Next Article in Journal
Novel Hopf Bifurcation Exploration and Control Strategies in the Fractional-Order FitzHugh–Nagumo Neural Model Incorporating Delay
Next Article in Special Issue
Existence and Uniqueness Result for Fuzzy Fractional Order Goursat Partial Differential Equations
Previous Article in Journal
Field-Programmable Analog Array Implementation of Neuromorphic Silicon Neurons with Fractional Dynamics
Previous Article in Special Issue
Solitary and Periodic Wave Solutions of Fractional Zoomeron Equation
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Four-Dimensional Natural Transform Adomian Decomposition Method and (3+1)-Dimensional Fractional Coupled Burgers’ Equation

Mathematics Department, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
*
Author to whom correspondence should be addressed.
Fractal Fract. 2024, 8(4), 227; https://doi.org/10.3390/fractalfract8040227
Submission received: 8 March 2024 / Revised: 28 March 2024 / Accepted: 9 April 2024 / Published: 15 April 2024

Abstract

:
This research article introduces the four-dimensional natural transform Adomian decomposition method (FNADM) for solving the (3+1)-dimensional time-singular fractional coupled Burgers’ equation, along with its associated initial conditions. The FNADM approach represents a fusion of four-dimensional natural transform techniques and Adomian decomposition methodologies. In order to observe the influence of time-Caputo fractional derivatives on the outcomes of the aforementioned models, two examples are illustrated along with their three-dimensional figures. The effectiveness and reliability of this approach are validated through the analysis of these examples related to the (3+1)-dimensional time-singular fractional coupled Burgers’ equations. This study underscores the method’s applicability and effectiveness in addressing the complex mathematical models encountered in various scientific and engineering domains.

1. Introduction

The significance of fractional calculus in the realm of applied mathematics has become increasingly apparent, with fractional differential equations serving as indispensable tools in the modeling of real-world phenomena. These equations find application across diverse disciplines, including mathematical biology, various engineering fields, chemical processes, and applied sciences models. Furthermore, they have been extensively employed in various branches of physical science, notably in the realms of viscoelasticity control, diffusion, heat conduction, dynamical systems, and related areas [1,2,3,4,5,6,7].
Given its importance across multiple domains, a plethora of techniques have been devised to investigate both the computational and exact solutions associated with fractional differential equations. Over the past centuries, a multitude of definitions for fractional derivatives have been introduced. The following represents a select few of these definitions: Riemann–Liouville definition [8,9], Caputo [10], Caputo–Fabrizio [11], Riesz [12], Hilfer [13], Erdélyi–Kober [14], Atangana–Baleanu [15], and Grunwald–Letnikov [16]. Accordingly, to address these issues, numerous effective numerical and analytical approaches have been proposed, such as the homotopy analysis [17], residual power series [18], Lie symmetry groups [19], iterative reproducing kernels [20], approximate analytics [21], differential transform [22,23], variational iteration [24], homotopy perturbation transform [25], q-homotopy [26], operational matrices [27], meshless RBF [28], natural decomposition transform [29], and Adam–Bashforth–Moulton [30].
The construction of the natural transform decomposition method involved integrating two potent techniques: the natural transform and the Adomian decomposition methods. The natural transform decomposition method represents a novel and efficient approach to solving differential equations, which has been extensively studied in various papers [31,32,33,34]. This method is utilized to address the various physical phenomena modeled by fractional PDEs, as demonstrated in several research works. For instance, it has been applied to solve a coupled system of nonlinear PDEs [35], analyze the fractional unsteady flow of a polytropic gas model [36], investigate the solution of fractional telegraph equations [37], solve the fractional coupled KdV equation [38], find the solution of fractional-order heat and wave equations [39], and solve the fractional Klein-Gordon equation [40], and the double natural transform method with the Adomian decomposition method was used to solve a singular one-dimensional Boussinesq equation in [41].
The Burgers’ equation, introduced by Harry Bateman in 1915 [42], serves as a fundamental partial differential equation that is widely employed across various domains of applied mathematics to describe numerous physical phenomena. Initially proposed as the one-dimensional nonlinear Burgers’ equation of integral order, it was further investigated by Burger J.M., who explored its application as a coupled system of equations to model turbulent flow [43]. Subsequently, mathematicians and researchers have conducted numerous, significant, and intriguing studies on the Burgers’ equation. Over time, it has been recognized that this equation can effectively model phenomena, including shock waves, turbulence, aerodynamics, heat conduction, acoustic waves, and more [44,45,46].
In the literature, numerous techniques have been employed to study various forms of the Burgers’ equation for both integer order and time-fractional approaches. Additionally, various methods have been developed to derive both exact and approximate solutions for these equations. For example, numerical solutions for the one-dimensional Burgers’ equation have been investigated by Benton and Platzman [47]. In [48], the authors proposed a modified and expanded tanh-function method to obtain its exact solution. The homotopy perturbation method was suggested by researchers in [49] to achieve the exact solution of the nonlinear Burgers’ equation. Majeed et al. [50] numerically addressed the solution of one-dimensional time-fractional Burgers and Fishers equations using the cubic B-spline approximation method. In [51], Singh et al. analyzed a one-dimensional time-fractional model for the damped Burgers’ equation involving the Caputo-Fabrizio fractional derivative. Two different difference schemes were applied by Peng X. and Qiu W. et al. [52,53] to solve the mixed-type time-fractional Burger’s equation and the one-dimensional time-fractional Burger’s equation. The Laplace homotopy perturbation method was employed by the authors of [54] to solve the time-fractional Burgers’ equation. In [55], an explicit solution for the coupled viscous Burgers’ equation was provided using the Adomian decomposition method, while in [56], a combination of Laplace transform and new homotopy perturbation methods was utilized to derive closed-form solutions for the coupled Burgers’ equation. The solution of the time-fractional two-mode coupled Burgers’ equation was discussed in [57], and in [58], a multiple fractional power series approach was employed to analyze the solution of a system of nonlinear fractional Burgers’ equations.
For higher dimensions, in [59], a numerical solution for the two-dimensional Burgers’ equation is presented using the Adomian decomposition method. The Laplace decomposition method is employed by the authors in [60] to solve the two-dimensional nonlinear Burgers’ equations, while in [61], they explore the solution of the singular two-dimensional fractional coupled Burgers’ equation using the triple Laplace Adomian decomposition method. Additionally, in [62], the solution of the singular two-dimensional Burgers’ equation is introduced using the conformable triple Sumudu transform. On the other hand, the exact solutions for the cases of (3+1)-dimensional, two-dimensional-coupled, (2+1)-dimensional, and (1+1)-dimensional Burgers’ equations are presented in [63], and the numerical solution of the three-dimensional fractional coupled Burgers’ equation is discussed using various numerical methods in [64].
The goal of this study is to employ four-dimensional natural transform Adomian decomposition methods to solve the (3+1)-dimensional time-fractional coupled Burgers’ equation and evaluate the approximation solution. Our methodology integrates the four-dimensional natural transform and Adomian decomposition approaches, avoiding the linearization or discretization of variables, thus providing both approximate and accurate solutions. The structure of the paper is outlined as follows. Section 2 provides a concise overview of the basic definitions of natural transforms and the Caputo fractional derivative. In Section 3, we introduce the four-dimensional natural Adomian decomposition method (FNADM) for solving three-dimensional fractional coupled Burgers’ equations, accompanied by an illustrative example. Section 4 delves into the discussion of the four-dimensional natural Adomian decomposition method and the singular (3+1)-dimensional fractional coupled Burgers’ equation. Finally, Section 5 presents the succinct conclusions drawn from this study.

