Fractal Scaling of Storage Capacity Fluctuations in Well Logs from Southeastern Mexican Reservoirs
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
3. Empirical Results and Discussion
3.1. Results for Well scW1
3.2. Results for Well scW2
3.3. Results for Well scW3
3.4. Summary of Exponents and Data Collapse
3.5. Classification of Observed Cases
- Case 1: Autocorrelation is present in both directions (y and x), with strong – correlation and a well-defined data collapse (e.g., well scW1).
- Case 2: Fractal behavior is observed in both directions but with – correlation and less-defined data collapse (e.g., well scW2). Better connectivity is suggested in the vertical direction compared to the horizontal direction.
- Case 3: No fractal correlation is present in either direction, and no data collapse is observed (e.g., wells scW3 and scW5). Such behavior would be due to the scarce or null connectivity between well logs, which could suggest records with minimal porosity, that is, a solid non-porous matrix. In such cases, a Euclidean analysis may be more suitable than a fractal approach.
4. Limitations and Scope
- The correlation between the scaling exponents and is not presented quantitatively through explicit power-law relationships, as has been developed in previous studies [58].
- The correlation between the scaling results of storage capacity fluctuations and Cretaceous stratigraphic units is not included due to confidentiality constraints in data management. Similarly, the relationship between storage capacity and well stratigraphy is not addressed. Furthermore, the anisotropy induced by stress or thermal/mechanical compaction dependent on depth is not addressed. However, such correlation could be readily established by a specialist with access to both variables and data from a different geological formation.
- The petrophysical heterogeneity of the reservoir, as observed through petrographic analysis, could be associated with the spatial heterogeneity observed in the distribution of Hurst exponents.
- The local heterogeneity illustrated in Figure 7 from individual well records could be integrated into the modeling of a global storage capacity and/or porosity matrix for a petroleum reservoir using an appropriate interpolation method; that is, a connection between the static and dynamic reservoir models could be evaluated.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lucia, F.J. Carbonate Reservoir Characterization, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. XII–336. [Google Scholar] [CrossRef]
- Tiab, D.; Donaldson, E.C. Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties, 4th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 1–894. [Google Scholar] [CrossRef]
- Das, D.B.; Hassanizadeh, S.M. Upscaling Multiphase Flow in Porous Media: From Pore to Core and Beyond; Springer: Dordrecht, The Netherlands, 2005; pp. 1–257. [Google Scholar] [CrossRef]
- Goff, J.A.; Holliger, K. Heterogeneity in the Crust and Upper Mantle, 1st ed.; Springer: New York, NY, USA, 2003; pp. XIX–349. [Google Scholar] [CrossRef]
- Grana, D.; Mukerji, T.; Doyen, P. Seismic Reservoir Modeling: Theory, Examples, and Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2021. [Google Scholar]
- Adler, P.M.; Thovert, J.F. Fractures and Fracture Networks, 1st ed.; Springer: Dordrecht, The Netherlands, 1999; Volume 15, pp. XII–431. [Google Scholar] [CrossRef]
