Existence, Uniqueness, and Stability of Solutions for Nabla Fractional Difference Equations
Abstract
1. Introduction
2. Preliminaries
3. Green’s Function
4. Existence and Uniqueness Results
5. Stability Analysis
6. Examples
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations. In North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. In Mathematics in Science and Engineering, 198; Academic Press, Inc.: San Diego, CA, USA, 1999. [Google Scholar]
- Ferreira, R.A.C. Discrete fractional calculus and fractional difference equations. In SpringerBriefs in Mathematics; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Goodrich, C.; Peterson, A.C. Discrete Fractional Calculus; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Gray, H.L.; Zhang, N.F. On a new definition of the fractional difference. Math. Comp. 1988, 50, 513–529. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. Fractional difference calculus. In Univalent Functions, Fractional Calculus, and Their Applications; Ellis Horwood: Chichester, UK, 1989. [Google Scholar]
- Atıcı, F.M.; Eloe, P.W. Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equ. 2009, 2009, 12. [Google Scholar]
- Agarwal, R.P.; Baleanu, D.; Rezapour, S.; Salehi, S. The existence of solutions for some fractional finite difference equations via sum boundary conditions. Adv. Differ. Equ. 2014, 2014, 282. [Google Scholar] [CrossRef]
- Ahrendt, K.; Kissler, C. Green’s function for higher-order boundary value problems involving a nabla Caputo fractional operator. J. Differ. Equ. Appl. 2019, 25, 788–800. [Google Scholar] [CrossRef]
- Atıcı, F.M.; Eloe, P.W. Two-point boundary value problems for finite fractional difference equations. J. Differ. Equ. Appl. 2011, 17, 445–456. [Google Scholar] [CrossRef]
- Cabada, A.; Dimitrov, N.D.; Jonnalagadda, J.M. Non-trivial solutions of non-autonomous nabla fractional difference boundary value problems. Symmetry 2021, 13, 1101. [Google Scholar] [CrossRef]
- Chen, C.; Bohner, M.; Jia, B. Existence and uniqueness of solutions for nonlinear Caputo fractional difference equations. Turkish J. Math. 2020, 44, 857–869. [Google Scholar] [CrossRef]
- Chen, F.; Zhou, Y. Existence and Ulam stability of solutions for discrete fractional boundary value problem. Discret. Dyn. Nat. Soc. 2013, 2013, 459161. [Google Scholar] [CrossRef]
- Gholami, Y.; Ghanbari, K. Coupled systems of fractional ∇-difference boundary value problems. Differ. Equ. Appl. 2016, 8, 459–470. [Google Scholar] [CrossRef]
- Goodrich, C.S. Solutions to a discrete right-focal fractional boundary value problem. Int. J. Differ. Equ. 2010, 5, 195–216. [Google Scholar]
- Goodrich, C.S. Some new existence results for fractional difference equations. Int. J. Dyn. Syst. Differ. Equ. 2011, 3, 145–162. [Google Scholar] [CrossRef]
- Henderson, J.; Neugebauer, J.T. Existence of local solutions for fractional difference equations with left focal boundary conditions. Fract. Calc. Appl. Anal. 2021, 24, 324–331. [Google Scholar] [CrossRef]
- Ikram, A. Lyapunov inequalities for nabla Caputo boundary value problems. J. Differ. Equ. Appl. 2019, 25, 757–775. [Google Scholar] [CrossRef]
- Jonnalagadda, J.M. Existence theory for nabla fractional three-point boundary value problems via continuation methods for contractive maps. Topol. Methods Nonlinear Anal. 2023, 23, 869–888. [Google Scholar] [CrossRef]
- Jonnalagadda, J.M. On a nabla fractional boundary value problem with general boundary conditions. AIMS Math. 2020, 5, 204–215. [Google Scholar] [CrossRef]
