An Explicit–Implicit Spectral Element Scheme for the Nonlinear Space Fractional Schrödinger Equation
Abstract
:1. Introduction
- We create a fully discrete explicit–implicit CNLF-type spectral element scheme for solving the SFNSE.
- The spectral element scheme satisfies both the mass conservation and energy conservation laws, which is compatible with the property of the SFNSE itself.
- Stability and convergence theorems of the spectral element scheme are rigorously proved; we obtain an optimal error estimation and present numerical experiments to confirm our theoretical result.
2. Preliminaries and Notations
3. The Fully Discrete Scheme
3.1. Mass Conservation and Energy Conservation
3.2. Convergence
4. Numerical Results
4.1. Numerical Implementation
4.2. Numerical Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, Y.; Fan, E.Y.; Yin, B.L.; Li, H.; Wang, J.F. TT-M finite element algorithm for a two-dimensional space fractional Gray-Scott model. Comput. Math. Appl. 2020, 80, 1793–1809. [Google Scholar] [CrossRef]
- Shi, D.; Yang, H. Superconvergence analysis of finite element method for time-fractional thermistor problem. Appl. Math. Comput. 2018, 323, 31–42. [Google Scholar] [CrossRef]
- Li, C.P.; Wang, Z. The discontinuous Galerkin finite element method for Caputo-type nonlinear conservation law. Math. Comput. Simul. 2020, 169, 51–73. [Google Scholar] [CrossRef]
- Feng, L.; Liu, F.; Turner, I.; Yang, Q.; Zhuang, P. Unstructured mesh finite difference/finite element method for the 2D time-space Riesz fractional diffusion equation on irregular convex domains. Appl. Math. Model. 2018, 59, 441–463. [Google Scholar] [CrossRef]
- Bu, W.P.; Tang, Y.F.; Yang, J.Y. Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations. J. Comput. Phys. 2014, 276, 26–38. [Google Scholar] [CrossRef]
- Yin, B.L.; Wang, J.F.; Liu, Y.; Li, H. A structure preserving difference scheme with fast algorithms for high dimensional nonlinear space-fractional Schrödinger equations. J. Comput. Phys. 2021, 425, 109869. [Google Scholar] [CrossRef]
- Ding, H.; Li, C. Fractional-compact numerical algorithms for Riesz spatial fractional reaction-dispersion equations. Fract. Calc. Appl. Anal. 2017, 20, 722–764. [Google Scholar] [CrossRef]
- Abbaszadeh, M.; Dehghan, M. Meshless upwind local radial basis function-finite difference technique to simulate the time-fractional distributed-order advection-diffusion equation. Eng. Comput. 2021, 37, 873–889. [Google Scholar] [CrossRef]
- Liu, F.; Turner, I.; Anh, V.; Su, N. A two-dimensional finite volume method for transient simulation of time-and scale-dependent transport in heterogeneous aquifer systems. J. Appl. Math. Comput. 2003, 11, 215–241. [Google Scholar] [CrossRef]
- Zheng, X.C.; Liu, H.; Wang, H.; Fu, H.F. An efficient finite volume method for nonlinear distributed-order space-fractional diffusion equations in three space dimensions. J. Sci. Comput. 2019, 80, 1395–1418. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, F.; Zeng, F. An alternating direction implicit spectral method for solving two dimensional multi-term time fractional mixed diffusion and diffusion-wave equations. Appl. Numer. Math. 2019, 136, 139–151. [Google Scholar] [CrossRef]
- Liu, Z.; Lü, S.; Liu, F. Fully discrete spectral methods for solving time fractional nonlinear Sine-Gordon equation with smooth and non-smooth solutions. Appl. Math. Comput. 2018, 333, 213–224. [Google Scholar] [CrossRef]
- Liu, Z.; Lü, S. Hermite Pseudospectral method for the time fractional diffusion equation with variable coefficients. Int. J. Nonlinear Sci. Numer. Simulat. 2017, 18, 385–393. [Google Scholar] [CrossRef]
- Zeng, F.; Liu, F.; Li, C.; Burrage, K.; Turner, I.; Anh, V. A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 2014, 52, 2599–2622. [Google Scholar] [CrossRef]