2. Basic Definitions of the Natural Transform Method

In this section, we address some of the definitions of fractional calculus using the natural transform method.
Definition 1
([31]). The natural transform of a function, f ( t ) , is defined by the integral
N + f t = R s ; u = 0 e s t f ( t u ) d t , s > 0 , u > 0 ,
where s and u are transform variables. Over the set of functions
A = f ( t ) : M , τ 1 , τ 2 > 0 , such that | f ( t ) | < M e t τ j , if t ( 1 ) j × [ 0 , ) , j = 1 , 2 .
the natural transform is defined by
N + f t = R s ; u = 1 u 0 e s u t f ( t ) d t , R e s , R e u > 0 ,
where R e · is the Reynolds number (see [65]).
Definition 2.
The inverse natural transform of R s ; u is defined by
N 1 R s ; u = f ( t ) = 1 2 π i ϵ i ϵ + i R s ; u e s t u d s , u > 0 s > 0 .
Definition 3
([18]). The Caputo time-fractional derivative operator of order γ > 0 is given by
D t γ f ( ζ , t ) = γ f ( ζ , t ) t γ = 1 Γ ( n γ ) 0 t ( t x ) n γ 1 n f ( ζ , x ) x n d x n 1 < γ < n n f ( ζ , t ) t n γ = n N
Definition 4
([37]). If n N , where n 1 < γ n and R s ; u is the natural transform of a function, f ( t ) , then the natural transform of the Caputo fractional derivative of γ f ( ζ , t ) t γ is given by
N + γ f ( ζ , t ) t γ = s γ v γ R s ; u k = 0 n 1 s γ ( k + 1 ) v γ k k f ( ζ , t ) t k t = 0 .
The four-dimensional natural transform, N 4 + , of a function, f ( x , y , z , t ) , and its inverse, N 4 , are defined by the following:
Definition 5.
Let f ( x , y , z , t ) be a continuous function of four variables, x , y , z , t . The four-dimensional natural transform of the function f is defined by
N 4 + f x , y , z , t = 1 u 1 u 2 u 3 v 0 0 0 0 e p 1 u 1 x p 2 u 2 y p 3 u 3 z s v t f ( x , y , z , t ) d t d x d y d z ,
where R e s , R e p i , R e u j , and R e v > 0 , i , j = 0 , 1 , 2 . The four-dimensional inverse natural transform, N 4 1 , is given by
N 4 1 N 4 + f = 1 2 π i 4 α i α i β i β i γ i γ i δ i δ i e p 1 u 1 x + p 2 u 2 y + p 3 u 3 z + s v t N 4 + f d s d p 1 d p 2 d p 3 ,
where N 4 1 N 4 + f x , y , z , t = f x , y , z , t .
If the four-dimensional natural transform of the function f ( x , y , z , t ) is given by
N 4 + f x , y , z , t = R p 1 , p 2 , p 3 , s ; u 1 , u 2 , u 3 , v ,
then the four-dimensional natural transforms of f x , f y , f z , f t and 2 f t 2 are given by
N 4 + f x = p 1 u 1 R p 1 , p 2 , p 3 , s ; u 1 , u 2 , u 3 , v 1 u 1 f 0 , p 2 , p 3 , s ; 0 , u 2 , u 3 , v , N 4 + f y = p 2 u 2 R p 1 , p 2 , p 3 , s ; u 1 , u 2 , u 3 , v 1 u 2 f p 1 , 0 , p 3 , s ; u 1 , 0 , u 3 , v , N 4 + f z = p 3 u 3 R p 1 , p 2 , p 3 , s ; u 1 , u 2 , u 3 , v 1 u 3 f p 1 , p 2 , 0 , s ; u 1 , u 2 , 0 , v ,
and
N 4 + f t = s v R p 1 , p 2 , p 3 , s ; u 1 , u 2 , u 3 , v 1 v f p 1 , p 2 , p 3 , 0 ; u 1 , u 2 , u 3 , 0 ,
N 4 + 2 f t 2 = s 2 v 2 R s v 2 f p 1 , p 2 , p 3 , 0 ; u 1 , u 2 , u 3 , 0 1 v f p 1 , p 2 , p 3 , 0 ; u 1 , u 2 , u 3 , 0 t ,

