Positive Solutions for Dirichlet BVP of PDE Involving \({\varphi_{p}}\)-Laplacian
Abstract
:1. Introduction
- (1)
- We consider the positive solutions of the pde with -Laplacian.
- (2)
- The difficulty to be overcome in this paper is the estimation of in Theorem 1.
2. Preliminaries
3. Main Results
4. Examples
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elaydi, S.N. An Introduction to Difference Equations, 3rd ed.; Springer: New York, NY, USA, 2005. [Google Scholar]
- Long, Y.H.; Wang, L. Global dynamics of a delayed two-patch discrete SIR disease model. Commun. Nonlinear Sci. Numer. Simul. 2020, 83, 105117. [Google Scholar] [CrossRef]
- Agarwal, R.P. Difference Equations and Inequalities: Theory, Methods, and Applications; Marcel Dekker: New York, NY, USA, 1992. [Google Scholar]
- Kelly, W.G.; Peterson, A.C. Difference Equations: An Introduction with Applications; Academic Press, Inc.: Boston, MA, USA, 1991. [Google Scholar]
- Yu, J.S.; Zheng, B. Modeling Wolbachia infection in mosquito population via discrete dynamical model. J. Differ. Equ. Appl. 2019, 25, 1549–1567. [Google Scholar] [CrossRef]
- Yu, J.S.; Li, J. A delay suppression model with sterile mosquitoes release period equal to wild larvae maturation period. J. Math. Biol. 2022, 84, 14. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Yu, J.S. At most two periodic solutions for a switching mosquito population suppression model. Dynam. Differ. Equ. 2023, 35, 2997–3009. [Google Scholar] [CrossRef]
- Zheng, B.; Li, J.; Yu, J.S. One discrete dynamical model on the Wolbachia infection frequency in mosquito populations. Sci. China Math. 2022, 65, 1749–1764. [Google Scholar] [CrossRef]
- Zheng, B.; Li, J.; Yu, J.S. Existence and stability of periodic solutions in a mosquito population suppression model with time delay. J. Differ. Equ. 2022, 315, 159–178. [Google Scholar] [CrossRef]
- Henderson, J.; Thompson, H.B. Existence of multiple solutions for second order discrete boundary value problems. Comput. Math. Appl. 2002, 43, 1239–1248. [Google Scholar] [CrossRef]
- Bereanu, C.; Mawhin, J. Boundary value problems for second-order nonlinear difference equations with discrete ϕ-Laplacian and singular ϕ. J. Differ. Equ. Appl. 2008, 14, 1099–1118. [Google Scholar] [CrossRef]
- Guo, Z.M.; Yu, J.S. The existence of periodic and subharmonic solutions for second-order superlinear difference equations. Sci. China Ser. A Math. 2003, 46, 506–515. [Google Scholar] [CrossRef]
- Shi, H.P. Periodic and subharmonic solutions for second-order nonlinear difference equations. J. Appl. Math. Comput. 2015, 48, 157–171. [Google Scholar] [CrossRef]
- Kuang, J.H.; Chen, W.Y.; Guo, Z.M. Periodic solutions with prescribed minimal period for second-order even Hamiltonian systems. Commun. Pure Appl. Anal. 2022, 21, 47–59. [Google Scholar] [CrossRef]
- Zhou, Z.; Ma, D.F. Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials. Sci. China Math. 2015, 58, 781–790. [Google Scholar] [CrossRef]
- Zhou, Z.; Yu, J.S. Homoclinic solutions in periodic nonlinear difference equations with superlinear nonlinearity. Acta Math. Sin. Engl. Ser. 2013, 29, 1809–1822. [Google Scholar] [CrossRef]
- Zhang, Q.Q. Homoclinic orbits for discrete Hamiltonian systems with local super-quadratic conditions. Commun. Pure Appl. Anal. 2019, 18, 425–434. [Google Scholar] [CrossRef]
- Lin, G.H.; Zhou, Z.; Yu, J.S. Ground state solutions of discrete asymptotically linear Schrödinger equations with bounded and non-periodic potentials. J. Dynam. Differ. Equ. 2020, 32, 527–555. [Google Scholar] [CrossRef]
- Lin, G.H.; Yu, J.S. Homoclinic solutions of periodic discrete Schrödinger equations with local superquadratic conditions. SIAM J. Math. Anal. 2022, 54, 1966–2005. [Google Scholar] [CrossRef]
- Mei, P.; Zhou, Z. Homoclinic solutions of discrete prescribed mean curvature equations with mixed nonlinearities. Appl. Math. Lett. 2022, 130, 108006. [Google Scholar] [CrossRef]
- Bonanno, G.; Candito, P. Infinitely many solutions for a class of discrete nonlinear boundary value problems. Appl. Anal. 2009, 88, 605–616. [Google Scholar] [CrossRef]
- Bonanno, G.; Jebelean, P.; Serban, C. Superlinear discrete problems. Appl. Math. Lett. 2016, 52, 162–168. [Google Scholar] [CrossRef]
- D’Agua, G.; Mawhin, J.; Sciammetta, A. Positive solutions for a discrete two point nonlinear boundary value problem with p-Laplacian. J. Math. Anal. Appl. 2017, 447, 383–397. [Google Scholar]