- Cowan, S.; Enns, R.H.; Rangnekar, S.S.; Sanghera, S.S. Quasi-soliton and other behaviour of the nonlinear cubic-quintic Schrödinger equation. Can. J. Phys. 1986, 64, 311–315. [Google Scholar] [CrossRef]
- Petroni, N.C.; Pusterla, M. Lévy processes and Schrödinger equation. Physica A 2009, 388, 824–836. [Google Scholar] [CrossRef]
- Kong, L.H.; Chen, M.; Yin, X.L. A novel kind of efficient symplectic scheme for Klein-Gordon-Schrödinger equation. Appl. Numer. Math. 2019, 135, 481–496. [Google Scholar] [CrossRef]
- Kong, L.; Hong, J.; Wang, L.; Fu, F. Symplectic integrator for nonlinear high order Schrödinger equation with a trapped term. J. Comput. Appl. Math. 2009, 231, 664–679. [Google Scholar] [CrossRef]
- Tian, Z.K.; Chen, Y.P.; Huang, Y.Q.; Wang, J.Y. Two-grid method for the two-dimensional time-dependent Schrödinger equation by the finite element method. Comput. Math. Appl. 2019, 77, 3043–3053. [Google Scholar] [CrossRef]
- Shi, D.Y.; Wang, J.J. Unconditional superconvergence analysis of a Crank-Nicolson Galerkin FEM for nonlinear Schrödinger equation. J. Sci. Comput. 2017, 72, 1093–1118. [Google Scholar] [CrossRef]
- Naber, M. Time fractional Schrödinger equation. J. Math. Phys. 2004, 45, 3339–3352. [Google Scholar] [CrossRef]
- Zheng, M.; Liu, F.; Jin, Z. The global analysis on the spectral collocation method for time fractional Schrödinger equation. Appl. Math. Comput. 2020, 365, 124689. [Google Scholar] [CrossRef]
- Li, D.; Wang, J.; Zhang, J.W. Unconditionally convergent-Galerkin FEMs for nonlinear time-fractional Schrödinger equations. SIAM J. Sci. Comput. 2017, 39, A3067–A3088. [Google Scholar] [CrossRef]
- Laskin, N. Fractional quantum mechanics. Phys. Rev. E 2000, 62, 3135–3145. [Google Scholar] [CrossRef] [PubMed]
- Laskin, N. Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 2000, 268, 298–305. [Google Scholar] [CrossRef]
- Guo, B.L.; Han, Y.Q.; Xin, J. Existence of the global smooth solution to the period boundary value problem of fractional nonlinear Schrödinger equation. Appl. Math. Comput. 2008, 204, 468–477. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, F.; Turner, I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 2010, 34, 200–218. [Google Scholar] [CrossRef]
- Sweilam, N.H.; Assiri, T.A.; Hasan, M.M.A. Numerical solutions of nonlinear fractional Schrödinger equations using nonstandard discretizations. Numer. Methods Partial Differ. Equ. 2017, 33, 1399–1419. [Google Scholar] [CrossRef]
- Wang, D.; Xiao, A.; Yang, W. Crank-Nilcoson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space frational derivative. J. Comput. Phys. 2013, 242, 670–681. [Google Scholar] [CrossRef]
- Wang, D.; Xiao, A.; Yang, W. A linearly implicit conservative difference scheme for the space fractional coupled nonlinear Schrödinger equation. J. Comput. Phys. 2014, 272, 644–655. [Google Scholar] [CrossRef]
- Wang, P.; Huang, C. A conservative linearized difference scheme for the nonlinear fractional Schrödinger equations. Numer. Algor. 2015, 69, 625–641. [Google Scholar] [CrossRef]
- Wang, P.; Huang, C. Split-step alternating direction implicit difference scheme for the fractional Schrödinger equation in two dimensions. Comput. Math. Appl. 2016, 71, 1114–1128. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, Z.; Hao, Z. A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional Schrödinger equation. SIAM J. Sci. Comput. 2014, 36, A2865–A2886. [Google Scholar] [CrossRef]
- Li, M.; Huang, C.; Wang, P. Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer. Algorithms 2017, 74, 499–525. [Google Scholar] [CrossRef]
- Li, M.; Huang, C.; Zhang, Z. Unconditional error analysis of Galerkin FEMs for nonlinear fractional Schrödinger equation. Appl. Anal. 2018, 97, 295–315. [Google Scholar] [CrossRef]