- Jonnalagadda, J.M. On two-point Riemann–Liouville type nabla fractional boundary value problems. Adv. Dyn. Syst. Appl. 2018, 13, 141–166. [Google Scholar]
- Li, Q.; Liu, Y.; Zhou, L. Fractional boundary value problem with nabla difference equation. J. Appl. Anal. Comput. 2021, 11, 911–919. [Google Scholar] [CrossRef]
- Liu, X.; Jia, B.; Gensler, S.; Erbe, L.; Peterson, A. Convergence of approximate solutions to nonlinear Caputo nabla fractional difference equations with boundary conditions. Electron. J. Differ. Equ. 2020, 2020, 1–19. [Google Scholar] [CrossRef]
- Lv, W. Existence of solutions for discrete fractional boundary value problems with a p-Laplacian operator. Adv. Differ. Equ. 2012, 2012, 163. [Google Scholar] [CrossRef]
- Rafeeq, A.S.; Thabet, S.T.M.; Mohammed, M.O.; Kedim, I.; Vivas-Cortez, M. On Caputo-Hadamard fractional pantograph problem of two different orders with Dirichlet boundary conditions. Alex. Eng. J. 2024, 86, 386–398. [Google Scholar] [CrossRef]
- Thabet, S.T.M.; Vivas-Cortez, M.; Kedim, I.; Samei, M.E.; Ayari, M.I. Solvability of a ρ-Hilfer Fractional Snap Dynamic System on Unbounded Domains. Fractal Fract. 2023, 7, 607. [Google Scholar] [CrossRef]
- Wang, J.; Lv, L.; Zhou, Y. Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electron. J. Qual. Theory Differ. Equ. 2011, 2011, 1–10. [Google Scholar] [CrossRef]
- Boutiara, A.; Etemad, S.; Thabet, S.T.M.; Ntouyas, S.K.; Rezapour, S.; Tariboon, J. A Mathematical Theoretical Study of a Coupled Fully Hybrid (k,Φ)-Fractional Order System of BVPs in Generalized Banach Spaces. Symmetry 2023, 15, 1041. [Google Scholar] [CrossRef]
- Chen, C.; Bohner, M.; Jia, B. Ulam–Hyers stability of Caputo fractional difference equations. Math. Methods Appl. Sci. 2019, 49, 7461–7470. [Google Scholar] [CrossRef]
- Haider, S.S.; Rehman, M.U. Ulam–Hyers-Rassias stability and existence of solutions to nonlinear fractional difference equations with multipoint summation boundary condition. Acta Math. Sci. Ser. B 2020, 40, 589–602. [Google Scholar] [CrossRef]
- Jonnalagadda, J.M. Existence and stability of solutions for nabla fractional difference systems with anti-periodic boundary conditions. Kragujev. J. Math. 2023, 47, 739–754. [Google Scholar] [CrossRef]
- Jonnalagadda, J.M. Hyers–Ulam stability of fractional nabla difference equations. Int. J. Anal. 2016, 2016, 7265307. [Google Scholar] [CrossRef]
- Costabile, F.A.; Napoli, A. A multipoint Birkhoff type boundary value problem. J. Numer. Math. 2015, 23, 1–11. [Google Scholar] [CrossRef]
- Smart, D.R. Fixed point theorems. In Cambridge Tracts in Mathematics, No. 66; Cambridge University Press: London, UK; New York, NY, USA, 1974. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrov, N.D.; Jonnalagadda, J.M. Existence, Uniqueness, and Stability of Solutions for Nabla Fractional Difference Equations. Fractal Fract. 2024, 8, 591. https://doi.org/10.3390/fractalfract8100591
Dimitrov ND, Jonnalagadda JM. Existence, Uniqueness, and Stability of Solutions for Nabla Fractional Difference Equations. Fractal and Fractional. 2024; 8(10):591. https://doi.org/10.3390/fractalfract8100591
Chicago/Turabian StyleDimitrov, Nikolay D., and Jagan Mohan Jonnalagadda. 2024. "Existence, Uniqueness, and Stability of Solutions for Nabla Fractional Difference Equations" Fractal and Fractional 8, no. 10: 591. https://doi.org/10.3390/fractalfract8100591
APA StyleDimitrov, N. D., & Jonnalagadda, J. M. (2024). Existence, Uniqueness, and Stability of Solutions for Nabla Fractional Difference Equations. Fractal and Fractional, 8(10), 591. https://doi.org/10.3390/fractalfract8100591