An Eighth-Order Numerical Method for Spatial Variable-Coefficient Time-Fractional Convection–Diffusion–Reaction Equations
Abstract
1. Introduction
2. Construction of Full Discrete Scheme
- (i)
- For and any α in the interval :
- (i-1)
- is calculated as , and it falls within the range .
- (i-2)
- is positive.
- (i-3)
- is negative for and .
- (ii)
- For any order and for all n, the sum of coefficients equals zero, i.e., .
3. Stability and Convergence Analyses
3.1. Stability Analysis
3.2. Convergence Analysis
4. Numerical Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Almeida, R.; Bastos, N.R.O.; Monteiro, M.T.T. Modeling some real phenomena by fractional differential equations. Math. Method. Appl. Sci. 2016, 39, 4846–4855. [Google Scholar]
- Zhang, Y.; Sun, H.G.; Stowell, H.H.; Zayernouri, M.; Hansen, S.E. A review of applications of fractional calculus in Earth system dynamics. Chaos Soliton. Fract. 2017, 102, 29–46. [Google Scholar]
- Failla, G.; Zingales, M. Advanced materials modelling via fractional calculus: Challenges and perspectives. Philos. Trans. R. Soc. A 2020, 378, 2172. [Google Scholar]
- Duran, S.; Durur, H.; Yavuz, M.; Yokus, A. Discussion of numerical and analytical techniques for the emerging fractional order Murnaghan model in materials science. Opt. Quant. Electron. 2023, 55, 571. [Google Scholar]
- Toledo-Hernandez, R.; Rico-Ramirez, V.; Iglesias-Silva, G.A.; Diwekar, U.M. A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions. Chem. Eng. Sci. 2014, 117, 217–228. [Google Scholar]
- Ali, K.K.; Mohamed, M.S.; Maneea, M. Unveiling the dynamics of plasma dilution in medical science through analytical and numerical approaches via fractional integro-differential equations. J. Appl. Math. Comput. 2025, 71, 1219–1245. [Google Scholar]
- Das, P.; Mehrmann, V. Numerical solution of singularly perturbed convection-diffusion-reaction problems with two small parameters. BIT Numer. Math. 2016, 56, 51–76. [Google Scholar]
- Giere, S.; Iliescu, T.; John, V.; Wells, D. SUPG reduced order models for convection-dominated convection-diffusion-reaction equations. Comput. Method. Appl. M. 2015, 289, 454–474. [Google Scholar]
- Chen, G.; Feng, M.F.; Xie, X.P. A robust WG finite element method for convection-diffusion-reaction equations. J. Comput. Appl. Math. 2017, 315, 107–125. [Google Scholar]
- Lin, R.C.; Ye, X.; Zhang, S.Y.; Zhu, P. A Weak Galerkin Finite Element Method for Singularly Perturbed Convection-Diffusion-Reaction Problems. SIAM J. Numer. Anal. 2018, 56, 1482–1497. [Google Scholar]
- Xu, M.T. A modified finite volume method for convection-diffusion-reaction problems. Int. J. Heat Mass Transf. 2018, 117, 658–668. [Google Scholar]
- Zhang, X.D.; Feng, Y.L.; Luo, Z.Y.; Liu, J. A spatial sixth-order numerical scheme for solving fractional partial differential equation. Appl. Math. Lett. 2025, 159, 109265. [Google Scholar]
- Feng, Y.L.; Zhang, X.D.; Chen, Y.; Wei, L.L. A compact finite difference scheme for solving fractional Black-Scholes option pricing model. J. Inequal. Appl. 2025, 2025, 36. [Google Scholar]