- Fan, W.P.; Qi, H.T. An efficient finite element method for the two-dimensional nonlinear time-space fractional Schrödinger equation on an irregular convex domain. Appl. Math. Lett. 2018, 86, 103–110. [Google Scholar] [CrossRef]
- Wang, Y.; Mei, L.Q.; Li, Q.; Bu, L.L. Split-step spectral Galerkin method for the two-dimensional nonlinear space-fractional Schrödinger equation. Appl. Numer. Math. 2019, 136, 257–278. [Google Scholar] [CrossRef]
- Duo, S.; Zhang, Y. Mass-conservative Fourier spectral methods for solving the fractional nonlinear Schrödinger equation. Comput. Math. Appl. 2016, 71, 2257–2271. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, X.; Wang, C.; Fan, W. Galerkin-Legendre spectral schemes for nonlinear space fractional Schrödinger equation. Numer. Algorithms 2018, 79, 337–356. [Google Scholar] [CrossRef]
- Zhang, H.; Jiang, X. Spectral method and Bayesian parameter estimation for the space fractional coupled nonlinear Schrödinger equations. Nonlinear Dyn. 2019, 95, 1599–1614. [Google Scholar] [CrossRef]
- Zhai, S.; Wang, D.; Weng, Z.F.; Zhao, X. Error analysis and numerical simulations of Strang splitting method for space fractional nonlinear Schrödinger equation. J. Sci. Comput. 2019, 81, 965–989. [Google Scholar] [CrossRef]
- Li, H.C.; Wang, Y.S. An averaged vector field Legendre spectral element method for the nonlinear Schrödinger equation. Int. J. Comput. Math. 2017, 94, 1196–1218. [Google Scholar] [CrossRef]
- Li, H.C.; Mu, Z.G.; Wang, Y.S. An energy-preserving Crank-Nicolson Galerkin spectral element method for the two dimensional nonlinear Schrödinger equation. J. Comput. Appl. Math. 2018, 344, 245–258. [Google Scholar] [CrossRef]
- Mehdi, D.; Mostafa, A. Spectral element technique for nonlinear fractional evolution equation, stability and convergence analysis. Appl. Numer. Math. 2017, 119, 51–66. [Google Scholar]
- Marziyeh, S.; Akbar, M. The Galerkin spectral element method for the solution of two-dimensional multiterm time fractional diffusion-wave equation. Math. Methods Appl. Sci. 2021, 44, 2842–2858. [Google Scholar]
- Mao, Z.; Shen, J. Spectral element method with geometric mesh for two-sided fractional differential equations. Adv. Comput. Math. 2018, 44, 745–771. [Google Scholar] [CrossRef]
- He, D.D.; Pan, K.J. An unconditionally stable linearized difference scheme for the fractional Ginzburg-Landau equation. Numer. Algorithms 2018, 79, 899–925. [Google Scholar] [CrossRef]
- Roop, J.P. Variational Solution of the Fractional Advection Dispersion Equation. Ph.D. Thesis, Clemson University, Clemson, SC, USA, 2004. [Google Scholar]
- Ervin, V.J.; Roop, J.P. Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Partial Differ. Equ. 2006, 23, 569–577. [Google Scholar] [CrossRef]
- Quarteroni, A.; Valli, A. Numerical Approximation of Partial Differential Equations; Springer Series in Computational Mathematics 23; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Zhang, H.; Liu, F.; Anh, V. Galerkin finite element approximation of symmetric space-fractional sub-diffusion equation. J. Comput. Phys. 2010, 217, 2534–2545. [Google Scholar]
- Canuto, C.; Hussaini, M.Y.; Quarteroni, A.; Hussaini, M.Y.; Zang, T.A. Spectral Methods: Fundamentals in Single Domains; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
Error | Rate | Error | Rate | Error | Rate | |
---|---|---|---|---|---|---|
10 | 4.75 × 10 | * | 1.88 × 10 | * | 5.45 × 10 | * |
20 | 1.29 × 10 | 1.88 | 5.67 × 10 | 1.73 | 1.89 × 10 | 1.52 |
40 | 3.31 × 10 | 1.96 | 1.50 × 10 | 1.92 | 5.22 × 10 | 1.86 |
100 | 5.29 × 10 | 2.00 | 2.41 × 10 | 1.99 | 8.61 × 10 | 1.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Yin, B.; Liu, Y. An Explicit–Implicit Spectral Element Scheme for the Nonlinear Space Fractional Schrödinger Equation. Fractal Fract. 2023, 7, 654. https://doi.org/10.3390/fractalfract7090654
Liu Z, