Fractal-Inspired Region-Weighted Optimization and Enhanced MobileNet for Medical Image Classification
Abstract
1. Introduction
- (1)
- They mainly rely on fractal features as static inputs and fail to dynamically interact with the model training process.
- (2)
- They lack an adaptive capture mechanism for multi-scale fractal characteristics.
- (3)
- The differential weight allocation of fractal features of different anatomical parts was not considered. This study breaks through these limitations through the following innovations.
2. RMA Algorithm Design
2.1. Adam Optimization Algorithm
Algorithm 1: Adam Algorithm |
1: Input: Initial point
, first-moment decay
, second-moment decay
, and regularization constant
. 2: Initialize and . 3: For t = 1 to do 4: 5: 6: 7: 8: 9: 10: End for Return . |
2.2. Fractal-Inspired Regional-Weighting Mechanism
2.3. Multi-Momentum Method and Adaptive Gradient Update
2.4. RMA Algorithm
Algorithm 2: RMA Algorithm |
1: Input: Initial point
, first-moment decay
, second-moment decay
, regularization constant
, regional weight
, momentum quantity M, and
. 2: Initialize , , and , . 3: For t = 1 to do 4: Calculate the current gradient . 5: 6: 7: 8: 9: 10: For i = 1 to M do 11: 12: 13: 14: 15: 16: 17: 18: End for 19: End for Return . |
3. Establishment of the ESM Neural Network
3.1. MobileNetV2 Network
3.2. ESM Network
- (1)
- The SECA module learns the weight of each channel through an efficient channel attention mechanism to improve feature selection ability.
- (2)
- The channel rearrangement mechanism module is used to rearrange the feature map channels and enhance the information flow between different channels.
- (3)
- The LeakyReLU activation function replaces the traditional ReLU6, alleviates the problem of dead neurons, and improves the stability of the model.
3.2.1. Channel Rearrangement Mechanism
- (1)
- Divide the number of channels of the input feature map into G groups, each containing channels.
- (2)
- Rearrange the feature map into , the channels of each group are considered as independent dimensions.
- (3)
- Perform the transposition of the channel dimensions to obtain a new feature map .
- (4)
- Spread and output in the new order, enabling the exchange of information between channels. The formula representation is shown in Equation (11).
3.2.2. SECA Attention Mechanism
3.2.3. Activation Function and Architecture Optimization
4. Experimental Design and Analysis of Results
4.1. Experimental Dataset and Pre-Processing
4.2. Experimental Setup
- (1)
- Optimization algorithms: This experiment covers five optimization algorithms, namely SGD, Adagrad, Adam, NAdam, and RMA algorithms, aiming at comparing the performance difference between them.
- (2)
- Batch size: The batch size used in each experiment is 32 to ensure the consistency and fairness of the experiment.
- (3)
- Statistical analysis and repeatability verification: To ensure the statistical reliability of the experimental results, we conducted 5 independent repeated experiments on all optimization algorithms and network combinations, recorded the classification accuracy and loss values of the test set, calculated the mean and standard deviation to evaluate stability, and presented the final results in the form of “accuracy (mean ± standard deviation)”(such as 92.73 ± 0.82%).
- (4)
- Hyperparameter selection method: For key hyperparameters in the RMA algorithm and ESM network (momentum term quantity M, scaling factor γ, and offset β of the SECA module), Optuna optimized with hyperparameters will be used for automated hyperparameter optimization. Set the search space (integers M ∈ [2, 5], γ ∈ [0.5, 2.0], and β ∈ [−0.5, 0.5]) with validation set accuracy as the optimization objective, and select the optimal parameter combination for performance.
- (5)
- Data pre-processing: Before conducting the experiments, necessary pre-processing of the data was carried out, including data normalization, standardization, data enhancement, and other operations to ensure the quality and consistency of the input data.