3. Analysis of the Four-Dimensional Natural Adomian Decomposition Method

In this work, we consider the following system of (3+1)-dimensional time-fractional coupled Burger’s equations to illustrate our method; we called this the four-dimensional natural Adomian decomposition method (FNADM):
D t α Ψ + Ψ Ψ x + ϕ Ψ y + χ Ψ z = 1 R e Ψ x x + Ψ y y + Ψ z z + Ψ , x , y , z , t > 0 , D t α ϕ + Ψ ϕ x + ϕ ϕ y + χ ϕ z = 1 R e ϕ x x + ϕ y y + ϕ z z + ϕ , x , y , z , t > 0 , D t α χ + Ψ χ x + ϕ χ y + χ χ z = 1 R e χ x x + χ y y + χ z z + χ , x , y , z , t > 0 , m 1 < α < m ;
with the initial conditions
Ψ ( x , y , z , 0 ) = f ( x , y , z ) , ϕ ( x , y , z , 0 ) = g ( x , y , z ) , χ ( x , y , z , 0 ) = h ( x , y , z ) ,
where D t α = α t α is the fractional Caputo derivative, Ψ ( x , y , z , t ) ,   ϕ ( x , y , z , t ) and χ ( x , y , z , t ) are the velocity components to be specified; f , g , and h are known functions, and R e is the Reynolds number. It can be shown that the four-dimensional natural transform of the fractional Caputo derivative D t α = α t α is given by
N 4 + D t α ω ( x , y , z , t ) = s α v α N 4 + ω ( x , y , z , t ) ) N 4 + ω ( x , y , z , 0 ) )
In order to achieve the goal of determining the solution to Equation (9), we apply the four-dimensional natural Adomian decomposition methods as follows:
  • Step 1: By implementing the four-dimensional natural transform to Equation (9), we obtain
s α v α N 4 + Ψ ( x , y , z , t ) = s α v α N 4 + Ψ ( x , y , z , 0 ) N 4 + Ψ Ψ x + ϕ Ψ y + χ Ψ z Ψ + N 4 + 1 R e Ψ x x + Ψ y y + Ψ z z , s α v α N 4 + ϕ ( x , y , z , t ) = s α v α N 4 + ϕ ( x , y , z , 0 ) N 4 + Ψ ϕ x + ϕ ϕ y + χ ϕ z ϕ + N 4 + 1 R e ϕ x x + ϕ y y + ϕ z z , s α v α N 4 + χ ( x , y , z , t ) = s α v α N 4 + χ ( x , y , z , 0 ) N 4 + Ψ χ x + ϕ χ y + χ χ z χ + N 4 + 1 R e χ x x + χ y y + χ z z .
  • Step 2: Now, by using the differentiation property of the natural transform, we have
N 4 + Ψ ( x , y , z , t ) = N 4 + Ψ ( x , y , z , 0 ) v α s α N 4 + Ψ Ψ x + ϕ Ψ y + χ Ψ z Ψ + v α s α N 4 + 1 R e Ψ x x + Ψ y y + Ψ z z ,
N 4 + ϕ ( x , y , z , t ) = N 4 + ϕ ( x , y , z , 0 ) v α s α N 4 + Ψ ϕ x + ϕ ϕ y + χ ϕ z ϕ + v α s α N 4 + 1 R e ϕ x x + ϕ y y + ϕ z z , N 4 + χ ( x , y , z , t ) = N 4 + χ ( x , y , z , 0 ) v α s α N 4 + Ψ χ x + ϕ χ y + χ χ z χ + v α s α N 4 + 1 R e χ x x + χ y y + χ z z .
  • Step 3: By employing the inverse four-dimensional natural transform for Equation (12), we obtain
Ψ ( x , y , z , t ) = f ( x , y , z ) N 4 1 v α s α N 4 + Ψ Ψ x + ϕ Ψ y + χ Ψ z Ψ + N 4 1 v α s α N 4 + 1 R e Ψ x x + Ψ y y + Ψ z z , ϕ ( x , y , z , t ) = g ( x , y , z ) N 4 1 v α s α N 4 + Ψ ϕ x + ϕ ϕ y + χ ϕ z ϕ + N 4 1 v α s α N 4 + 1 R e ϕ x x + ϕ y y + ϕ z z , χ ( x , y , z , t ) = h ( x , y , z ) N 4 1 v α s α N 4 + Ψ χ x + ϕ χ y + χ χ z χ + N 4 1 v α s α N 4 + 1 R e χ x x + χ y y + χ z z .
  • Step 4: The four-dimensional natural Adomian decomposition method assumes series solutions of the functions Ψ ( x , y , z , t ) , ϕ ( x , y , z , t ) , and χ ( x , y , z , t ) , which are determined by
Ψ ( x , y , z , t ) = n = 0 Ψ n ( x , y , z , t ) , ϕ ( x , y , z , t ) = n = 0 ϕ n ( x , y , z , t ) , χ ( x , y , z , t ) = n = 0 χ n ( x , y , z , t ) .
Moreover, we supposed that the nonlinear terms Ψ Ψ x , ϕ Ψ y , χ Ψ z : Ψ ϕ x , ϕ ϕ y , χ ϕ z , Ψ χ x , ϕ χ y , and χ χ z are defined by
Ψ Ψ x = n = 0 A n , ϕ Ψ y = n = 0 B n , χ Ψ z = n = 0 C n , Ψ ϕ x = n = 0 D n , ϕ ϕ y = n = 0 E n , χ ϕ z = n = 0 F n , Ψ χ x = n = 0 G n , ϕ χ y = n = 0 H n , χ χ z = n = 0 K n ,
by substituting Equations (14) and (15) into Equation (13), we have
Ψ ( x , y , z , t ) = f ( x , y , z ) N 4 1 v α s α N 4 + n = 0 A n + B n + C n n = 0 Ψ n + N 4 1 v α s α N 4 + 1 R e n = 0 Ψ n x x + Ψ n y y + Ψ n z z = n = 0 Ψ n ( x , y , z , t ) ,
ϕ ( x , y , z , t ) = g ( x , y , z ) N 4 1 v α s α N 4 + n = 0 D n + E n + F n n = 0 ϕ n + N 4 1 v α s α N 4 + 1 R e n = 0 ϕ n x x + ϕ n y y + ϕ n z z = n = 0 ϕ n ( x , y , z , t ) ,
and
χ ( x , y , z , t ) = h ( x , y , z ) N 4 1 v α s α N 4 + n = 0 G n + H n + K n n = 0 χ n + N 4 1 v α s α N 4 + 1 R e n = 0 χ n x x + χ n y y + χ n z z = n = 0 χ n ( x , y , z , t ) .
  • Step 5: After applying the four-dimensional natural Adomian decomposition method, we introduce the recursive relations as follows:
Ψ 0 ( x , y , z , t ) = f ( x , y , z ) , ϕ 0 ( x , y , t ) = g ( x , y , z ) , χ 0 ( x , y , t ) = h x , y , z ,
and the remaining components Ψ n + 1 , ϕ n + 1 , and χ n + 1 , n 0 are given by
Ψ n + 1 ( x , y , z , t ) = N 4 1 v α s α N 4 + A n + B n + C n Ψ n + N 4 1 v α s α N 4 + 1 R e Ψ n x x + Ψ n y y + Ψ n z z ,
ϕ n + 1 ( x , y , z , t ) = N 4 1 v α s α N 4 + D n + E n + F n ϕ n + N 4 1 v α s α N 4 + 1 R e ϕ n x x + ϕ n y y + ϕ n z z ,
and
χ n + 1 ( x , y , z , t ) = N 4 1 v α s α N 4 + G n + H n + K n χ n + N 4 1 v α s α N 4 + 1 R e χ n x x + χ n y y + χ n z z .
where the first few terms of the Adomian polynomials A n , B n , C n , D n , E n , F n , G n , H n , and K n are given by
A 0 = Ψ 0 Ψ 0 x , A 1 = Ψ 0 Ψ 1 x + Ψ 1 Ψ 0 x , A 2 = Ψ 0 Ψ 2 x + Ψ 1 Ψ 1 x + Ψ 2 Ψ 0 x , A 3 = Ψ 0 Ψ 3 x + Ψ 1 Ψ 2 x + Ψ 2 Ψ 1 x + Ψ 3 Ψ 0 x ,
B 0 = ϕ 0 Ψ 0 y , B 1 = ϕ 0 Ψ 1 y + ϕ 1 Ψ 0 y , B 2 = ϕ 0 Ψ 2 y + ϕ 1 Ψ 1 y + ϕ 2 Ψ 0 y , B 3 = ϕ 0 Ψ 3 y + ϕ 1 Ψ 2 y + ϕ 2 Ψ 1 y + ϕ 3 Ψ 0 y ,
C 0 = χ 0 Ψ 0 z , C 1 = χ 0 Ψ 1 z + χ 1 Ψ 0 z , C 2 = χ 0 Ψ 2 z + χ 1 Ψ 1 z + χ 2 Ψ 0 z , C 3 = χ 0 Ψ 3 z + χ 1 Ψ 2 z + χ 2 Ψ 1 z + χ 3 Ψ 0 z .
D 0 = Ψ 0 ϕ 0 x , D 1 = Ψ 0 ϕ 1 x + Ψ 1 ϕ 0 x , D 2 = Ψ 0 ϕ 2 x + Ψ 1 ϕ 1 x + Ψ 2 ϕ 0 x , D 3 = Ψ 0 ϕ 3 x + Ψ 1 ϕ 2 x + Ψ 2 ϕ 1 x + Ψ 3 ϕ 0 x .
E 0 = ϕ 0 ϕ 0 y , E 1 = ϕ 0 ϕ 1 y + ϕ 1 ϕ 0 y , E 2 = ϕ 0 ϕ 2 y + ϕ 1 ϕ 1 y + ϕ 2 ϕ 0 y , E 3 = ϕ 0 ϕ 3 y + ϕ 1 ϕ 2 y + ϕ 2 ϕ 1 y + ϕ 3 ϕ 0 y .