- Li, C.P.; Wang, Z. Numerical methods for the time fractional convection-diffusion-reaction equation. Numer. Func. Anal. Opt. 2021, 42, 1115–1153. [Google Scholar]
- Ngondiep, E. A two-level fourth-order approach for time-fractional convection-diffusion-reaction equation with variable coefficients. Commun. Nonlinear Sci. 2022, 111, 106444. [Google Scholar]
- Roul, P.; Rohil, V. An efficient numerical scheme and its analysis for the multiterm time-fractional convection-diffusion-reaction equation. Math. Method. Appl. Sci. 2023, 46, 16857–16875. [Google Scholar]
- Hosseini, V.R.; Mehrizi, A.A.; Karimi-Maleh, H.; Naddafi, M. A numerical solution of fractional reaction-convection-diffusion for modeling PEM fuel cells based on a meshless approach. Eng. Anal. Bound. Elem. 2023, 155, 707–716. [Google Scholar]
- Priyadarshana, S.; Mohapatra, J. An efficient fractional step numerical algorithm for time-delayed singularly perturbed 2D convection-diffusion-reaction problem with two small parameters. Numer. Algorithms 2024, 97, 687–726. [Google Scholar]
- Kumar, N.; Toprakseven, S.; Jiwari, R. A numerical method for singularly perturbed convection-diffusion-reaction equations on polygonal meshes. Comput. Appl. Math. 2024, 43, 44. [Google Scholar]
- Liu, M.M.; Zheng, X.C.; Li, K.X.; Qiu, W.L. High-order compact difference method for convection-reaction-subdiffusion equation with variable exponent and coefficients. Numer. Algorithms 2025. [Google Scholar] [CrossRef]
- Ren, L.; Wang, Y.M. A fourth-order extrapolated compact difference method for time-fractional convection-reaction-diffusion equations with spatially variable coefficients. Appl. Math. Comput. 2017, 312, 1–22. [Google Scholar]
- Abdi, N.; Aminikhah, H.; Refahi Sheikhani, A.H. High-order compact finite difference schemes for the time-fractional Black-Scholes model governing European options. Chaos Soliton. Fract. 2022, 162, 112423. [Google Scholar]
- Kumari, S.; Singh, A.K.; Mehandiratta, V.; Mehra, M. High-order approximation to Caputo derivative on graded mesh and time-fractional diffusion equation for nonsmooth solutions. J. Comput. Nonlin. Dyn. 2024, 19, 10. [Google Scholar]
N | |||||||
---|---|---|---|---|---|---|---|
-Error | -Rate | -Error | -Rate | -Error | -Rate | ||
[21] | 40 | 2.5734 × | — | 8.3385 × | — | 1.9864 × | — |
80 | 3.2434 × | 2.9881 | 1.0540 × | 2.9839 | 2.5199 × | 2.9787 | |
160 | 4.0709 × | 2.9941 | 1.3249 × | 2.9920 | 3.1730 × | 2.9894 | |
320 | 5.0989 × | 2.9971 | 1.6607 × | 2.9960 | 3.9807 × | 2.9947 | |
Our | 40 | 3.8755 × | — | 3.0304 × | — | 1.7518 × | — |
80 | 2.9991 × | 3.6918 | 2.7402 × | 3.4672 | 1.8793 × | 3.2206 | |
160 | 2.2996 × | 3.7051 | 2.4561 × | 3.4798 | 1.9964 × | 3.2347 | |
320 | 1.7106 × | 3.7488 | 2.1851 × | 3.4906 | 2.1095 × | 3.2424 |
M | |||||||
---|---|---|---|---|---|---|---|
-Error | -Rate | -Error | -Rate | -Error | -Rate | ||
[21] | 8 | 7.1868 × | — | 5.6976 × | — | 4.4166 × | — |
16 | 4.5156 × | 3.9924 | 3.5806 × | 3.9921 | 2.7763 × | 3.9917 | |
32 | 2.8239 × | 3.9992 | 2.2351 × | 4.0018 | 1.7308 × | 4.0036 | |
64 | 1.7339 × | 4.0255 | 1.3457 × | 4.0539 | 1.0351 × | 4.0635 | |
Our | 8 | 1.0969 × | — | 3.4659 × | — | 6.6072 × | — |
