An Exploration of the Qualitative Analysis of the Generalized Pantograph Equation with the q-Hilfer Fractional Derivative
Abstract
1. Introduction
2. Preliminaries
- The operator also can be rewritten as
- Let , the R-L fractional q-derivative, be presented as .
- Let , the Caputo fractional q-derivative, be presented as .
- .
- ,.
- .
- .
3. Main Results
- Let be a level-wise continuous function such that for any , and there is a constant such that
- There is an increasing function , and there is such that for any ,
4. Stability Theory
- ,
- .
5. An Example
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diethelm, K. The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2010; Volume 2004. [Google Scholar]
- Evans, R.M.; Katugampola, U.N.; Edwards, D.A. Applications of fractional calculus in solving Abel-type integral equations: Surface-volume reaction problem. Comput. Math. Appl. 2017, 73, 1346–1362. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Jackson, F.H. On q-definite integral. Quart. J. Pure. Appl. Math. 1910, 41, 193–203. [Google Scholar]
- Ernst, T.A. Comprehensive Treatment of q-Calculus; Springer: Cham, Switzerland, 2012. [Google Scholar]
- Kac, V.; Cheung, P. Quantum Calculus; Springer: New York, NY, USA, 2002. [Google Scholar]
- Al-Salam, W.A. Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 1966, 15, 135–140. [Google Scholar] [CrossRef]
- Agarwal, R.P. Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 1969, 66, 365–370. [Google Scholar] [CrossRef]
- Annaby, M.H.; Mansour, Z.S. q-Fractional Calculus and Equations; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Tariboon, J.; Ntouyas, S.K. Quantum calculus on finite intervals and applications to impulsive differential equations. Adv. Differ. Equ. 2013, 2013, 282. [Google Scholar] [CrossRef]
- Neang, P.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K. Fractional (p,q)-Calculus on finite intervals and some integral inequalities. Symmetry 2021, 13, 504. [Google Scholar] [CrossRef]
- Neang, P.; Nanlaopon, K.; Tariboon, J.; Ntoyas, S.K.; Agarwal, P. Some trapezoid and midpoint type inequalities via fractional (p,q)-calculus. Adv. Differ. Equ. 2021, 2021, 333. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K.; Agarwal, P. New concepts of fractional quantum calculus and applications to impulsive fractional q-difference equations. Adv. Differ. Equ. 2015, 2015, 18. [Google Scholar] [CrossRef]
- Stankovic, M.S.; Rajkovic, P.M.; Marinkovic, S.D. On q-fractional derivatives of Riemann-liouville and Caputo type. arXiv 2009, arXiv:0909.0387. [Google Scholar]
- Abdo, M.S.; Abdeljaward, T.; Kucche, K.D.; Alqudah, M.A.; Ali, S.M.; Jeelani, M.B. On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative. Adv. Differ. Equ. 2021, 2021, 65. [Google Scholar] [CrossRef]
- Abdo, M.S.; Shammakh, W.; Alzumi, H.; Alghamdi, N.; Albalwi, M.D. Nonlinear piece-wise Caputo fractional pantograph system with respect to another function. Fractal Fract. 2023, 7, 162. [Google Scholar] [CrossRef]
- Shah, K.; Ahmad, I.; Nieto, J.J.; Rahman, G.U.; Abdeljawad. Qualitative investigation of nonlinear fractional coupled pantograph impulsive differential equations. Qual. Theory Dyn. Syst. 2022, 21, 131. [Google Scholar] [CrossRef]
- Balachandran, K.; Kiruthika, S.; Trujillo, J.J. Existence of solutions of nonlinear fractional pantograph equations. Adv. Acta Math. Sci. 2013, 33, 712–720. [Google Scholar] [CrossRef]
- Elsayed, E.M.; Harikrishnan, S.; Kanagarajan, K. Analysis of nonlinear neutral pantograph differential equations with Hilfer fractional derivative. MathLAB J. 2018, 1, 231–240. [Google Scholar]
- Harikrishnan, S.; Ibrahim, R.; Kanagarajan, K. Establishing the existence of Hilfer fractional pantograph equations with impulses. J. Math. Appl. 2018, 1, 36–42. [Google Scholar] [CrossRef]
- Harikrishnan, S.; Elsayed, E.M.; Kanagarajan, K. Existence and uniqueness results for fractional pantograph equations involving Ψ-Hilfer fractional derivative. Dyn. Contin. Discrete Impuls. Syst. 2018, 25, 319–328. [Google Scholar]
- Vivek, D.; Kanagarajan, K.; Sivasundaram, S. Dynamics and stability of pantograph equations via Hilfer fractional derivative. Nonlinear Stud. 2016, 23, 685–698. [Google Scholar]
- Vivek, D.; Kanagarajan, K.; Harikrishnan, S. Analytic study on nonlocal initial value problems for pantograph equations with Hilfer-Hadamard fractional derivative. Int. J. Math. Appl. 2018, 6, 21-3-2. [Google Scholar]
- Vivek, D.; Kanagarajan, K.; Sivasundaram, S. Theory and analysis of nonlinear neutral pantograph equations via Hilfer fractional derivative. Nonlinear Stud. 2017, 24, 699–712. [Google Scholar]
- Vivek, D.; Kanagarajan, K.; Elsayed, E.M. Attractivity and Ulam-Hyers stability results for fractional delay differential equations. Fac. Sci. Math. 2022, 36, 5707–5724. [Google Scholar] [CrossRef]
- Lachouri, A.; Samei, M.E.; Ardjouni, A. Existence and stability analysis for a class of fractional pantograph q-difference equations with nonlocal boundary conditions. Bound. Value Probl. 2023, 2, 1–20. [Google Scholar] [CrossRef]
- Samei, M.E.; Hatami, A. To numerical explore a fractional implicit q-differential equations with Hilfer type and via nonlocal conditions. Math. Anal. Convex Optim. 2023, 4, 97–117. [Google Scholar]
- Tian, C.; Gu, H.; Yang, Z. Nonlocal problems for Hilfer fractional q-difference equation. Fractal Fract. 2023, 7, 101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vivek, R.; Kanagarajan, K.; Vivek, D.; Alharbi, T.D.; Elsayed, E.M. An Exploration of the Qualitative Analysis of the Generalized Pantograph Equation with the q-Hilfer Fractional Derivative. Fractal Fract. 2025, 9, 302. https://doi.org/10.3390/fractalfract9050302
Vivek R, Kanagarajan K, Vivek D, Alharbi TD, Elsayed EM. An Exploration of the Qualitative Analysis of the Generalized Pantograph Equation with the q-Hilfer Fractional Derivative. Fractal and Fractional. 2025; 9(5):302. https://doi.org/10.3390/fractalfract9050302
Chicago/Turabian StyleVivek, R., K. Kanagarajan, D. Vivek, T. D. Alharbi, and E. M. Elsayed. 2025. "An Exploration of the Qualitative Analysis of the Generalized Pantograph Equation with the q-Hilfer Fractional Derivative" Fractal and Fractional 9, no. 5: 302. https://doi.org/10.3390/fractalfract9050302
APA StyleVivek, R., Kanagarajan, K., Vivek, D., Alharbi, T. D., & Elsayed, E. M. (2025). An Exploration of the Qualitative Analysis of the Generalized Pantograph Equation with the q-Hilfer Fractional Derivative. Fractal and Fractional, 9(5), 302. https://doi.org/10.3390/fractalfract9050302