- Doyen, P.M. Seismic Reservoir Characterization: An Earth Modelling Perspective; EAGE: Bunnik, The Netherlands, 2007. [Google Scholar]
- Chopra, S.; Marfurt, K.J. Front Matter. In Seismic Attributes for Prospect Identification and Reservoir Characterization; Society of Exploration Geophysicists: Houston, TX, USA; European Association of Geoscientists and Engineers: Bunnik, The Netherlands, 2007; pp. i–xvi. [Google Scholar] [CrossRef]
- Fan, X.; Wang, G.; Li, Y.; Dai, Q.; Linghu, S.; Duan, C.; Zhang, C.; Zhang, F. Pore structure evaluation of tight reservoirs in the mixed siliciclastic-carbonate sediments using fractal analysis of NMR experiments and logs. Mar. Pet. Geol. 2019, 109, 484–493. [Google Scholar] [CrossRef]
- Mishra, P.K.; Vesselinov, V.V.; Neuman, S.P. Radial flow to a partially penetrating well with storage in an anisotropic confined aquifer. J. Hydrol. 2012, 448–449, 255–259. [Google Scholar] [CrossRef]
- Lee, B.H.; Lee, S.K. Effects of specific surface area and porosity on cube counting fractal dimension, lacunarity, configurational entropy, and permeability of model porous networks: Random packing simulations and NMR micro-imaging study. J. Hydrol. 2013, 496, 122–141. [Google Scholar] [CrossRef]
- Acharya, M.N.; Kabir, M.R.; Al-Ajmi, S.H.; Dashti, Q.M.; Al-Anzi, E.H.; Kho, D.; Daraus, C.; Chakravorty, S. Flow Capacity Evaluation in a Complex Carbonate Reservoir: Key to Understand Reservoir Productivity and Stimulation Effectiveness. In Proceedings of the SPE Annual Technical Conference and Exhibition, San Antonio, TX, USA, 8–10 October 2012; Volume 1, pp. 267–272. [Google Scholar] [CrossRef]
- Qiao, J.; Zeng, J.; Jiang, S.; Ma, Y.; Feng, S.; Xie, H.; Wang, Y.; Hu, H. Role of pore structure in the percolation and storage capacities of deeply buried sandstone reservoirs: A case study of the Junggar Basin, China. Mar. Pet. Geol. 2020, 113, 104129. [Google Scholar] [CrossRef]
- Qiao, J.; Zeng, J.; Jiang, S.; Zhang, Y.; Feng, S.; Feng, X.; Hu, H.; Qiao, J.; Zeng, J.; Jiang, S.; et al. Insights into the pore structure and implications for fluid flow capacity of tight gas sandstone: A case study in the upper paleozoic of the Ordos Basin. MarPG 2020, 118, 104439. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Xu, S.; Wu, R.; Lv, J.; Li, Z.; Li, C.; Zhang, J.; Zhao, L.; Xie, J.; et al. A novel mode for “three zones” collaborative reconstruction of underground gas storage and its application to large, low-permeability lithologic gas reservoirs. Energy 2022, 253, 124148. [Google Scholar] [CrossRef]
- Warren, J.; Root, P. The Behavior of Naturally Fractured Reservoirs. Soc. Pet. Eng. J. 1963, 3, 245–255. [Google Scholar] [CrossRef]
- Abadassah, D.; Ershaghi, I. Triple-Porosity Systems for Representing Naturally Fractured Reservoirs. SPE Form. Eval. 1986, 1, 113–127. [Google Scholar] [CrossRef]
- Yarmohammadi, S.; Kadkhodaie, A.; Hosseinzadeh, S. An integrated approach for heterogeneity analysis of carbonate reservoirs by using image log based porosity distributions, NMR T2 curves, velocity deviation log and petrographic studies: A case study from the South Pars gas field, Persian Gulf Basin. J. Pet. Sci. Eng. 2020, 192, 107283. [Google Scholar] [CrossRef]