16 | 5.9367 × | 7.5295 | 1.7548 × | 7.6258 | 4.3821 × | 7.2363 | |
32 | 2.5068 × | 7.8877 | 7.5292 × | 7.8646 | 1.7378 × | 7.9782 | |
64 | 1.0027 × | 7.9658 | 3.0181 × | 7.9627 | 6.2153 × | 8.1273 |
-Error | -Rate | -Error | -Rate | -Error | -Rate | ||
---|---|---|---|---|---|---|---|
[21] | 1000 × 40 | 2.7763 × | — | 9.0510 × | — | 2.1821 × | — |
1000 × 80 | 3.4991 × | 2.9881 | 1.1439 × | 2.9841 | 2.7671 × | 2.9793 | |
1000 × 160 | 4.3916 × | 2.9941 | 1.4378 × | 2.9921 | 3.4835 × | 2.9897 | |
1000 × 320 | 5.4995 × | 2.9974 | 1.8021 × | 2.9961 | 4.3698 × | 2.9949 | |
Our | 200 × 40 | 4.1605 × | — | 3.2513 × | — | 1.8881 × | — |
200 × 80 | 3.2193 × | 3.6920 | 2.9393 × | 3.4675 | 2.0243 × | 3.2215 | |
200 × 160 | 2.4677 × | 3.7055 | 2.6341 × | 3.4801 | 2.1497 × | 3.2352 | |
200 × 320 | 1.8287 × | 3.7543 | 2.3426 × | 3.4911 | 2.2711 × | 3.2427 |
M | ||||||
---|---|---|---|---|---|---|
-Error | -Rate | -Error | -Rate | -Error | -Rate | |
16 | 2.2560 × | — | 7.8067 × | — | 1.5142 × | — |
24 | 9.3857 × | 7.8418 | 2.9720 × | 8.0607 | 6.6303 × | 7.7157 |
32 | 9.3441 × | 8.0193 | 2.9686 × | 8.0079 | 6.7649 × | 7.9340 |
40 | 1.5472 × | 8.0589 | 4.8711 × | 8.0995 | 1.1578 × | 7.9106 |
Temporal Convergence | Spatial Convergence | ||||
---|---|---|---|---|---|
-Error | -Rate | -Error | -Rate | ||
7.4329 × | — | 3.4979 × | — | ||
7.0324 × | 3.4018 | 1.4734 × | 7.8112 | ||
6.4632 × | 3.4437 | 1.4621 × | 8.0308 | ||
5.8474 × | 3.4664 | 2.4045 × | 8.0893 |
x | ||||||
---|---|---|---|---|---|---|
14.88488997 | 14.88488997 | 20.90500831 | 20.90500744 | 29.35998710 | 29.35993057 | |
11.39240157 | 11.39240156 | 16.00000041 | 16.00000000 | 22.47115654 | 22.47111801 | |
6.16552330 | 6.16552330 | 8.65913689 | 8.65913760 | 12.16126336 | 12.16128143 | |
0.00000000 | 0.00000000 | −0.00000188 | 0.00000000 | −0.00008026 | 0.00000000 | |
−6.16552330 | −6.16552330 | −8.65914020 | −8.65913760 | −12.16140299 | −12.16128143 | |
−11.39240157 | −11.39240156 | −16.00000257 | −16.00000000 | −22.47124269 | −22.47111801 | |
−14.88488997 | −14.88488997 | −20.90500912 | −20.90500744 | −29.36001345 | −29.35993057 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Zhang, X.; Wei, L. An Eighth-Order Numerical Method for Spatial Variable-Coefficient Time-Fractional Convection–Diffusion–Reaction Equations. Fractal Fract. 2025, 9, 451. https://doi.org/10.3390/fractalfract9070451
Feng Y, Zhang X, Wei L. An Eighth-Order Numerical Method for Spatial Variable-Coefficient Time-Fractional Convection–Diffusion–Reaction Equations. Fractal and Fractional. 2025; 9(7):451. https://doi.org/10.3390/fractalfract9070451
Chicago/Turabian StyleFeng, Yuelong, Xindong Zhang, and Leilei Wei. 2025. "An Eighth-Order Numerical Method for Spatial Variable-Coefficient Time-Fractional Convection–Diffusion–Reaction Equations" Fractal and Fractional 9, no. 7: 451. https://doi.org/10.3390/fractalfract9070451
APA StyleFeng, Y., Zhang, X., & Wei, L. (2025). An Eighth-Order Numerical Method for Spatial Variable-Coefficient Time-Fractional Convection–Diffusion–Reaction Equations. Fractal and Fractional, 9(7), 451. https://doi.org/10.3390/fractalfract9070451