4.3. Experimental Results and Analysis
4.3.1. Application of RMA Algorithm on CIFAR10 Dataset
4.3.2. Application of RMA Algorithm on Gastroenterology Dataset
4.3.3. Application of the RMA Algorithm to the Fundus Glaucoma Dataset
4.3.4. Combination of RMA Algorithm and ESM Neural Network
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gupta, A.; Dixit, M.; Mishra, V.K.; Singh, A.; Dayal, A. Brain tumor segmentation from MRI images using deep learning techniques. In International Advanced Computing Conference; Springer Nature: Cham, Switzerland, 2022; pp. 434–448. [Google Scholar]
- Tang, L.Y.W. Severity classification of ground-glass opacity via 2-D convolutional neural network and lung CT scans: A 3-day exploration. arXiv 2023, arXiv:2303.16904. [Google Scholar]
- Pandit, B.R.; Alsadoon, A.; Prasad, P.; Al Aloussi, S.; Rashid, T.A.; Alsadoon, O.H.; Jerew, O.D. Deep learning neural network for lung cancer classification: Enhanced optimization function. Multimed. Tools Appl. 2023, 82, 6605–6624. [Google Scholar] [CrossRef]
- Nanni, L.; Manfè, A.; Maguolo, G.; Lumini, A.; Brahnam, S. High performing ensemble of convolutional neural networks for insect pest image detection. Ecol. Inform. 2022, 67, 101515. [Google Scholar] [CrossRef]
- Zhou, T.; Huo, B.Q.; Lu, H.L.; Shi, H.B. Progress of residual neural network optimization algorithm for medical imaging disease diagnosis. Chin. J. Image Graph. 2020, 25, 2079–2092. [Google Scholar] [CrossRef]
- Kingma, D.P. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Guan, L. AdaPlus: Integrating Nesterov momentum and precise stepsize adjustment on AdamW basis. In Proceedings of the ICASSP 2024–2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Seoul, Republic of Korea, 14–19 April 2024; pp. 5210–5214. [Google Scholar]
- Dozat, T. Incorporating Nesterov Momentum into Adam. Available online: https://openreview.net/forum?id=OM0jvwB8jIp57ZJjtNEZ (accessed on 19 February 2024).
- Zhuang, J.; Tang, T.; Ding, Y.; Tatikonda, S.C.; Dvornek, N.; Papademetris, X.; Duncan, J. Adabelief optimizer: Adapting stepsizes by the belief in observed gradients. Adv. Neural Inf. Process. Syst. 2020, 33, 18795–18806. [Google Scholar]
- Yun, J. StochGradAdam: Accelerating Neural Networks Training with Stochastic Gradient Sampling. arXiv 2023, arXiv:2310.17042. [Google Scholar]
- Zhang, C.; Shao, Y.; Sun, H.; Xing, L.; Zhao, Q.; Zhang, L. The WuC-Adam algorithm based on joint improvement of Warmup and cosine annealing algorithms. Math. Biosci. Eng. 2024, 21, 1270–1285. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, W.; Shao, Y.; Cui, J.; Xing, L.; Zhao, Q.; Zhang, L. A Linear Interpolation and Curvature-Controlled Gradient Optimization Strategy Based on Adam. Algorithms 2024, 17, 185. [Google Scholar] [CrossRef]
- Haase, D.; Amthor, M. Rethinking depthwise separable convolutions: How intra-kernel correlations lead to improved mobilenets. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 14600–14609. [Google Scholar]