F 0 = χ 0 ϕ z , F 1 = χ 0 ϕ 1 z + χ 1 ϕ 0 z , F 2 = χ 0 ϕ 2 z + χ 1 ϕ 1 z + χ 2 ϕ 0 z , F 3 = χ 0 ϕ 3 z + χ 1 ϕ 2 z + χ 2 ϕ 1 z + χ 3 ϕ 0 z .
G 0 = Ψ 0 χ 0 x , G 1 = Ψ 0 χ 1 x + Ψ 1 χ 0 x , G 2 = Ψ 0 χ 2 x + Ψ 1 χ 1 x + Ψ 2 χ 0 x , G 3 = Ψ 0 χ 3 x + Ψ 1 χ 2 x + Ψ 2 χ 1 x + Ψ 3 χ 0 x .
H 0 = ϕ 0 χ 0 y , H 1 = ϕ 0 χ 1 y + ϕ 1 χ 0 y , H 2 = ϕ 0 χ 2 y + ϕ 1 χ 1 y + ϕ 2 χ 0 y , H 3 = ϕ 0 χ 3 y + ϕ 1 χ 2 y + ϕ 2 χ 1 y + ϕ 3 χ 0 y ,
and
K 0 = χ 0 χ z , K 1 = χ 0 χ 1 z + χ 1 χ 0 z , K 2 = χ 0 χ 2 z + χ 1 χ 1 z + χ 2 χ 0 z , K 3 = χ 0 χ 3 z + χ 1 χ 2 z + χ 2 χ 1 z + χ 3 χ 0 z .
We show that the inverse four-dimensional natural transform with respect to p i , u j , s , and v , i , j = 0 , 1 , 2 , 3 exists for Equations (20)–(22).
For the purpose of explaining the four-dimensional natural Adomian decomposition method for solving the (3+1)-dimensional time-fractional coupled Burgers’ equation, we will consider the following example at R e = 1 :
Example 1.
Consider the (3+1)-dimensional time-fractional coupled Burgers’ equation
D t α Ψ + Ψ Ψ x + ϕ Ψ y + χ Ψ z = Ψ x x + Ψ y y + Ψ z z + Ψ , x , y , z , t > 0 , D t α ϕ + Ψ ϕ x + ϕ ϕ y + χ ϕ z = ϕ x x + ϕ y y + ϕ z z + ϕ , x , y , z , t > 0 , D t α χ + Ψ χ x + ϕ χ y + χ χ z = χ x x + χ y y + χ z z + χ , x , y , z , t > 0 , n 1 < α < n .
with the initial conditions
Ψ ( x , y , z , 0 ) = 2 x y z , ϕ ( x , y , z , 0 ) = 2 x y z , χ ( x , y , z , 0 ) = 2 x y z .
As mentioned in the above steps, we obtain
Ψ ( x , y , z , t ) = 2 x y z N 4 1 v α s α N 4 + Ψ Ψ x + ϕ Ψ y + χ Ψ z Ψ + N 4 1 v α s α N 4 + Ψ x x + Ψ y y + Ψ z z , ϕ ( x , y , z , t ) = 2 x y z N 4 1 v α s α N 4 + Ψ ϕ x + ϕ ϕ y + χ ϕ z ϕ + N 4 1 v α s α N 4 + ϕ x x + ϕ y y + ϕ z z , χ ( x , y , z , t ) = 2 x y z N 4 1 v α s α N 4 + Ψ χ x + ϕ χ y + χ χ z χ + N 4 1 v α s α N 4 + χ x x + χ y y + χ z z .
The zeroth components Ψ 0 , ϕ 0 , and χ 0 are determined by the method to be the same as the initial conditions, so we have
Ψ 0 = 2 x y z , ϕ 0 = 2 x y z , χ 0 = 2 x y z .
The remaining components Ψ n + 1 , ϕ n + 1 , χ n + 1 , n 0 are given by
Ψ n + 1 ( x , y , z , t ) = N 4 1 v α s α N 4 + A n + B n + C n Ψ n + N 4 1 v α s α N 4 + Ψ n x x + Ψ n y y + Ψ n z z ,
ϕ n + 1 ( x , y , z , t ) = N 4 1 v α s α N 4 + D n + E n + F n ϕ n + N 4 1 v α s α N 4 + ϕ n x x + ϕ n y y + ϕ n z z ,
χ n + 1 ( x , y , z , t ) = N 4 1 v α s α N 4 + G n + H n + K n χ n + N 4 1 v α s α N 4 + χ n x x + χ n y y + χ n z z ,
by substituting n = 0 into Equations (34)–(36), we obtain
Ψ 1 ( x , y , z , t ) = N 4 1 v α s α N 4 + A 0 + B 0 + C 0 Ψ 0 + N 4 1 v α s α N 4 + Ψ 0 x x + Ψ 0 y y + Ψ 0 z z = N 4 1 v α s α N 4 + 2 x y z = 2 x y z t α Γ α + 1 ,
ϕ 1 ( x , y , z , t ) = N 4 1 v α s α N 4 + D 0 + E 0 + F 0 ϕ 0 + N 4 1 v α s α N 4 + ϕ 0 x x + ϕ 0 y y + ϕ 0 z z = N 4 1 v α s α N 4 + 2 x y z = 2 x y z t α Γ α + 1 ,
and
χ 1 ( x , y , z , t ) = N 4 1 v α s α N 4 + G 0 + H 0 + K 0 χ 0 + N 4 1 v α s α N 4 + χ 0 x x + χ 0 y y + χ 0 z z = N 4 1 v α s α N 4 + 2 x y z = 2 x y z t α Γ α + 1 .
Similarly, when n = 1 , we have
Ψ 2 ( x , y , z , t ) = N 4 1 v α s α N 4 + Ψ 0 Ψ 1 x + Ψ 1 Ψ 0 x + ϕ 0 Ψ 1 y + ϕ 1 Ψ 0 y N 4 1 v α s α N 4 + χ 0 Ψ 1 z + χ 1 Ψ 0 z Ψ 1 + N 4 1 v α s α N 4 + Ψ 1 x x + Ψ 1 y y + Ψ 1 z z = N 4 1 v α s α N 4 + 2 x y z t α Γ α + 1 = 2 x y z t 2 α Γ 2 α + 1 ,
ϕ 2 ( x , y , z , t ) = N 4 1 v α s α N 4 + Ψ 0 ϕ 1 x + Ψ 1 ϕ 0 x + ϕ 0 ϕ 1 y + ϕ 1 ϕ 0 y N 4 1 v α s α N 4 + χ 0 ϕ 1 z + χ 1 ϕ 0 z ϕ 1 + N 4 1 v α s α N 4 + ϕ 1 x x + ϕ 1 y y + ϕ 1 z z = N 4 1 v α s α N 4 + 2 x y z t α Γ α + 1 = 2 x y z t 2 α Γ 2 α + 1 ,
χ 2 ( x , y , z , t ) = N 4 1 v α s α N 4 + Ψ 0 χ 1 x + Ψ 1 χ 0 x + ϕ 0 χ 1 y + ϕ 1 χ 0 y N 4 1 v α s α N 4 + χ 0 χ 1 z + χ 1 χ 0 z χ 1 + N 4 1 v α s α N 4 + χ 1 x x + χ 1 y y + χ 1 z z = N 4 1 v α s α N 4 + 2 x y z t α Γ α + 1 = 2 x y z t 2 α Γ 2 α + 1 .
At n = 2 , we obtain
Ψ 3 = 2 x y z t 3 α Γ 3 α + 1 ,
ϕ 3 = 2 x y z t 3 α Γ 3 α + 1 ,
χ 3 = 2 x y z t 3 α Γ 3 α + 1 .
Therefore, the solution to Equation (32) is defined as
Ψ ( x , y , z , t ) = n = 0 Ψ n = Ψ 0 + Ψ 1 + Ψ 2 + Ψ 3 + Ψ ( x , y , z , t ) = 2 x y z + 2 x y z t α Γ α + 1 + 2 x y z t 2 α Γ 2 α + 1 + 2 x y z t 3 α Γ 3 α + 1 + ,
ϕ ( x , y , z , t ) = n = 0 ϕ n = ϕ 0 + ϕ 1 + ϕ 2 + ϕ 3 + ϕ ( x , y , z , t ) = 2 x y z + 2 x y z t α Γ α + 1 + 2 x y z t 2 α Γ 2 α + 1 + 2 x y z t 3 α Γ 3 α + 1 + ,
and
χ ( x , y , z , t ) = n = 0 χ n = χ 0 + χ 1 + χ 2 + χ 3 + χ ( x , y , z , t ) = 2 x y z + 2 x y z t α Γ α + 1 + 2 x y z t 2 α Γ 2 α + 1 + 2 x y z t 3 α Γ 3 α + 1 + ,
at α = 1 , the solution of the above equation becomes
Ψ ( x , y , z , t ) = 2 x y z + 2 x y z t 1 ! + 2 x y z t 2 2 ! + 2 x y z t 3 3 ! + , = 2 x y z e t
ϕ ( x , y , z , t ) = 2 x y z + 2 x y z t 1 ! + 2 x y z t 2 2 ! + 2 x y z t 3 3 ! + = 2 x y z e t
and
χ ( x , y , z , t ) = 2 x y z + 2 x y z t 1 ! + 2 x y z t 2 2 ! + 2 x y z t 3 3 ! + = 2 x y z e t .
For 0 < α < 1 , by using the ratio test and Gautschi’s inequality, it can be proven that the series is absolutely convergent. In order to illustrate the convergence, let us consider, for example, z = y = 0 and α = 0.5 . Figure 1a,b depict the convergence of the series representing the function Ψ ( x , y , z , t ) with respect to x at t = 3 and with respect to t at x = 1 , respectively, showing rapid convergence to the exact solution after a few terms. In order to display the three-dimensional demonstration for the results of Example 1, we take different values of the variables to show the exact solution of Ψ ( x , y , z , t ) . Figure 2a,b show Ψ ( x , y , z , t ) at α = 1 with y = 0 and x = 0 , z = 0 , respectively. The illustrations were generated using the Maple software 2023.0.

