) | 2.9 (0.40) | 3.1 ns (0.49) | 2.3 ns (0.40) | 2.1 ns (0.29) | 2.5 (0.22) | 2.6 (0.44) | 2.2 (0.36) |
S0 | 14.1 (0.94) | 17.2 (1.85) | 9.6 (1.22) | 1.2 B (0.12) | 1.1 ns (0.15) | 1.2 ns (0.12) | 1.6 (0.24) | 2.6 (0.06) | 3.3 (0.17) | 3.5 A (0.20) | 3.5 ns (0.23) | 3.2 ns (0.49) | 2.3 (0.36) | 2.3 (0.27) | 2.5 (0.15) | 2.4 (0.15) | 2.4 AB (0.42) | 3.1 (0.79) | 3.0 AB (0.26) | 2.7 ns (0.11) | 2.6 ns (0.22) | 2.5 (0.18) | 3.3 (0.69) | 2.9 (0.62) |
D0 | 17.0 (2.53) | 25.9 (2.25) | 17.1 (1.06) | 2.1 AB (0.10) | 2.3 ns (0.16) | 2.2 ns (0.31) | 2.6 (0.27) | 3.0 (0.27) | 2.3 (0.34) | 2.3 B (0.13) | 2.9 ns (0.47) | 2.4 ns (0.33) | 3.0 (0.44) | 2.9 (0.44) | 3.2 (0.27) | 3.0 (0.36) | 2.7 AB (0.45) | 3.6 (0.29) | 4.2 A (0.19) | 3.2 ns (0.43) | 2.6 ns (0.41) | 2.9 (0.16) | 2.9 (0.60) | 2.5 (0.61) |
SN | 16.4 (3.42) | 27.5 (6.55) | 18.9 (4.07) | 2.9 A (0.28) | 2.8 ns (0.36) | 2.5 ns (0.39) | 2.6 (0.44) | 2.8 (0.40) | 2.4 (0.33) | 1.8 B (0.21) | 2.2 ns (0.26) | 2.8 ns (0.32) | 2.5 (0.33) | 2.8 (0.23) | 3.6 (0.16) | 3.2 (0.42) | 3.2 A (0.31) | 3.9 (0.27) | 3.1 AB (0.60) | 1.9 ns (0.13) | 1.8 ns (0.12) | 2.3 (0.20) | 2.5 (0.40) | 2.3 (0.15) |
DN | 18.7 (1.78) | 27.2 (3.87) | 15.5 (3.17) | 2.0 AB (0.42) | 2.5 ns (0.53) | 2.5 ns (0.56) | 2.7 (0.36) | 2.3 (0.25) | 2.5 (0.58) | 2.1 B (0.35) | 1.7 ns (0.15) | 2.1 ns (0.21) | 2.3 (0.72) | 2.3 (0.74) | 2.0 (0.88) | 1.9 (0.66) | 1.6 B (0.22) | 2.2 (0.61) | 2.1 B (0.64) | 1.4 ns (0.24) | 1.6 ns (0.22) | 2.1 (0.34) | 2.3 (0.72) | 1.8 (0.38) |
Mean Leachate NO3− Load (kg ha −1) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2018/2019 | 2019/2020 | |||||||||||||||||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
0 | 8.0 (0.70) | 14.2 (1.40) | 11.6 (1.40) | 0.6 b (0.06) | 0.7 b (0.10) | 0.3 b (0.04) | 1.4 (0.16) | 5.4 (0.29) | 0.4 (0.04) | 1.1 a (0.09) | 1.7 a (0.14) | 1.8 ns (0.20) | 0.0 (0.0) | 0.1 (0.01) | 0.0 (0.0) | 0.0 (0.0) | 0.5 ns (0.05) | 0.8 (0.09) | 0.7 ns (0.05) | 0.7 a (0.05) | 0.4 a (0.03) | 1.8 (0.09) | 2.8 (0.40) | 1.0 (0.14) |
N | 9.1 (0.94) | 18.0 (2.32) | 15.0 (2.14) | 0.8 a (0.09) | 1.1 a (0.12) | 0.5 a (0.06) | 1.8 (0.18) | 5.0 (0.47) | 0.4 (0.04) | 0.8 b (0.07) | 1.1 b (0.09) | 1.5 ns (0.14) | 0.0 (0.0) | 0.1 (0.01) | 0.0 (0.0) | 0.0 (0.0) | 0.5 ns (0.06) | 0.7 (0.10) | 0.5 ns (0.08) | 0.4 b (0.03) | 0.3 b (0.01) | 1.5 (0.12) | 2.2 (0.35) | 0.7 (0.07) |
S | 7.9 (0.87) | 14.7 (2.44) | 12.4 (2.30) | 0.7 ns (0.11) | 0.8 ns (0.15) | 0.4 ns (0.06) | 1.4 (0.20) | 5.2 (0.38) | 0.4 (0.03) | 1.0 ns (0.13) | 1.5 ns (0.15) | 1.9 a (0.17) | 0.0 (0.0) | 0.1 (0.0) | 0.0 (0.0) | 0.0 (0.0) | 0.5 ns (0.05) | 0.8 (0.09) | 0.6 ns (0.06) | 0.6 ns (0.04) | 0.3 ns (0.03) | 1.6 (0.08) | 2.7 (0.37) | 0.9 (0.11) |