- Hoang, V.T.; Jo, K.H. Pydmobilenet: Improved version of mobilenets with pyramid depthwise separable convolution. arXiv 2018, arXiv:1811.07083. [Google Scholar]
- Qin, Z.; Zhang, Z.; Chen, X.; Wang, C.; Peng, Y. Fd-mobilenet: Improved mobilenet with a fast downsampling strategy. In Proceedings of the 25th IEEE International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 1363–1367. [Google Scholar]
- Wang, H.; Zhu, W.; Dong, X.; Chen, Y.; Li, X.; Qiu, P.; Chen, X.; Vasa, K.V.; Xiong, Y.; Dumitrascu, O.M.; et al. Many-MobileNet: Multi-Model Augmentation for Robust Retinal Disease Classification. arXiv 2024, arXiv:2412.02825. [Google Scholar]
- Ahmadi, M.; Karimi, N.; Samavi, S. A lightweight deep learning pipeline with DRDA-Net and MobileNet for breast cancer classification. arXiv 2024, arXiv:2403.11135. [Google Scholar]
- Zhao, L.; Xu, X.; Li, J.; Zhao, Q. Application of deep-transfer learning in automatic glaucoma detection. J. Harbin Eng. Univ. 2023, 44, 673–678. [Google Scholar]
- Lv, P.; Wang, Y.; Wang, S.; Yu, X.; Wu, C. Optic disc detection based on visual saliency in fundus image. Chin. J. Image Graph. 2021, 26, 2293–2304. [Google Scholar]
- Borgli, H.; Thambawita, V.; Smedsrud, P.H.; Hicks, S.; Jha, D.; Eskeland, S.L.; Randel, K.R.; Pogorelov, K.; Lux, M.; Nguyen, D.T.D.; et al. HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 2020, 7, 283. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Guo, Y. Research on Glaucoma Diagnosis Method based on deep learning. Microprocessor 2021, 42, 41–46. [Google Scholar]
- Xu, J. Research on Retinal Multi-Disease Classification Based on Deep Learning. Master’s Thesis, Donghua University, Shanghai, China, 2023. Available online: https://link.cnki.net/doi/10.27012/d.cnki.gdhuu.2023.001227 (accessed on 6 May 2024).
- Xing, J.; He, W.; Zhang, S. Application of deep learning algorithms in cortical cataract screening. Artif. Intell. 2023, 6, 67–73. [Google Scholar]
- Wang, S.; Ke, Y.; Wang, G. Application of artificial intelligence in quality control of gastrointestinal. Chin. J. Oncol. 2021, 48, 1215–1219. [Google Scholar]
- Zhu, C.; Wang, D.; Hua, Y.; Zhang, G. Application and prospect of artificial intelligence in gastric diseases. J. Gastroenterol. Hepatol. 2022, 31, 451–453. [Google Scholar]
- Zhu, S.; Xu, C.; Zhou, X.; Liu, L.; Lin, J. Colorectal polyp segmentation in endoscopic images using DeepLabV3. Chin. J. Med. Phys. 2023, 40, 944–949. [Google Scholar]
- Liu, L.; Lin, J.; Zhu, S.; Gao, J.; Liu, X.; Xu, C.; Zhu, J. ResNet-based interpretable computer vision model in the endoscopic evaluation of internal hemorrhoids. Mod. Dig. Interv. Diagn. Treat. 2023, 28, 972–975+980. [Google Scholar]
- Gong, A. A study on construction of an eye disease classification and diagnosis model by utilizing resnet deep neural network. J. Med. Forum 2024, 45, 379–383. [Google Scholar]