4. Four-Dimensional Natural Adomian Decomposition Method and Singular (3+1)-Dimensional Fractional Coupled Burgers’ Equation

In order to explain the basic idea of the four-dimensional natural Adomian decomposition method, we consider a general singular (3+1)-dimensional time-fractional coupled Burgers’ equation of the form
D t α Ψ = 1 x x Ψ x x + 1 y y Ψ y y + 1 z z Ψ z z 1 x Ψ Ψ x 1 y ϕ Ψ y 1 z χ Ψ z + Ψ D t α ϕ = 1 x x ϕ x x + 1 y y ϕ y y + 1 z z ϕ z z 1 x Ψ ϕ x 1 y ϕ ϕ y 1 z χ ϕ z + ϕ D t α χ = 1 x x χ x x + 1 y y χ y y + 1 z z χ z z 1 x Ψ χ x 1 y ϕ χ y 1 z χ χ z + χ x , y , t > 0 ,
with the initial conditions
Ψ ( x , y , z , 0 ) = f ( x , y , z ) , ϕ ( x , y , z , 0 ) = g ( x , y , z ) , χ ( x , y , z , 0 ) = h ( x , y , z ) ,
where D t α = α t α is the fractional Caputo derivative. 1 x x Ψ x x , 1 y y Ψ y y , and 1 z z χ z z are called Bessel operators, and Ψ ( x , y , z , t ) , ϕ ( x , y , z , t ) , and χ x , y , z , t are the velocity components. f ( x , y , z ) , g ( x , y , z ) , and h ( x , y , z ) are known functions. Let N 4 + Ψ ( x , y , z , t ) = Ψ p 1 , p 2 , p 3 , s ; u 1 , u 2 , u 3 , v and N 4 + Ψ ( x , y , z , 0 ) = Ψ p 1 , p 2 , p 3 ; u 1 , u 2 , u 3 , and similarly for the functions ϕ and χ . In order to obtain the solution of Equation (41), we will employ the following steps.
  • Step 1: Multiply both sides of Equation (41) by x y z to obtain
x y z D t α Ψ = y z x Ψ x x + x z y Ψ y y + x y z Ψ z z y z Ψ Ψ x x z ϕ Ψ y x y χ Ψ z + x y z Ψ x y z D t α ϕ = y z x ϕ x x + x z y ϕ y y + x y z ϕ z z y z Ψ ϕ x x z ϕ ϕ y x y χ ϕ z + x y z ϕ x y z D t α χ = y z x χ x x + x z y χ y y + x y z χ z z y z Ψ χ x x z ϕ χ y x y χ χ z + x y z χ .
  • Step 2: Operating the four-dimensional natural transform for both sides of Equation (42) yields
1 3 u 1 u 2 u 3 3 p 1 p 2 p 3 s α v α Ψ p 1 , p 2 , p 3 , s ; u 1 , u 2 , u 3 , v s α v α Ψ p 1 , p 2 , p 3 ; u 1 , u 2 , u 3 = N 4 + Δ
1 3 u 1 u 2 u 3 3 p 1 p 2 p 3 s α v α Φ p 1 , p 2 , p 3 , s ; u 1 , u 2 , u 3 , v s α v α Φ p 1 , p 2 , p 3 ; u 1 , u 2 , u 3 = N 4 + Λ
1 3 u 1 u 2 u 3 3 p 1 p 2 p 3 s α v α Π p 1 , p 2 , p 3 , s ; u 1 , u 2 , u 3 , v s α v α Π p 1 , p 2 , p 3 ; u 1 , u 2 , u 3 = N 4 + Υ ,
where
Δ = y z x Ψ x x + x z y Ψ y y + x y z Ψ z z y z Ψ Ψ x x z ϕ Ψ y x y χ Ψ z + x y z Ψ Λ = y z x ϕ x x + x z y ϕ y y + x y z ϕ z z y z Ψ ϕ x x z ϕ ϕ y x y χ ϕ z + x y z ϕ
and
Υ = y z x χ x x + x z y χ y y + x y z χ z z y z Ψ χ x x z ϕ χ y x y χ χ z + x y z χ .
Hence, we have
3 p 1 p 2 p 3 Ψ = 3 p 1 p 2 p 3 Ψ p 1 , p 2 , p 3 ; u 1 , u 2 , u 3 v α s α u 1 u 2 u 3 N 4 + Δ 3 p 1 p 2 p 3 Φ = 3 p 1 p 2 p 3 Φ p 1 , p 2 , p 3 ; u 1 , u 2 , u 3 v α s α u 1 u 2 u 3 N 4 + Λ 3 p 1 p 2 p 3 Π = 3 p 1 p 2 p 3 Π p 1 , p 2 , p 3 ; u 1 , u 2 , u 3 v α s α u 1 u 2 u 3 N 4 + Υ .
  • Step 3: By integrating both sides of Equation (46) from 0 to p 1 , 0 to p 2 and 0 to p 3 with respect to p 1 , p 2 , and p 3 , respectively, we have
Ψ p 1 , p 2 , p 3 , s ; u 1 , u 2 , u 3 , v = Ψ p 1 , p 2 , p 3 ; u 1 , u 2 , u 3 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + Δ d p 1 d p 2 d p 3
Φ p 1 , p 2 , p 3 , s ; u 1 , u 2 , u 3 , v = Φ p 1 , p 2 , p 3 ; u 1 , u 2 , u 3 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + Λ d p 1 d p 2 d p 3
and
Π p 1 , p 2 , p 3 , s ; u 1 , u 2 , u 3 , v = Π p 1 , p 2 , p 3 ; u 1 , u 2 , u 3 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + Υ d p 1 d p 2 d p 3 .
  • Step 4: By applying the inverse four-dimensional natural transform to Equations (47)–(49), we obtain
Ψ x , y , z , t = f ( x , y , z ) N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + Δ d p 1 d p 2 d p 3
ϕ x , y , z , t = g ( x , y , z ) N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + Λ d p 1 d p 2 d p 3
and
χ x , y , z , t = h ( x , y , z ) N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + Υ d p 1 d p 2 d p 3 .
  • Step 5: By substituting Equations (14) and (15) into Equations (50) and (52), we obtain
Ψ ( x , y , z , t ) = n = 0 Ψ n ( x , y , z , t ) = f ( x , y , z ) N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + n = 0 Δ n d p 1 d p 2 d p 3
ϕ ( x , y , z , t ) = n = 0 ϕ n ( x , y , z , t ) = g ( x , y , z ) N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + n = 0 Λ n d p 1 d p 2 d p 3
and
χ ( x , y , z , t ) = n = 0 χ n ( x , y , z , t ) = h ( x , y , z ) N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + n = 0 Υ n d p 1 d p 2 d p 3 .
  • Step 6: After applying the four-dimensional natural Adomian decomposition method, we introduce the recursive relations as follows:
Ψ 0 ( x , y , z , t ) = f ( x , y , z ) , ϕ 0 ( x , y , t ) = g ( x , y , z ) χ 0 ( x , y , t ) = h ( x , y , z ) ,
The remaining components, Ψ n + 1 , ϕ n + 1 , and χ n + 1 , n > 0 , are given by
Ψ n + 1 ( x , y , z , t ) = N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z x Ψ n x x + x z y Ψ n y y + x y z Ψ n z z d p 1 d p 2 d p 3 + N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z A n + x z B n + x y C n x y z Ψ n d p 1 d p 2 d p 3 ,
ϕ n + 1 ( x , y , z , t ) = N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z x ϕ n x x + x z y ϕ n y y + x y z ϕ n z z d p 1 d p 2 d p 3 + N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z D n + x z E n + x y F n x y z ϕ n d p 1 d p 2 d p 3 ,
and
χ n + 1 ( x , y , z , t ) = N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z x χ n x x + x z y χ n y y + x y z χ n z z d p 1 d p 2 d p 3 + N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z G n + x z H n + x y K n x y z χ n d p 1 d p 2 d p 3 .
We show that four inverse natural transforms with respect to p 1 , p 2 , p 3 , s ; u 1 , u 2 , u 3 , v exist for Equations (57)–(59). In the following example, we apply the four-dimensional natural Adomian decomposition method to solve the singular (3+1)-dimensional time-fractional coupled Burgers’ equation.
Example 2.
We consider the singular (3+1)-dimensional time-fractional coupled Burgers’ equations, given by
D t α Ψ = 1 x x Ψ x x + 1 y y Ψ y y + 1 z z Ψ z z 1 x Ψ Ψ x 1 y ϕ Ψ y 1 z χ Ψ z + Ψ D t α ϕ = 1 x x ϕ x x + 1 y y ϕ y y + 1 z z ϕ z z 1 x Ψ ϕ x 1 y ϕ ϕ y 1 z χ ϕ z + ϕ D t α χ = 1 x x χ x x + 1 y y χ y y + 1 z z χ z z 1 x Ψ χ x 1 y ϕ χ y 1 z χ χ z + χ , x , y , t > 0 ,
subject to the initial conditions
Ψ ( x , y , z , 0 ) = 2 x 2 y 2 z 2 , ϕ ( x , y , z , 0 ) = 2 x 2 y 2 z 2 , χ ( x , y , z , 0 ) = 2 x 2 y 2 z 2 .
By following the steps outlined above, we have
Ψ x , y , t = 2 x 2 y 2 z 2 N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z x Ψ x x + x z y Ψ y y + x y z Ψ z z d p 1 d p 2 d p 3 + N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z Ψ Ψ x + x z ϕ Ψ y + x y χ Ψ z x y z Ψ d p 1 d p 2 d p 3
and
ϕ x , y , z , t = 2 x 2 y 2 z 2 N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z x ϕ x x + x z y ϕ y y + x y z ϕ z z d p 1 d p 2 d p 3 + N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z Ψ ϕ x x z ϕ ϕ y x y χ ϕ z x y z ϕ d p 1 d p 2 d p 3
χ x , y , t = 2 x 2 y 2 z 2 N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z x χ x x + x z y χ y y + x y z χ z z d p 1 d p 2 d p 3 + N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z Ψ χ x x z ϕ χ y x y χ χ z x y z χ d p 1 d p 2 d p 3 .
By applying Equations (56)–(59), we obtain
Ψ 0 ( x , y , z , t ) = 2 x 2 y 2 z 2 , ϕ 0 ( x , y , z , t ) = 2 x 2 y 2 z 2 , χ 0 ( x , y , z , t ) = 2 x 2 y 2 z 2 ,
and the remaining components, Ψ n + 1 , ϕ n + 1 , and χ n + 1 , n > 0 , are given by
Ψ n + 1 ( x , y , t ) = N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z x Ψ n x x + x z y Ψ n y y + x y z Ψ n z z d p 1 d p 2 d p 3 + N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z A n + x z B n + x y C n x y z Ψ n d p 1 d p 2 d p 3 ,
ϕ n + 1 ( x , y , z , t ) = N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z x ϕ n x x + x z y ϕ n y y + x y z ϕ n z z d p 1 d p 2 d p 3 + N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z D n + x z E n + x y F n x y z ϕ n d p 1 d p 2 d p 3 ,
and
χ n + 1 ( x , y , z , t ) = N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z x χ n x x + x z y χ n y y + x y z χ n z z d p 1 d p 2 d p 3 + N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z G n + x z H n + x y K n x y z χ n d p 1 d p 2 d p 3 .
where the first few terms of the Adomian polynomials, A n , B n , C n , D n , E n , F n , G n , H n , and K n , are given by Equations (23)–(31), respectively. By substituting n = 0 into Equations (65)–(67), we obtain
Ψ 1 ( x , y , z , t ) = N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z x Ψ 0 x x + x z y Ψ 0 y y + x y z Ψ 0 z z d p 1 d p 2 d p 3 + N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z A 0 + x z B 0 + x y C 0 x y z Ψ 0 d p 1 d p 2 d p 3 Ψ 1 ( x , y , z , t ) = 2 x 2 y 2 z 2 t α Γ α + 1 .
ϕ 1 ( x , y , z , t ) = N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z x ϕ 0 x x + x z y ϕ 0 y y + x y z ϕ 0 z z d p 1 d p 2 d p 3 + N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z D 0 + x z E 0 + x y F 0 x y z ϕ 0 d p 1 d p 2 d p 3 ϕ 1 ( x , y , t ) = 2 x 2 y 2 z 2 t α Γ α + 1 .
and
χ 1 ( x , y , z , t ) = N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z x χ 0 x x + x z y χ 0 y y + x y z χ 0 z z d p 1 d p 2 d p 3 + N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z G 0 + x z H 0 + x y K 0 x y z χ 0 d p 1 d p 2 d p 3 χ 1 ( x , y , t ) = 2 x 2 y 2 z 2 t α Γ α + 1 .
Similarly, at n = 1 , we obtain
Ψ 2 ( x , y , z , t ) = N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z x Ψ 1 x x + x z y Ψ 1 y y + x y z Ψ 1 z z d p 1 d p 2 d p 3 + N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z A 1 + x z B 1 + x y C 1 x y z Ψ 1 d p 1 d p 2 d p 3 Ψ 2 ( x , y , z , t ) = 2 x 2 y 2 z 2 t 2 α Γ 2 α + 1 ,
ϕ 2 ( x , y , z , t ) = N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z x ϕ 1 x x + x z y ϕ 1 y y + x y z ϕ 1 z z d p 1 d p 2 d p 3 + N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z D 1 + x z E 1 + x y F 1 x y z ϕ 1 d p 1 d p 2 d p 3 ϕ 2 ( x , y , t ) = 2 x 2 y 2 z 2 t 2 α Γ 2 α + 1 ,
and
χ 2 ( x , y , z , t ) = N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z x χ 1 x x + x z y χ 1 y y + x y z χ 1 z z d p 1 d p 2 d p 3 + N 4 1 v α s α u 1 u 2 u 3 0 p 1 0 p 2 0 p 3 N 4 + y z G 1 + x z H 1 + x y K 1 x y z χ 1 d p 1 d p 2 d p 3 χ 2 ( x , y , t ) = 2 x 2 y 2 z 2 t 2 α Γ 2 α + 1 .
At n = 2
Ψ 3 ( x , y , z , t ) = 2 x 2 y 2 z 2 t 3 α Γ 3 α + 1 ,
ϕ 3 ( x , y , t ) = 2 x 2 y 2 z 2 t 3 α Γ 3 α + 1 ,
and
χ 3 ( x , y , t ) = 2 x 2 y 2 z 2 t 3 α Γ 3 α + 1 .
At n = 3 , we have
Ψ 4 ( x , y , z , t ) = 2 x 2 y 2 z 2 t 4 α Γ 4 α + 1 ,
ϕ 4 ( x , y , t ) = 2 x 2 y 2 z 2 t 4 α Γ 4 α + 1 ,
and
χ 4 ( x , y , t ) = 2 x 2 y 2 z 2 t 4 α Γ 4 α + 1 .
The solution to Equation (60) is given by
Ψ ( x , y , z , t ) = Ψ 0 + Ψ 1 + Ψ 2 + + Ψ n + , ϕ ( x , y , z , t ) = ϕ 0 + ϕ 1 + ϕ 2 + + ϕ n + , χ ( x , y , z , t ) = χ 0 + χ 1 + χ 2 + + χ n +
Hence, the solution is given by
Ψ ( x , y , z , t ) = 2 x 2 y 2 z 2 1 + t α Γ α + 1 + t 2 α Γ 2 α + 1 + t 3 α Γ 3 α + 1 + , ϕ ( x , y , z , t ) = 2 x 2 y 2 z 2 1 + t α Γ α + 1 + t 2 α Γ 2 α + 1 + t 3 α Γ 3 α + 1 + , χ ( x , y , z , t ) = 2 x 2 y 2 z 2 1 + t α Γ α + 1 + t 2 α Γ 2 α + 1 + t 3 α Γ 3 α + 1 + .
When α = 1 is substituted into Equation (60), we obtain the solution to the singular (3+1)-dimensional time-fractional coupled Burgers’ equation
Ψ t = 1 x x Ψ x x + 1 y y Ψ y y + 1 z z Ψ z z 1 x Ψ Ψ x 1 y ϕ Ψ y 1 z χ Ψ z + Ψ ϕ t = 1 x x ϕ x x + 1 y y ϕ y y + 1 z z ϕ z z 1 x Ψ ϕ x 1 y ϕ ϕ y 1 z χ ϕ z + ϕ χ t = 1 x x χ x x + 1 y y χ y y + 1 z z χ z z 1 x Ψ χ x 1 y ϕ χ y 1 z χ χ z + χ x , y , t > 0 ,
with the initial conditions
Ψ ( x , y , z , 0 ) = 2 x 2 y 2 z 2 , ϕ ( x , y , z , 0 ) = 2 x 2 y 2 z 2 , χ ( x , y , z , 0 ) = 2 x 2 y 2 z 2
which is given by
Ψ ( x , y , z , t ) = 2 x 2 y 2 z 2 e t , ϕ ( x , y , z , t ) = 2 x 2 y 2 z 2 e t χ ( x , y , z , t ) = 2 x 2 y 2 z 2 e t .
For 0 < α < 1 , in a similar manner, it can be proved that the series is absolutely convergent. In order to illustrate the convergence, let us consider, for example, z = y = 0 and α = 0.25 . Figure 3a,b illustrate the convergence of the series representing the function ψ with respect to x at t = 2 and with respect to t at x = 1 , respectively, which clearly converges rapidly to the exact solution after a few terms. In order to display the three-dimensional demonstration for the results of Example 2, we take different values of the variables. Figure 4a,b show the exact solution Ψ ( x , y , z , t ) at α = 1 , y = 0 with x = 0 , z = 0 , respectively. The illustrations were generated using Maple software.

5. Conclusions

This study introduces a numerical method for solving the (3+1)-dimensional time-fractional coupled Burgers’ equation and its associated initial conditions. The method proposed herein integrates the four-dimensional natural transform techniques and Adomian decomposition methods to formulate the FNADM technique. By effectively leveraging the four-dimensional natural transform, the FNADM method addresses the Caputo fractional derivative of (3+1)-dimensional functions in coupled Burgers’ equations. Two illustrative examples accompanied by figures demonstrate the convergence of the series generated by the FNADM method. The computational findings and graphical representations underscore the method’s efficacy and suitability for solving high-dimensional fractional differential equations. This method introduces a numerical approach to handle multi-dimensional fractional differential equations and exhibits potential applicability across diverse real-world problems. Future research directions may involve investigating the stability and error analysis of FNADM and extending its applicability to more complex problems.

Author Contributions

H.E., Methodology; H.A., Investigation; H.E. and H.A., Formal Analysis; H.E. and H.A., writing original draft; H.E and H.A., review and editing. All authors have read and agreed to the published version of the manuscript.

Funding

The authors would like to extend their sincere appreciation to Researchers Supporting Project number (RSP2024R472), King Saud University, Riyadh, Saudi Arabia.

Data Availability Statement

Data is contained within the article.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Machado, J.T.; Kiryakova, V.; Mainardi, F. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 2011, 16, 1140–1153. [Google Scholar] [CrossRef]
  2. Sabatier, J.A.T.M.J.; Agrawal, O.P.; Machado, J.T. Advances in Fractional Calculus; Springer: Dordrecht, The Netherlands, 2007; Volume 4. [Google Scholar]
  3. Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods; World Scientific: Singapore, 2012; Volume 3. [Google Scholar]
  4. Debnath, L. Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci. 2003, 2003, 3413–3442. [Google Scholar] [CrossRef]
  5. Hilfer, R. Applications of Fractional Calculus in Physics; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 2000. [Google Scholar]
  6. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North Holland Mathematics Studies, Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
  7. Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus, Series on Complexity, Nonlinearity and Chaos; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2012; Volume 3. [Google Scholar]
  8. Riemann, B. Versuch einer allgemeinen Auffassung der Integration und Differentiation. In Gesammelte Werke; Dover: New York, NY, USA, 1876; Volume 62, pp. 331–344. [Google Scholar]
  9. Liouville, J. Mémoire sur le Calcul des Différentielles á Indices Quelconques; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 1832. [Google Scholar]
  10. Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef]
  11. Baleanu, D.; Jajarmi, A.; Mohammadi, H.; Rezapour, S. A new study on the mathematical modeling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 2020, 134, 109705. [Google Scholar] [CrossRef]
  12. Yang, Q.; Liu, F.; Turner, I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 2010, 34, 200–218. [Google Scholar] [CrossRef]
  13. Sousa, J.V.d.C.; De Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
  14. Mathai, A.; Haubold, H.J. Erdélyi–Kober Fractional Calculus: From a Statistical Perspective, Inspired by Solar Neutrino Physics; Springer: Berlin/Heidelberg, Germany, 2018; Volume 31. [Google Scholar]
  15. Jarad, F.; Abdeljawad, T.; Hammouch, Z. On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative. Chaos Solitons Fractals 2018, 117, 16–20. [Google Scholar] [CrossRef]
  16. Scherer, R.; Kalla, S.L.; Tang, Y.; Huang, J. The Grunwald–Letnikov method for fractional differential equations. Comput. Math. Appl. 2011, 62, 902–917. [Google Scholar] [CrossRef]
  17. Liao, S.J. Beyond Perturbation: Introduction to the Homotopy Analysis Method; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
  18. Bayrak, M.A.; Demir, A. A new approach for space-time fractional partial differential equations by residual power series method. Appl. Math. Comput. 2018, 336, 215–230. [Google Scholar] [CrossRef]
  19. Liu, J.G.; Yang, X.J.; Geng, L.L.; Yu, X.J. On fractional symmetry group scheme to the higher dimensional space and time fractional dissipative Burgers equation. Int. J. Geom. Meth. Moder. Phys. 2022, 19, 2250173. [Google Scholar] [CrossRef]
  20. Li, X.Y.; Wu, B.Y. Iterative reproducing kernel method for nonlinear variable-order space fractional diffusion equations. Int. J. Comput. Math. 2018, 95, 1210–1221. [Google Scholar] [CrossRef]
  21. Thabet, H.; Kendre, S.D.; Peters, J.F. Travelling wave solutions for fractional Korteweg-de Vries equations via an approximate-analytical method. AIMS Math. 2019, 4, 1203. [Google Scholar] [CrossRef]
  22. Aljahdaly, N.H. New application through multistage differential transform method. AIP Conf. Proc. 2020, 2293, 420025. [Google Scholar]
  23. Aljahdaly, N.H.; El-Tantawy, S.A. On the multistage differential transformation method for analyzing damping Duffing oscillator and its applications to plasma physics. Mathematics 2021, 9, 432. [Google Scholar] [CrossRef]
  24. Wu, G.C.; Baleanu, D. Variational iteration method for fractional calculus-a universal approach by Laplace transform. Adv. Differ. Equ. 2013, 2013, 18. [Google Scholar] [CrossRef]
  25. Jleli, M.; Kumar, S.; Kumar, R.; Samet, B. Analytical approach for time fractional wave equations in the sense of Yang-Abdel-Aty- Cattani via the homotopy perturbation transform method. Alex. Eng. J. 2020, 59, 2859–2863. [Google Scholar] [CrossRef]
  26. Prakash, A.; Goyal, M.; Gupta, S. q-homotopy analysis method for fractional Bloch model arising in nuclear magnetic resonance via the Laplace transform. Indian J. Phys. 2020, 94, 507–520. [Google Scholar] [CrossRef]
  27. Mirzaee, F.; Samadyar, N. On the numerical solution of stochastic quadratic integral equations via operational matrix method. Math. Methods Appl. Sci. 2018, 41, 4465–4479. [Google Scholar] [CrossRef]
  28. Sarra, S.A.; Kansa, E.J. Multiquadric radial basis function approximation methods for the numerical solution of partial differential equations. Adv. Comput. Mech. 2009, 2, 220. [Google Scholar]
  29. Shah, R.; Khan, H.; Baleanu, D. Fractional Whitham-Broer-Kaup equations within modified analytical approaches. Axioms 2019, 8, 125. [Google Scholar] [CrossRef]
  30. Sohail, A.; Maqbool, K.; Ellahi, R. Stability analysis for fractional-order partial differential equations by means of space spectral time Adams Bashforth Moulton method. Numer. Methods Partial. Differ. Equ. 2018, 34, 19–29. [Google Scholar] [CrossRef]
  31. Khan, Z.H.; Khan, W.A. N-Transform Properties and Applications. NUST J. Eng. Sci. 2008, 1, 127–133. [Google Scholar]
  32. Rawashdeh, M.S.; Al-Jammal, H. Theories and Applications of the Inverse Fractional Natural Transform Method. Adv. Differ. Equ. 2018, 2018, 222. [Google Scholar] [CrossRef]
  33. Belgacem, F.B.M.; Silambarasan, R. Theory of Natural Transform. Mathematics in Engineering. Sci. Aerosp. (MESA) J. 2012, 3, 99–124. [Google Scholar]
  34. Belgacem, F.B.M.; Silambarasan, R. Advances in the Natural Transform. AIP Conf. Proc. 2012, 1493, 106. [Google Scholar] [CrossRef]
  35. Rawashdeh, M.S.; Maitama, S. Solving coupled system of nonlinear PDE’s using the natural decomposition method. Int. J. Pure Appl. Math. 2014, 92, 757–776. [Google Scholar] [CrossRef]
  36. Cherif, M.H.; Ziane, D.; Belghaba, K. Fractional natural decomposition method for solving fractional system of nonlinear equations of unsteady flow of a polytropic gas. Nonlinear Stud. 2018, 25, 753–764. [Google Scholar]
  37. Eltayeb, H.; Abdalla, Y.T.; Bachar, I.; Khabir, M.H. Fractional telegraph equation and its solution by natural transform decomposition method. Symmetry 2019, 11, 334. [Google Scholar] [CrossRef]
  38. Elbadri, M.; Ahmed, S.A.; Abdalla, Y.T.; Hdidi, W. A New Solution of Time-Fractional Coupled KdV Equation by Using Natural Decomposition Method. Abstr. Appl. Anal. 2020, 2020, 3950816. [Google Scholar] [CrossRef]
  39. Khan, H.; Shah, R.; Kumam, P.; Arif, M. Analytical Solutions of Fractional-Order Heat and Wave Equations by the Natural Transform Decomposition Method. Entropy 2019, 21, 597. [Google Scholar] [CrossRef]
  40. Elbadri, M. The Natural Transform Decomposition Method for Solving Fractional Klein-Gordon Equation. Appl. Math. 2023, 14, 230–243. [Google Scholar] [CrossRef]
  41. Eltayeb, H. Application of Double Natural Decomposition Method for Solving Singular One Dimensional Boussinesq Equation. Filomat 2018, 32, 4389–4401. [Google Scholar] [CrossRef]
  42. Bateman, H. Some recent researches on the motion of fluids. Mon. Weath. Rev. 1915, 43, 163–170. [Google Scholar] [CrossRef]
  43. Burger, J.M. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1948, 1, 171–199. [Google Scholar] [CrossRef]
  44. Cole, J.D. On a quasilinear parabolic equations occurring in aerodynamics. Quart. Appl. Math. 1951, 9, 225–236. [Google Scholar] [CrossRef]
  45. Wazwaz, A.M. Partial Differential Equations: Methods and Applications; CRC Press: Boca Raton, FL, USA, 2002; p. 474. [Google Scholar]
  46. Moslem, W.M.; Sabry, R. Zakharov-Kuznetsov-Burgers’ equation for dust ion acoustic waves. Chaos Solitons Fractals 2008, 36, 628–634. [Google Scholar] [CrossRef]
  47. Benton, E.R.; Platzman, G.W. A table of solutions of the one-dimensional Burgers equation. Q. Appl. Math. 1972, 30, 195–212. [Google Scholar] [CrossRef]
  48. Soliman, A.A. The modified extended tanh-function method for solving Burgers’-type equations. Phys. A Stat. Mech. Appl. 2006, 361, 394–404. [Google Scholar] [CrossRef]
  49. Biazar, J.; Ghazvini, H. Exact solutions for nonlinear Burgers’ equation by homotopy perturbation method. Numer. Methods Partial Differ. Equ. 2009, 25, 833–842. [Google Scholar] [CrossRef]
  50. Majeed, A.; Kamran, M.; Iqbal, M.K.; Baleanu, D. Solving time fractional Burgers and Fisher’s equations using cubic B-spline approximation method. Adv. Differ. Equ. 2020, 2020, 175. [Google Scholar] [CrossRef]
  51. Singh, J.; Kumar, D.; Qurashi, M.A.; Baleanu, D. Analysis of a New Frac- tional Model for Damped Bergers’ Equation. Open Phys. 2017, 15, 35–41. [Google Scholar] [CrossRef]
  52. Peng, X.; Xu, D.; Qiu, W. Pointwise error estimates of compact difference scheme for mixed-type time-fractional Burgers’ equation. Math. Comput. Simul. 2023, 208, 702–726. [Google Scholar] [CrossRef]
  53. Qiu, W.; Chen, H.; Zheng, X. An implicit difference scheme and algorithm implementation for the one-dimensional time-fractional Burgers equations. Math. Comput. Simul. 2019, 166, 298–314. [Google Scholar] [CrossRef]
  54. Johnston, A.J.; Jafari, H.; Moshokoa, S.P.; Ariyan, V.M.; Baleanu, D. Laplace homotopy perturbation method for Burgers’ equation with space- and time-fractional order. Open Phys. 2016, 14, 247–252. [Google Scholar] [CrossRef]
  55. Kaya, D. An explicit solution of coupled viscous Burgers’ equation by the decomposition method. Int. J. Math. Math. Sci. 2001, 27, 675–680. [Google Scholar] [CrossRef]
  56. Aminikhah, H. An analytical approximation for coupled viscous Burgers’ equation. Appl. Math. Model. 2013, 37, 5979–5983. [Google Scholar] [CrossRef]
  57. Shokhanda, R.; Goswami, P.; He, J.H.; Althobaiti, A. An Approximate Solution of the Time-Fractional Two-Mode Coupled Burgers’ Equation. Fractal Fract. 2021, 5, 196. [Google Scholar] [CrossRef]
  58. Agheli, B.; Darzi, R. Analysis of solution for system of nonlinear fractional Burger differential equations based on multiple fractional power series. Alex. Eng. J. 2017, 56, 271–276. [Google Scholar] [CrossRef]
  59. Zhu, H.; Shu, H.; Ding, M. Numerical solutions of two-dimensional Burgers’ equations by discrete Adomian decomposition method. Comput. Math. Appl. 2010, 60, 840–848. [Google Scholar] [CrossRef]
  60. Khan, M. A novel solution technique for two dimensional Burgers’ equation. Alex. Eng. J. 2014, 53, 485–490. [Google Scholar] [CrossRef]
  61. Eltayeb, H.; Bahar, I. A note on singular two-dimensional fractional coupled Burgers’ equation and triple Laplace Adomian decomposition method. Bound. Value Probl. 2020, 2020, 129. [Google Scholar] [CrossRef]
  62. Eltayeb, H.; Mesloub, S. Application of Multi-Dimensional of Conformable Sumudu Decomposition Method for Solving Conformable Singular Fractional Coupled Burger’s Equation. Acta Math. Sci. 2021, 41, 1679–1698. [Google Scholar] [CrossRef]
  63. Srivastava, V.K.; Ashutosh, M.T. Generating Exact Solution of Three-Dimensional Coupled Unsteady Nonlinear Generalized Viscous Burgers’ Equations. Int. J. Math. Sci. 2013, 5, 1–13. [Google Scholar]
  64. Alhendi, F.; Alderremy, A. Numerical solutions of three-dimensional coupled Burgers’ equations by using some numerical methods. J. Appl. Math. Phys. 2016, 4, 2011–2030. [Google Scholar] [CrossRef]
  65. Srivastava, H.M.; Luo, M.; Raina, R.K. A new integral transform and its applications. Acta Math. Sci. 2015, 35, 1386–1400. [Google Scholar] [CrossRef]
Figure 1. (a) The convergence of the series representing Ψ with respect to x at α = 0.5 . (b) The convergence of the series representing Ψ with respect to t at α = 0.5 .
Figure 1. (a) The convergence of the series representing Ψ with respect to x at α = 0.5 . (b) The convergence of the series representing Ψ with respect to t at α = 0.5 .
Fractalfract 08 00227 g001
Figure 2. (a) The function Ψ ( x , y , z , t ) at x = 0 , y = 0 . (b) The function Ψ ( x , y , z , t ) at z = 0 , y = 0 .
Figure 2. (a) The function Ψ ( x , y , z , t ) at x = 0 , y = 0 . (b) The function Ψ ( x , y , z , t ) at z = 0 , y = 0 .
Fractalfract 08 00227 g002
Figure 3. (a) The convergence of the series representing Ψ with respect to x at α = 0.25 . (b) The convergence of the series representing Ψ with respect to t at α = 0.25 .
Figure 3. (a) The convergence of the series representing Ψ with respect to x at α = 0.25 . (b) The convergence of the series representing Ψ with respect to t at α = 0.25 .
Fractalfract 08 00227 g003
Figure 4. (a) The function Ψ ( x , y , z , t ) at x = 0 , y = 0 . (b) The function Ψ ( x , y , z , t ) at z = 0 , y = 0 .
Figure 4. (a) The function Ψ ( x , y , z , t ) at x = 0 , y = 0 . (b) The function Ψ ( x , y , z , t ) at z = 0 , y = 0 .
Fractalfract 08 00227 g004
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Alsaud, H.; Eltayeb, H. The Four-Dimensional Natural Transform Adomian Decomposition Method and (3+1)-Dimensional Fractional Coupled Burgers’ Equation. Fractal Fract. 2024, 8, 227. https://doi.org/10.3390/fractalfract8040227

AMA Style

Alsaud H, Eltayeb H. The Four-Dimensional Natural Transform Adomian Decomposition Method and (3+1)-Dimensional Fractional Coupled Burgers’ Equation. Fractal and Fractional. 2024; 8(4):227. https://doi.org/10.3390/fractalfract8040227

Chicago/Turabian Style

Alsaud, Huda, and Hassan Eltayeb. 2024. "The Four-Dimensional Natural Transform Adomian Decomposition Method and (3+1)-Dimensional Fractional Coupled Burgers’ Equation" Fractal and Fractional 8, no. 4: 227. https://doi.org/10.3390/fractalfract8040227

APA Style

Alsaud, H., & Eltayeb, H. (2024). The Four-Dimensional Natural Transform Adomian Decomposition Method and (3+1)-Dimensional Fractional Coupled Burgers’ Equation. Fractal and Fractional, 8(4), 227. https://doi.org/10.3390/fractalfract8040227

Article Metrics

Back to TopTop