Chladni and Fractal Dynamics: Dual Mode Marker to Map Cancer Cell Nucleus Disintegration Phases
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines
2.2. Confocal Microscopy
2.3. Chladni and Fractal Analysis Simulator Development
3. Protocol of the Study
4. Results
4.1. Five Phases of a Cancer Cell Nucleus
4.2. Chladni Pattern Analysis
4.3. Fractal Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Metze, K. Fractal dimension of chromatin: Potential molecular diagnostic applications for cancer prognosis. Expert Rev. Mol. Diagn. 2013, 13, 719–735. [Google Scholar] [CrossRef] [PubMed]
- Metze, K.; Adam, R.; Florindo, J.B. The fractal dimension of chromatin—A potential molecular marker for carcinogenesis, tumor progression, and prognosis. Expert Rev. Mol. Diagn. 2019, 19, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Bizzarri, M.; Giuliani, A.; Cucina, A.; D’Anselmi, F.; Soto, A.M.; Sonnenschein, C. Fractal analysis in a systems biology approach to cancer. Semin Cancer Biol. 2011, 21, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Pantić, I.; Paunović-Pantić, J.; Radojevic-Skodric, S. Application of fractal and textural analysis in medical physiology, pathophysiology, and pathology. Med. Istraživanja 2022, 55, 43–51. [Google Scholar] [CrossRef]
- Baish, J.W.; Jain, R.K. Fractals and cancer. Cancer Res. 2000, 60, 3683–3688. [Google Scholar]
- Landini, G.; Rippin, J.W. An “asymptotic fractal” approach to the morphology of malignant cell nuclei. Fractals 1993, 1, 326–335. [Google Scholar] [CrossRef]
- Landini, G.; Rippin, J.W. Quantification of nuclear pleomorphism using an asymptotic fractal model. Anal. Quant. Cytol. Histol. 1996, 18, 167–176. [Google Scholar]
- Borys, P.; Krasowska, M.; Grzywna, Z.J.; Djamgoz, M.B.; Mycielska, M.E. Lacunarity as a novel measure of cancer cell behavior. BioSystems 2008, 94, 276–281. [Google Scholar] [CrossRef]
- Lennon, F.E.; Cianci, G.C.; Cipriani, N.A.; Hensing, T.A.; Zhang, H.J.; Chen, C.T.; Murgu, S.D.; Vokes, E.E.; Vannier, M.W.; Salgia, R. Lung cancer—A fractal viewpoint. Nat. Rev. Clin. Oncol. 2015, 12, 664–675. [Google Scholar] [CrossRef]
- Iwasaki, O.; Corcoran, C.; Noma, K. Involvement of condensin-directed gene associations in the organization and regulation of chromosome territories during the cell cycle. Nucleic Acids Res. 2015, 44, 3618–3628. [Google Scholar] [CrossRef]
- Kurz, A.; Lampel, S.; Nickolenko, J.; Bradl, J.; Benner, A.; Zirbel, R.; Lichter, P. Active and inactive genes localize preferentially in the periphery of chromosome territories. J. Cell Biol. 1996, 135, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Branco, M.; Pombo, A. Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol. 2006, 4, e138. [Google Scholar] [CrossRef] [PubMed]
- Eils, R.; Dietzel, S.; Bertin, E.; Schröck, E.; Speicher, M.; Ried, T.; Cremer, T. Three-dimensional reconstruction of painted human interphase chromosomes: Active and inactive X chromosome territories have similar volumes but differ in shape and surface structure. J. Cell Biol. 1996, 135, 1427–1440. [Google Scholar] [CrossRef] [PubMed]
- George, P.; Kinney, N.; Liang, J.; Onufriev, A.; Sharakhov, I. Three-dimensional organization of polytene chromosomes in somatic and germline tissues of malaria mosquitoes. Cells 2020, 9, 339. [Google Scholar] [CrossRef]
- Verschure, P.; Kraan, I.; Manders, E.; Driel, R. Spatial relationship between transcription sites and chromosome territories. J. Cell Biol. 1999, 147, 13–24. [Google Scholar] [CrossRef]