D | 9.2 (0.75) | 17.5 (1.37) | 14.2 (1.36) | 0.7 ns (0.06) | 1.0 ns (0.11) | 0.5 ns (0.06) | 1.8 (0.14) | 5.2 (1,16) | 0.4 (0.04) | 0.9 ns (0.07) | 1.2 ns (0.17) | 1.4 b (0.12) | 0.0 (0.0) | 0.1 (0.01) | 0.0 (0.0) | 0.0 (0.0) | 0.4 ns (0.06) | 0.7 (0.09) | 0.6 ns (0.09) | 0.6 ns (0.09) | 0.3 ns (0.04) | 1.7 (0.15) | 2.4 (0.41) | 0.8 (0.13) |
S0 | 7.3 (0.48) | 11.3 (1.22) | 8.3 (1.06) | 0.4 B (0.04) | 0.5 ns (0.06) | 0.2 ns (0.02) | 1.1 (0.16) | 5.0 (0.23) | 0.5 (0.02) | 1.3 A (0.08) | 1.9 ns (0.12) | 2.0 ns (0.31) | 0.0 (0.0) | 0.1 (0.01) | 0.0 (0.0) | 0.0 (0.0) | 0.5 AB (0.08) | 0.7 (0.18) | 0.6 AB (0.05) | 0.7 ns (0.02) | 0.4 ns (0.03) | 1.7 (0.12) | 3.0 (0.64) | 1.1 (0.22) |
D0 | 8.8 (1.30) | 17.1 (1.48) | 14.9 (0.92) | 0.7 AB (0.03) | 1.0 ns (0.07) | 0.4 ns (0.06) | 1.7 (0.18) | 5.8 (1.08) | 0.3 (0.05) | 0.9 B (0.05) | 1.6 ns (0.25) | 1.5 ns (0.20) | 0.1 (0.0) | 0.1 (0.01) | 0.0 (0.0) | 0.0 (0.0) | 0.5 AB (0.08) | 0.8 (0.06) | 0.8 A (0.03) | 0.8 ns (0.10) | 0.4 ns (0.06) | 1.9 (0.10) | 2.6 (0.55) | 0.9 (0.22) |
SN | 8.5 (1.76) | 18.1 (4.31) | 16.4 (3.53) | 1.0 A (0.09) | 1.2 ns (0.15) | 0.5 ns (0.07) | 1.8 (0.30) | 5.5 (1.59) | 0.4 (0.05) | 0.7 B (0.08) | 1.2 ns (0.14) | 1.8 ns (0.20) | 0.0 (0.0) | 0.1 (0.0) | 0.0 (0.0) | 0.0 (0.0) | 0.6 A (0.05) | 0.9 (0.06) | 0.6 AB (0.11) | 0.5 ns (0.03) | 0.3 ns (0.01) | 1.5 (0.14) | 2.3 (0.37) | 0.8 (0.05) |
DN | 9.6 (0.92) | 17.9 (2.54) | 13.5 (2.75) | 0.7 AB (0.14) | 1.1 ns (0.22) | 0.5 ns (0.11) | 1.8 (0.24) | 4.6 (1.01) | 0.4 (0.08) | 0.8 B (0.13) | 0.9 ns (0.08) | 1.3 ns (0.13) | 0.0 (0.0) | 0.1 (0.03) | 0.0 (0.0) | 0.0 (0.0) | 0.3 B (0.04) | 0.5 (0.14) | 0.4 B (0.12) | 0.3 ns (0.05) | 0.3 ns (0.03) | 1.4 (0.22) | 2.1 (0.66) | 0.7 (0.13) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruno, I.P.; Araújo, A.G.; Merten, G.H.; Ladeira, A.S.; Pinto, V.M. Crop Rotation and Nitrogen Fertilizer on Nitrate Leaching: Insights from a Low Rainfall Study. Nitrogen 2024, 5, 329-348. https://doi.org/10.3390/nitrogen5020022
Bruno IP, Araújo AG, Merten GH, Ladeira AS, Pinto VM. Crop Rotation and Nitrogen Fertilizer on Nitrate Leaching: Insights from a Low Rainfall Study. Nitrogen. 2024; 5(2):329-348. https://doi.org/10.3390/nitrogen5020022
Chicago/Turabian StyleBruno, Isabeli P., Augusto G. Araújo, Gustavo H. Merten, Audilei S. Ladeira, and Victor M. Pinto. 2024. "Crop Rotation and Nitrogen Fertilizer on Nitrate Leaching: Insights from a Low Rainfall Study" Nitrogen 5, no. 2: 329-348. https://doi.org/10.3390/nitrogen5020022
APA StyleBruno, I. P., Araújo, A. G., Merten, G. H., Ladeira, A. S., & Pinto, V. M. (2024). Crop Rotation and Nitrogen Fertilizer on Nitrate Leaching: Insights from a Low Rainfall Study. Nitrogen, 5(2), 329-348. https://doi.org/10.3390/nitrogen5020022