- Huang, L.; Liu, M.; Wu, Y.; Xu, A.; Xiang, Y.; Zhou, Y.; Lin, H. Prevention and telemedicine of eye disease based on deep learning and smart phones. J. Ophthalmol. 2022, 37, 230–237. [Google Scholar]
- Aziz, A.; Tezel, N.S.; Kaçmaz, S.; Attallah, Y. Early Diabetic Retinopathy Detection from OCT Images Using Multifractal Analysis and Multi-Layer Perceptron Classification. Diagnostics 2025, 15, 1616. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, M.; Cheng, J.; Zhang, T.; Lu, F. Retina images classification based on 2D empirical mode decomposition and multifractal analysis. Heliyon 2024, 10, e27391. [Google Scholar] [CrossRef]
- Mahapatra, K. Fractal Dimension and Entropy Analysis of Medical Images for KNN-Based Disease Classification. Baghdad Sci. J. 2025, 22, 1354–1365. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 4510–4520. [Google Scholar]
- Ma, N.; Zhang, X.; Zheng, H.T.; Sun, J. Shufflenet v2: Practical guidelines for efficient cnn architecture design. In Proceedings of the European Conference on Computer Vision(ECCV), Munich, Germany, 8–14 September 2018; pp. 116–131. [Google Scholar]
- Kiefer, R.; Abid, M.; Ardali, M.R.; Steen, J.; Amjadian, E. Automated Fundus Image Standardization Using a Dynamic Global Foreground Threshold Algorithm. In Proceedings of the 8th International Conference on Image, Vision and Computing (ICIVC), Dalian, China, 27–29 July 2023; pp. 460–465. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 7132–7141. [Google Scholar]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. [Google Scholar]
- He, A.; Li, T.; Li, N.; Wang, K.; Fu, H. CABNet: Category attention block for imbalanced diabetic retinopathy grading. IEEE Trans. Med. Imaging 2020, 40, 143–153. [Google Scholar] [CrossRef]
- Cao, Y.; Xu, J.; Lin, S.; Wei, F.; Hu, H. Gcnet: Non-local networks meet squeeze-excitation networks and beyond. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27 October–2 November 2019. [Google Scholar]
- Chakraborty, S.; Roy, A.; Pramanik, P.; Valenkova, D.; Sarkar, R. A Dual Attention-aided DenseNet-121 for Classification of Glaucoma from Fundus Images. In Proceedings of the 13th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 11–14 June 2024; pp. 1–4. [Google Scholar]
- Gómez-Valverde, J.J.; Antón, A.; Fatti, G.; Liefers, B.; Herranz, A.; Santos, A.; Sánchez, C.I.; Ledesma-Carbayo, M.J. Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning. Biomed. Opt. Express 2019, 10, 892–913. [Google Scholar] [CrossRef]
- Alayón, S.; Hernández, J.; Fumero, F.J.; Sigut, J.F.; Díaz-Alemán, T. Comparison of the performance of convolutional neural networks and vision transformer-based systems for automated glaucoma detection with eye fundus images. Appl. Sci. 2023, 13, 12722. [Google Scholar] [CrossRef]
- Verma, R.; Shrinivasan, L.; Hiremath, B. Machine learning classifiers for detection of glaucoma. IAES Int. J. Artif. Intell. 2023, 12, 806. [Google Scholar] [CrossRef]