- Fitch, P.J.R. Heterogeneity in the Petrophysical Properties of Carbonate Reservoirs. Ph.D. Thesis, University of Leicester, Leicester, UK, 2011. [Google Scholar]
- Chen, S.; Gong, Z.; Li, X.; Wang, H.; Wang, Y.; Zhang, Y. Pore structure and heterogeneity of shale gas reservoirs and its effect on gas storage capacity in the Qiongzhusi Formation. Geosci. Front. 2021, 12, 101244. [Google Scholar] [CrossRef]
- Xiao, Z.; Ding, W.; Hao, S.; Taleghani, A.D.; Wang, X.; Zhou, X.; Sun, Y.; Liu, J.; Gu, Y. Quantitative analysis of tight sandstone reservoir heterogeneity based on rescaled range analysis and empirical mode decomposition: A case study of the Chang 7 reservoir in the Dingbian oilfield. J. Pet. Sci. Eng. 2019, 182, 106326. [Google Scholar] [CrossRef]
- Balankin, A.S.; Elizarraraz, B.E. Map of fluid flow in fractal porous medium into fractal continuum flow. Phys. Rev. E—Stat. Nonlinear Soft Matter Phys. 2012, 85, 056314. [Google Scholar] [CrossRef]
- Chang, J.; Yortsos, Y.C. Pressure-Transient Analysis of Fractal Reservoirs. SPE Form. Eval. 1990, 5, 31–38. [Google Scholar] [CrossRef]
- Park, H.W.; Choe, J.; Kang, J.M. Pressure Behavior of Transport in Fractal Porous Media Using a Fractional Calculus Approach. Energy Sources 2000, 22, 881–890. [Google Scholar] [CrossRef]
- Yu, X.; Ghasemizadeh, R.; Padilla, I.Y.; Kaeli, D.; Alshawabkeh, A. Patterns of temporal scaling of groundwater level fluctuation. J. Hydrol. 2016, 536, 485–495. [Google Scholar] [CrossRef]
- Balankin, A.S.; Valdivia, J.C.; Marquez, J.; Susarrey, O.; Solorio-Avila, M.A. Anomalous diffusion of fluid momentum and Darcy-like law for laminar flow in media with fractal porosity. Phys. Lett. A 2016, 380, 2767–2773. [Google Scholar] [CrossRef]
- Dashtian, H.; Jafari, G.R.; Sahimi, M.; Masihi, M. Scaling, multifractality, and long-range correlations in well log data of large-scale porous media. Phys. A Stat. Mech. Its Appl. 2011, 390, 2096–2111. [Google Scholar] [CrossRef]
- Flamenco-López, F.; Camacho-Velázquez, R. Determination of Fractal Parameters of Fracture Networks Using Pressure-Transient Data. SPE Reserv. Eval. Eng. 2003, 6, 39–47. [Google Scholar] [CrossRef]
- Bourdet, D.; Whittle, T.M.; Douglas, A.A.; Pirard, V.M. A New Set of Type Curves Simplifies Well Test Analysis. World Oil, May 1983. [Google Scholar]
- Acuna, J.A.; Ershaghi, I.; Yortsos, Y.C. Practical Application of Fractal Pressure-Transient Analysis in Naturally Fractured Reservoirs. SPE Form. Eval. 1995, 10, 173–179. [Google Scholar] [CrossRef]
- Balankin, A.S.; Morales-Ruiz, L.; Matías-Gutierres, S.; Susarrey-Huerta, O.; Samayoa-Ochoa, D.; Patiño-Ortiz, J. Comparative study of gravity-driven discharge from reservoirs with translationally invariant and fractal pore networks. J. Hydrol. 2018, 565, 467–473. [Google Scholar] [CrossRef]
- Rios, V.S.; Santos, L.O.; Schiozer, D.J. Upscaling Technique for Highly Heterogeneous Reservoirs Based on Flow and Storage Capacity and the Lorenz Coefficient. SPE J. 2020, 25, 1981–1999. [Google Scholar] [CrossRef]
- Lozada-Zumaeta, M.; Arizabalo, R.D.; Ronquillo-Jarillo, G.; Coconi-Morales, E.; Rivera-Recillas, D.; Castrejón-Vácio, F. Distribution of petrophysical properties for sandy-clayey reservoirs by fractal interpolation. Nonlin. Processes Geophys. 2012, 19, 239–250. [Google Scholar] [CrossRef]