- Bubnov, R.V.; Melnyk, I.M. The methods of fractal analysis of diagnostic images. Initial clinical experience. Dalʹnevostočnyj Med. Žurnal 2011, 3, 108–113. [Google Scholar]
- Karperien, A.L.; Jelinek, H.F. Box-counting fractal analysis: A primer for the clinician. In The Fractal Geometry of the Brain; Di Ieva, A., Ed.; Springer: New York, NY, USA, 2016; pp. 13–44. [Google Scholar]
- Landini, G.; Iannaccone, P.M. Modeling of mosaic patterns in chimeric liver and adrenal cortex: Algorithmic organogenesis? FASEB J. 2000, 14, 823–827. [Google Scholar] [CrossRef]
- Dey, P. Basic principles and applications of fractal geometry in pathology: A review. Anal. Quant. Cytol. Histol. 2005, 27, 284–290. [Google Scholar]
- Ramirez-Cobo, P.; Vidakovic, B. A 2D wavelet-based multiscale approach with applications to the analysis of digital mammograms. Comput. Stat. Data Anal. 2013, 58, 71–81. [Google Scholar] [CrossRef]
- Singhania, A.; Ghosh, I.; Sahoo, P.; Fujita, D.; Ghosh, S.; Bandyopadhyay, A. Radio Waveguide–Double Ratchet Rotors Work in Unison on a Surface to Convert Heat into Power. Nano Lett. 2020, 20, 6891–6898. [Google Scholar] [CrossRef]
- Singhania, A.; Chatterjee, S.; Kalita, S.; Saha, S.; Chettri, P.; Gayen, F.R.; Saha, B.; Sahoo, P.; Bandyopadhyay, A.; Ghosh, S. An Inbuilt Electronic Pawl Gates Orbital Information Processing and Controls the Rotation of a Double Ratchet Rotary Motor. ACS Appl. Mater. Interfaces 2023, 15, 15595–15604. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Chatterjee, S.; Roy, A.; Ray, K.; Swarnakar, S.; Fujita, D.; Bandyopadhyay, A. Resonant oscillation language of a futuristic nano-machine-module: Eliminating cancer cells & Alzheimer Aβ plaques. Curr. Top. Med. Chem. 2015, 15, 534–541. [Google Scholar] [PubMed]
- Ghosh, S.; Roy, A.; Singhania, A.; Chatterjee, S.; Swarnakar, S.; Fujita, D.; Bandyopadhyay, A. In-vivo and in-vitro toxicity test of molecularly engineered PCMS: A potential drug for wireless remote-controlled treatment. Toxicol. Rep. 2018, 5, 1044–1052. [Google Scholar] [CrossRef] [PubMed]
- Szczepińska, T.; Rusek, A.; Plewczynski, D. Intermingling of chromosome territories. Genes Chromosomes Cancer 2019, 58, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Alonso, L.; Holland, P.; Le Gras, S.; Zhao, X.; Jost, B.; Bjørås, M.; Barral, Y.; Enserink, J.M.; Chymkowitch, P. Mitotic chromosome condensation resets chromatin to safeguard transcriptional homeostasis during interphase. Proc. Natl. Acad. Sci. USA 2023, 120, e2210593120. [Google Scholar] [CrossRef]
- Toné, S.; Sugimoto, K.; Tanda, K.; Suda, T.; Uehira, K.; Kanouchi, H.; Samejima, K.; Minatogawa, Y.; Earnshaw, W.C. Three distinct stages of apoptotic nuclear condensation revealed by time-lapse imaging, biochemical and electron microscopy analysis of cell-free apoptosis. Exp. Cell Res. 2007, 313, 3635–3644. [Google Scholar] [CrossRef]
- Rosa, A.; Everaers, R. Structure and dynamics of interphase chromosomes. PLoS Comput. Biol. 2008, 4, e1000153. [Google Scholar] [CrossRef]
- Cremer, T.; Cremer, M. Chromosome territories. Cold Spring Harb. Perspect. Biol. 2010, 2, a003889. [Google Scholar] [CrossRef]
- Maya-Mendoza, A.; Jackson, D. Labeling DNA replication foci to visualize chromosome territories in vivo. Curr. Protoc. Cell Biol. 2017, 75, e19. [Google Scholar] [CrossRef]
- Berríos, S. Nuclear architecture of mouse spermatocytes: Chromosome topology, heterochromatin, and nucleolus. Cytogenet. Genome Res. 2017, 151, 61–71. [Google Scholar] [CrossRef]