- Min, M.; Su, S.; He, W.; Bi, Y.; Ma, Z.; Liu, Y. Computer-aided diagnosis of colorectal polyps using linked color imaging colonoscopy to predict histology. Sci. Rep. 2019, 9, 2881. [Google Scholar] [CrossRef]
- Alhajlah, M.; Noor, M.N.; Nazir, M.; Mahmood, A.; Ashraf, I.; Karamat, T. Gastrointestinal diseases classification using deep transfer learning and features optimization. Comput. Mater. Contin. 2023, 75, 2227–2245. [Google Scholar] [CrossRef]
- Margapuri, V. Diagnosis and Severity Assessment of Ulcerative Colitis using Self Supervised Learning. arXiv 2024, arXiv:2412.07806. [Google Scholar]
- Ahlawat, V.; Sharma, R. Optimizing Gastrointestinal Diagnostics: A CNN-Based Model for VCE Image Classification. arXiv 2024, arXiv:2411.01652. [Google Scholar]
- Das, A.; Singh, A.; Prakash, S. CapsuleNet: A Deep Learning Model To Classify GI Diseases Using EfficientNet-b7. arXiv 2024, arXiv:2410.19151. [Google Scholar]
Number of Layers | Layer Type | Number of Output Channels | Convolutional Kernel Size | Stride | Remarks |
---|---|---|---|---|---|
1 | Convolutional layer | 32 | 3 × 3 | 2 | Convolution + BatchNorm + ReLU6 |
2 | Inverted residual | 16 | 3 × 3 | 1 | Expand ratio = 1 |
3–4 | Inverted residual | 24 | 3 × 3 | 2 | Expand ratio = 6 |
5–6 | Inverted residual | 32 | 3 × 3 | 2 | Expand ratio = 6 |
7–8 | Inverted residual | 64 | 3 × 3 | 2 | Expand ratio = 6 |
9–10 | Inverted residual | 96 | 3 × 3 | 1 | Expand ratio = 6 |
11–12 | Inverted residual | 160 | 3 × 3 | 2 | Expand ratio = 6 |
13 | Inverted residual | 320 | 3 × 3 | 1 | Expand ratio = 6 |
14 | 1 × 1 Convolution layer | 1280 | 1 × 1 | 1 | Convolution + BatchNorm + ReLU6 |
15 | Global average pooling layer | - | - | - | Generate 1 × 1 output for a single channel |
16 | Dropout layer | - | - | - | Prevent overfitting |
17 | Fully connected layer | num_classes | - | - | Final classification output layer |
Module Performance Comparison | ECA | SECA |
---|---|---|
Core idea | Modeling inter-channel relationships by 1D convolution and compression using global average pooling | Based on the ECA module, but with the addition of scaling γ and panning b to adjust the intensity of attention |
Attention calculator | Direct output of attention weights using sigmoid activation function | Attention weights are calculated using sigmoid and the output is additionally adjusted by the parameter |
Parameters | No additional parameters | The introduction of γ and b |
Convolution operation | Using standard 1D convolution | Processing is similar to ECA, but with the addition of adjustable parameters |
Dexterity | Fixed attention mechanisms | Flexibility to adjust the intensity of attention |
Number of Layers | Layer Type | Output Channels | Convolutional Kernel Size | Stride | Remarks |
---|---|---|---|---|---|
1 | Conv2d + BatchNorm + LeakyReLU | 16 | 3 × 3 | 2 | Convolutional Layer |
2 | Conv2d + BatchNorm + LeakyReLU + SECA + Channel Shuffle | 24 | 3 × 3 | 2 | Expand Ratio = 1 |
3 | Conv2d + BatchNorm + LeakyReLU + SECA + Channel Shuffle | 24 | 3 × 3 | 1 | Expand Ratio = 6 |