- Hernandez-Martinez, E.; Perez-Muñoz, T.; Velasco-Hernandez, J.X.; Altamira-Areyan, A.; Velasquillo-Martinez, L. Facies Recognition Using Multifractal Hurst Analysis: Applications to Well-Log Data. Math. Geosci. 2013, 45, 471–486. [Google Scholar] [CrossRef]
- Hernandez-Martinez, E.; Velasco-Hernandez, J.X.; Perez-Muñoz, T.; Alvarez-Ramirez, J. A DFA approach in well-logs for the identification of facies associations. Phys. A Stat. Mech. Its Appl. 2013, 392, 6015–6024. [Google Scholar] [CrossRef]
- Jestczemski, F.; Sernetz, M. Multifractal approach to inhomogeneous fractals. Phys. A Stat. Mech. Its Appl. 1996, 223, 275–282. [Google Scholar] [CrossRef]
- Bunde, A.; Havin, S. Fractals in Science; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar] [CrossRef]
- Hardy, H.H.; Beier, R.A. Fractals in Reservoir Engineering; World Scientific: Singapore, 1994. [Google Scholar] [CrossRef]
- Barton, C.C.; Pointe, P.R. Fractals in the Earth Sciences, 1st ed.; Springer: New York, NY, USA, 1995; pp. XVIII–265. [Google Scholar] [CrossRef]
- Gutierres, S.M.; Garcia, E.I.; Chávez, H.D.S.; Villafuerte, R.C. Scaling the fluctuation of the flow capacity of core logs in a formation in southeastern Mexico. Rev. Mex. Fís. 2025, 71, 030602. [Google Scholar] [CrossRef]
- Bashan, A.; Bartsch, R.; Kantelhardt, J.W.; Havlin, S. Comparison of detrending methods for fluctuation analysis. Phys. A Stat. Mech. Its Appl. 2008, 387, 5080–5090. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal detrended fluctuation analysis of nonstationary time series. Phys. A Stat. Mech. Its Appl. 2002, 316, 87–114. [Google Scholar] [CrossRef]
- López-Lambraño, A.; Carrillo-Yee, E.; Fuentes, C.; López-Ramos, A.; López-Lambraño, M. Una revisión de los métodos para estimar el exponente de Hurst y la dimensión fractal en series de precipitación y temperatura. Rev. Mex. Fís. 2017, 63, 244. [Google Scholar]
- Bryce, R.M.; Sprague, K.B. Revisiting detrended fluctuation analysis. Sci. Rep. 2012, 2, 315. [Google Scholar] [CrossRef]
- Shao, Y.H.; Gu, G.F.; Jiang, Z.Q.; Zhou, W.X.; Sornette, D. Comparing the performance of FA, DFA and DMA using different synthetic long-range correlated time series. Sci. Rep. 2012, 2, 835. [Google Scholar] [CrossRef]
- Xue, Y.; Pan, W.; Lu, W.Z.; He, H.D. Multifractal nature of particulate matters (PMs) in Hong Kong urban air. Sci. Total Environ. 2015, 532, 744–751. [Google Scholar] [CrossRef]
- Silva, L.B.; Vermelho, M.V.; Lyra, M.L.; Viswanathan, G.M. Multifractal detrended fluctuation analysis of analog random multiplicative processes. Chaos Solitons Fractals 2009, 41, 2806–2811. [Google Scholar] [CrossRef]
- Balankin, A.S.; Matamoros, D.M.; Ortiz, J.P.; Ortiz, M.P.; León, E.P.; Ochoa, D.S. Scaling dynamics of seismic activity fluctuations. Europhys. Lett. 2009, 85, 39001. [Google Scholar] [CrossRef]
- Ezaier, Y.; Hader, A.; Latif, A.; Amallah, L.; Achik, I.; Boughaleb, Y. Morphological properties of the interfaces growth of composite membranes. Mater. Today Proc. 2022, 66, 238–243. [Google Scholar] [CrossRef]
- Fujimoto, K.; Hamazaki, R.; Kawaguchi, Y. Family-Vicsek Scaling of Roughness Growth in a Strongly Interacting Bose Gas. Phys. Rev. Lett. 2020, 124, 210604. [Google Scholar] [CrossRef]
- Ouadfeul, S.A.; Aliouane, L. Multifractal Analysis Revisited by the Continuous Wavelet Transform Applied in Lithofacies Segmentation from Well-Logs Data. Int. J. Appl. Phys. Math. 2011, 1, 10–18. [Google Scholar] [CrossRef]