- Fudenberg, G.; Mirny, L. Higher-order chromatin structure: Bridging physics and biology. Curr. Opin. Genet. Dev. 2012, 22, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Awazu, A. Nuclear dynamical deformation induced hetero- and euchromatin positioning. Phys. Rev. E 2015, 92, 032709. [Google Scholar] [CrossRef] [PubMed]
- Finan, K.; Cook, P.; Marenduzzo, D. Non-specific (entropic) forces as major determinants of the structure of mammalian chromosomes. Chromosome Res. 2010, 19, 53–61. [Google Scholar] [CrossRef]
- Sehgal, N.; Fritz, A.; Morris, K.; Torres, I.; Chen, Z.; Xu, J.; Berezney, R. Gene density and chromosome territory shape. Chromosoma 2014, 123, 499–513. [Google Scholar] [CrossRef]
- Heymans, O.; Fissette, J.; Vico, P.; Blacher, S.; Masset, D.; Brouers, F. Is fractal geometry useful in medicine and biomedical sciences? Med. Hypotheses 2000, 54, 360–366. [Google Scholar] [CrossRef]
- Zheng, J. Oncogenic chromosomal translocations and human cancer (review). Oncol. Rep. 2013, 30, 2011–2019. [Google Scholar] [CrossRef]
- Etehadtavakol, M.; Lucas, C.; Sadri, S.; Ng, E.Y.K. Analysis of breast thermography using fractal dimension to establish possible difference between malignant and benign patterns. J. Healthc. Eng. 2010, 1, 27–43. [Google Scholar] [CrossRef]
- Dumansky, Y.V.; Lyakh, Y.E.; Gorshkov, O.G.; Gurianov, V.G.; Prihodchenko, V.V. Fractal dimensionality analysis of normal and cancerous mammary gland thermograms. Chaos Solitons Fractals 2012, 45, 1494–1500. [Google Scholar] [CrossRef]
- John, A.M.; Elfanagely, O.; Ayala, C.A.; Cohen, M.; Prestigiacomo, C.J. The utility of fractal analysis in clinical neuroscience. Rev. Neurosci. 2015, 26, 633–645. [Google Scholar] [CrossRef]
- Marko, J.F. Micromechanical studies of mitotic chromosomes. Chromosome Res. 2008, 16, 469–497. [Google Scholar] [CrossRef]
- Houchmandzadeh, B.; Marko, J.F.; Chatenay, D.; Libchaber, A. Elasticity and structure of eukaryote chromosomes studied by micromanipulation and micropipette aspiration. J. Cell Biol. 1997, 139, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Almagro, S.; Dimitrov, S.; Hirano, T.; Vallade, M.; Riveline, D. Individual chromosomes as viscoelastic copolymers. EPL 2003, 63, 908–914. [Google Scholar] [CrossRef]
- Bertsch, G.F. Elasticity in the response of nuclei. Ann. Phys. 1974, 86, 138–146. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dey, P.; Singhania, A.; Kunnumakkara, A.B.; Ghosh, S.; Bandyopadhyay, A. Chladni and Fractal Dynamics: Dual Mode Marker to Map Cancer Cell Nucleus Disintegration Phases. Fractal Fract. 2025, 9, 8. https://doi.org/10.3390/fractalfract9010008
Dey P, Singhania A, Kunnumakkara AB, Ghosh S, Bandyopadhyay A. Chladni and Fractal Dynamics: Dual Mode Marker to Map Cancer Cell Nucleus Disintegration Phases. Fractal and Fractional. 2025; 9(1):8. https://doi.org/10.3390/fractalfract9010008
Chicago/Turabian StyleDey, Parama, Anup Singhania, Ajaikumar B. Kunnumakkara, Subrata Ghosh, and Anirban Bandyopadhyay. 2025. "Chladni and Fractal Dynamics: Dual Mode Marker to Map Cancer Cell Nucleus Disintegration Phases" Fractal and Fractional 9, no. 1: 8. https://doi.org/10.3390/fractalfract9010008
APA StyleDey, P., Singhania, A., Kunnumakkara, A. B., Ghosh, S., & Bandyopadhyay, A. (2025). Chladni and Fractal Dynamics: Dual Mode Marker to Map Cancer Cell Nucleus Disintegration Phases. Fractal and Fractional, 9(1), 8. https://doi.org/10.3390/fractalfract9010008