4 | Conv2d + BatchNorm + LeakyReLU + SECA + Channel Shuffle | 32 | 3 × 3 | 2 | Expand Ratio = 6 |
5 | Conv2d + BatchNorm + LeakyReLU + SECA + Channel Shuffle | 32 | 3 × 3 | 1 | Expand Ratio = 6 |
6 | Conv2d + BatchNorm + LeakyReLU + SECA + Channel Shuffle | 96 | 3 × 3 | 2 | Expand Ratio = 6 |
7 | Conv2d + BatchNorm + LeakyReLU + SECA + Channel Shuffle | 96 | 3 × 3 | 1 | Expand Ratio = 6 |
8 | Conv2d + BatchNorm + LeakyReLU + SECA + Channel Shuffle | 160 | 3 × 3 | 2 | Expand Ratio = 6 |
9 | Conv2d + BatchNorm + LeakyReLU + SECA + Channel Shuffle | 160 | 3 × 3 | 1 | Expand Ratio = 6 |
10 | Conv2d + BatchNorm + LeakyReLU + SECA + Channel Shuffle | 320 | 3 × 3 | 2 | Expand Ratio = 6 |
11 | Conv2d + BatchNorm + LeakyReLU + SECA + Channel Shuffle | 320 | 3 × 3 | 1 | Expand Ratio = 6 |
12 | Conv2d + BatchNorm + LeakyReLU | 1280 | 1 × 1 | 1 | The Last Convolutional Layer |
13 | Global Average Pooling Layer | 1280 | - | - | Global Average Pooling Layer |
14 | Linear + Dropout | num_classes(K) | - | - | Final Classification Output Layer |
Dataset | Total Sample | Training Set | Validation Set | Test Set | Classification |
---|---|---|---|---|---|
CIFAR10 | 60,000 | 45,000 | 5000 | 10,000 | 10 |
Gastrointestinal | 7260 | 4356 | 1089 | 1815 | 8 |
Fundus glaucoma | 8621 | 5000 | 1500 | 2121 | 2 |
Adam | MobileNetV2 | ShuffleNetV2 | ResNet50 | |||
---|---|---|---|---|---|---|
lr | Acc | Loss | Acc | Loss | Acc | Loss |
0.01 | 64.28% | 1.431 | 60.60% | 1.99 | 65.32% | 1.229 |
0.001 | 70.48% | 1.224 | 65.39% | 1.61 | 72.43% | 1.099 |
0.0001 | 40.77% | 1.6988 | 40.76% | 2.181 | 46.01% | 1.459 |
Comparison of Experimental Results | MobileNetV2 | ShuffleNetV2 | ResNet50 | |||
---|---|---|---|---|---|---|
Acc | Loss | Acc | Loss | Acc | Loss | |
SGD | 29.38 ± 0.51% | 1.984 ± 0.05 | 45.15 ± 0.68% | 1.588 ± 0.03 | 71.33 ± 0.32% | 1.541 ± 0.09 |
Adagrad | 30.21 ± 0.62% | 1.911 ± 0.04 | 35.13 ± 0.53% | 1.876 ± 0.06 | 72.28 ± 0.51% | 1.438 ± 0.13 |
Adam | 68.49 ± 0.71% | 1.210 ± 0.02 | 65.21 ± 0.41% | 1.461 ± 0.04 | 82.30 ± 0.3% | 1.112 ± 0.11 |
NAdam | 68.67 ± 0.7% | 1.638 ± 0.03 | 63.33 ± 0.83% | 1.193 ± 0.05 | 81.94 ± 0.22% | 1.108 ± 0.06 |
RMA | 85.45 ± 0.32% | 0.912 ± 0.01 | 80.87 ± 0.41% | 1.010 ± 0.02 | 86.33 ± 0.12% | 1.051 ± 0.03 |
Comparison of Experimental Results | MobileNetV2 | ShuffleNetV2 | ResNet50 | |||
---|---|---|---|---|---|---|
Acc | Loss | Acc | Loss | Acc | Loss | |
SGD | 63.60 ± 0.81% | 1.185 ± 0.03 | 54.30 ± 1.2% | 1.944 ± 0.07 | 69.20 ± 0.32% | 1.634 ± 0.05 |
Adagrad | 67.40 ± 0.34% | 1.012 ± 0.02 | 66.20 ± 0.62% | 1.023 ± 0.04 | 71.45 ± 0.55% | 1.113 ± 0.03 |
Adam | 72.40 ± 0.12% | 0.892 ± 0.01 | 70.40 ± 0.7% | 0.920 ± 0.03 | 72.56 ± 0.12% | 0.824 ± 0.02 |
NAdam | 72.80 ± 0.63% | 0.857 ± 0.02 | 72.80 ± 0.53% | 0.995 ± 0.04 | 74.30 ± 0.54% | 0.895 ± 0.03 |
RMA | 83.60 ± 0.49% | 0.741 ± 0.01 | 81.60 ± 0.3% | 0.808 ± 0.02 | 84.94 ± 0.5% | 0.708 ± 0.01 |
Comparison of Experimental Results | MobileNetV2 | ShuffleNetV2 | ResNet50 | |||
---|---|---|---|---|---|---|
Acc | Loss | Acc | Loss | Acc | Loss | |
SGD | 76.81 ± 0.62% | 0.536 ± 0.02 | 62.09 ± 1.1% | 0.609 ± 0.03 | 77.31 ± 0.78% | 0.761 ± 0.04 |
Adagrad | 77.65 ± 0.51% | 0.745 ± 0.03 | 78.17 ± 0.4% | 0.758 ± 0.02 | 79.32 ± 0.6% | 0.651 ± 0.03 |
Adam | 81.40 ± 0.43% | 0.653 ± 0.02 | 79.22 ± 0.55% | 0.834 ± 0.04 | 81.56 ± 0.21% | 0.776 ± 0.03 |
NAdam | 81.26 ± 0.32% | 0.489 ± 0.01 | 79.30 ± 0.41% | 0.721 ± 0.02 | 82.30 ± 0.43% | 0.854 ± 0.03 |
RMA | 84.90 ± 0.35% | 0.560 ± 0.01 | 83.60 ± 0.29% | 0.621 ± 0.01 | 85.94 ± 0.39% | 0.531 ± 0.01 |
Gastroenterology | Adam | RMA | ||
---|---|---|---|---|
Acc | Loss | Acc | Loss | |
MobileNetV2 | 72.40 ± 0.12% | 0.892 ± 0.01 | 83.60 ± 0.49% | 0.741 ± 0.01 |
ShuffleNetV2 | 70.40 ± 0.7% | 0.920 ± 0.03 | 81.60 ± 0.3% | 0.808 ± 0.02 |
ResNet50 | 72.56 ± 0.12% | 0.824 ± 0.02 | 84.94 ± 0.5% | 0.708 ± 0.01 |
ESM | 76.10 ± 0.23% | 0.71 ± 0.02 | 87.30 ± 0.11% | 0.601 ± 0.01 |
Fundus Glaucoma | Adam | RMA | ||
---|---|---|---|---|
Acc | Loss | Acc | Loss | |
MobileNetV2 | 81.40 ± 0.43% | 0.653 ± 0.02 | 84.90 ± 0.35% | 0.560 ± 0.01 |
ShuffleNetV2 | 79.22 ± 0.55% | 0.834 ± 0.04 | 83.60 ± 0.29% | 0.621 ± 0.01 |
ResNet50 | 81.56 ± 0.21% | 0.776 ± 0.03 | 85.94 ± 0.39% | 0.521 ± 0.01 |
ESM | 84.20 ± 0.43% | 0.582 ± 0.03 | 92.73 ± 0.43% | 0.422 ± 0.03 |
Epoch Time (s/epoch) | ||
---|---|---|
Optimizer | Adam | RMA |
ResNet50 | 95.5 ± 4 | 118.9 ± 3 |
ESM | 134.3 ± 3 | 177.2 ± 4 |
Ref | Network | Years | Acc (%) |
---|---|---|---|
[30] | Multifractal + MLP | 2025 | 89.23 |
[31] | EMD | 2024 | 88.22 |
[36] | ResNet50 | 2018 | 81.89 |
[37] | InceptionV3 | 2018 | 81.03 |
[38] | MobileNet | 2020 | 80.17 |
[39] | DenseNet-121 | 2019 | 83.40 |
[40] | MobileNet | 2024 | 84.54 |
[41] | ResNet | 2019 | 85 |
[41] | GoogleNet | 2019 | 81 |
[42] | VGG-19 | 2023 | 84 |
[43] | SVM | 2023 | 85.39 |
Ours | ESM | 2025 | 92.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.; Yang, J.; Zhou, W.; Sun, H.; Gao, Q. Fractal-Inspired Region-Weighted Optimization and Enhanced MobileNet for Medical Image Classification. Fractal Fract. 2025, 9, 511. https://doi.org/10.3390/fractalfract9080511
Shao Y, Yang J, Zhou W, Sun H, Gao Q. Fractal-Inspired Region-Weighted Optimization and Enhanced MobileNet for Medical Image Classification. Fractal and Fractional. 2025; 9(8):511. https://doi.org/10.3390/fractalfract9080511
Chicago/Turabian StyleShao, Yichuan, Jiapeng Yang, Wen Zhou, Haijing Sun, and Qian Gao. 2025. "Fractal-Inspired Region-Weighted Optimization and Enhanced MobileNet for Medical Image Classification" Fractal and Fractional 9, no. 8: 511. https://doi.org/10.3390/fractalfract9080511
APA StyleShao, Y., Yang, J., Zhou, W., Sun, H., & Gao, Q. (2025). Fractal-Inspired Region-Weighted Optimization and Enhanced MobileNet for Medical Image Classification. Fractal and Fractional, 9(8), 511. https://doi.org/10.3390/fractalfract9080511