- Barabási, A.L.; Stanley, H.E. Fractal Concepts in Surface Growth; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar] [CrossRef]
- Balankin, A.S. Dynamic scaling approach to study time series fluctuations. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2007, 76, 056120. [Google Scholar] [CrossRef]
- Meakin, P. The growth of rough surfaces and interfaces. Phys. Rep. 1993, 235, 189–289. [Google Scholar] [CrossRef]
- Ferreira, R.B.; Vieira, V.M.; Gleria, I.; Lyra, M.L. Correlation and complexity analysis of well logs via Lyapunov, Hurst, Lempel–Ziv and neural network algorithms. Phys. A Stat. Mech. Its Appl. 2009, 388, 747–754. [Google Scholar] [CrossRef]
- Mandelbrot, B.B. Harold Edwin Hurst. In Statisticians of the Centuries; Springer: New York, NY, USA, 2001; pp. 335–338. [Google Scholar] [CrossRef]
- Hewett, T.A. Fractal Distributions of Reservoir Heterogeneity and their Influence on Fluid Transport. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 5–8 October 1986; Society of Petroleum Engineers of AIME: Houston, TX, USA, 1986. [Google Scholar] [CrossRef]
- Dashtian, H.; Jafari, G.R.; Lai, Z.K.; Masihi, M.; Sahimi, M. Analysis of Cross Correlations Between Well Logs of Hydrocarbon Reservoirs. Transp. Porous Media 2011, 90, 445–464. [Google Scholar] [CrossRef]
- Subhakar, D.; Chandrasekhar, E. Reservoir characterization using multifractal detrended fluctuation analysis of geophysical well-log data. Phys. A Stat. Mech. Its Appl. 2016, 445, 57–65. [Google Scholar] [CrossRef]
- Chen, X.; Yao, G.; Cai, J.; Huang, Y.; Yuan, X. Fractal and multifractal analysis of different hydraulic flow units based on micro-CT images. J. Nat. Gas Sci. Eng. 2017, 48, 145–156. [Google Scholar] [CrossRef]
Well | z | Collapse | ||
---|---|---|---|---|
scW1 | 0.90 | 1.03 | 0.92 | Yes |
scW2 | 0.83 | 0.76 | 1.11 | Yes |
scW3 | 0.86 | 0.40 | 2.23 | No |
scW4 | 0.99 | 0.81 | 1.38 | Yes |
scW5 | 0.97 | 0.71 | 2.70 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matias-Gutierres, S.; García-Otamendi, E.I.; Sánchez-Chávez, H.D.; Cruz-Diosdado, L.D.; Cifuentes-Villafuerte, R. Fractal Scaling of Storage Capacity Fluctuations in Well Logs from Southeastern Mexican Reservoirs. Fractal Fract. 2025, 9, 548. https://doi.org/10.3390/fractalfract9080548
Matias-Gutierres S, García-Otamendi EI, Sánchez-Chávez HD, Cruz-Diosdado LD, Cifuentes-Villafuerte R. Fractal Scaling of Storage Capacity Fluctuations in Well Logs from Southeastern Mexican Reservoirs. Fractal and Fractional. 2025; 9(8):548. https://doi.org/10.3390/fractalfract9080548
Chicago/Turabian StyleMatias-Gutierres, Sergio, Edgar Israel García-Otamendi, Hugo David Sánchez-Chávez, Leonardo David Cruz-Diosdado, and Roberto Cifuentes-Villafuerte. 2025. "Fractal Scaling of Storage Capacity Fluctuations in Well Logs from Southeastern Mexican Reservoirs" Fractal and Fractional 9, no. 8: 548. https://doi.org/10.3390/fractalfract9080548
APA StyleMatias-Gutierres, S., García-Otamendi, E. I., Sánchez-Chávez, H. D., Cruz-Diosdado, L. D., & Cifuentes-Villafuerte, R. (2025). Fractal Scaling of Storage Capacity Fluctuations in Well Logs from Southeastern Mexican Reservoirs. Fractal and Fractional, 9(8), 548. https://doi.org/10.3390/fractalfract9080548