- Nastasi, A.; Vetro, C.; Vetro, F. Positive solutions of discrete boundary value problems with the (p, q)-Laplacian operator. Electron. J. Differ. Equ. 2017, 225, 1–12. [Google Scholar]
- Zhou, Z.; Ling, J.X. Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with ϕc-Laplacian. Appl. Math. Lett. 2019, 91, 28–34. [Google Scholar] [CrossRef]
- Xiong, F.; Zhou, Z. Three solutions to Dirichlet problem for second-order self-adjoint difference equations involving p-Laplacian. Adv. Differ. Equ. 2021, 2021, 192. [Google Scholar] [CrossRef]
- Ling, J.X.; Zhou, Z. Positive solutions of the discrete Robin problem with ϕ-Laplacian. Discrete Contin. Dyn. Syst. Ser. S 2021, 14, 3183–3196. [Google Scholar]
- Zhang, W.H.; Zhou, Z. Infinitely many solutions for the discrete boundary value problems of the Kirchhoff type. Symmetry 2022, 14, 1844. [Google Scholar] [CrossRef]
- Heidarkhani, S.; Imbesi, M. Multiple solutions for partial discrete Dirichlet problems depending on a real parameter. J. Differ. Equ. Appl. 2015, 21, 96–110. [Google Scholar] [CrossRef]
- Du, S.J.; Zhou, Z. Multiple solutions for partial discrete Dirichlet problems involving the p-Laplacian. Mathematics 2020, 8, 2030. [Google Scholar] [CrossRef]
- Xiong, F.; Zhou, Z. Small solutions of the perturbed nonlinear partial discrete Dirichlet boundary value problems with (p, q)-Laplacian operator. Symmetry 2021, 13, 1207. [Google Scholar] [CrossRef]
- Wang, S.H.; Zhou, Z. Three solutions for a partial discrete Dirichlet problem involving the mean curvature operator. Mathematics 2021, 9, 1691. [Google Scholar] [CrossRef]
- Xiong, F. Infinitely many solutions for a perturbed partial discrete Dirichlet problem involving ϕc-Laplacian. Axioms 2023, 12, 909. [Google Scholar] [CrossRef]
- Long, Y.H. Multiple results on nontrivial solutions of discrete Kirchhoff type problems. J. Appl. Math. Comput. 2022, 69, 1–17. [Google Scholar] [CrossRef]
- Long, Y.H.; Zhang, H. Three nontrivial solutions for second-order partial difference equation via morse theory. J. Funct. Spaces 2022, 2022, 1564961. [Google Scholar] [CrossRef]
- Long, Y.H. Nontrivial solutions of discrete Kirchhoff type problems via Morse theory. Adv. Nonlinear Anal. 2022, 11, 1352–1364. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Y.; Long, Y.H. Results on multiple nontrivial solutions to partial difference equations. AIMS Math. 2023, 8, 5413–5431. [Google Scholar] [CrossRef]
- Du, S.J.; Zhou, Z. On the existence of multiple solutions for a partial discrete Dirichlet boundary value problem with mean curature operator. Adv. Nonlinear Anal. 2022, 11, 198–211. [Google Scholar] [CrossRef]
- Clement, P.; Manasevich, R.; Mitidieri, E. On a modified capillary equation. J. Differ. Equ. 1996, 124, 343–358. [Google Scholar] [CrossRef]
- Bereanu, C.; Jebelean, P.; Mawhin, J. Radial solutions for some nonlinear problems involving mean curvature operators in Euclidean and Minkowski spaces. Proc. Am. Math. Soc. 2009, 137, 161–169. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, Y.; Chen, H.; Feng, W. Positive solutions for a class of integral boundary value problem of fractional q-difference equations. Symmetry 2022, 14, 2465. [Google Scholar] [CrossRef]
- Neang, P.; Nonlaopon, K.; Tariboon, J.; Ntouyas, S.K.; Ahmad, B. Nonlocal boundary value problems of nonlinear fractional (p,q)-difference equations. Fractal Fract. 2021, 5, 270. [Google Scholar] [CrossRef]
- Bonanno, G.; Bisci, G.M. Infinitely many solutions for a boundary value problem with discontinuous nonlinearities. Bound. Value Probl. 2009, 2009, 670675. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, F.; Huang, W. Positive Solutions for Dirichlet BVP of PDE Involving \({\varphi_{p}}\)-Laplacian. Fractal Fract. 2024, 8, 130. https://doi.org/10.3390/fractalfract8030130
Xiong F, Huang W. Positive Solutions for Dirichlet BVP of PDE Involving \({\varphi_{p}}\)-Laplacian. Fractal and Fractional. 2024; 8(3):130. https://doi.org/10.3390/fractalfract8030130
Chicago/Turabian StyleXiong, Feng, and Wentao Huang. 2024. "Positive Solutions for Dirichlet BVP of PDE Involving \({\varphi_{p}}\)-Laplacian" Fractal and Fractional 8, no. 3: 130. https://doi.org/10.3390/fractalfract8030130
APA StyleXiong, F., & Huang, W. (2024). Positive Solutions for Dirichlet BVP of PDE Involving \({\varphi_{p}}\)-Laplacian. Fractal and Fractional, 8(3), 130. https://doi.org/10.3390/fractalfract8030130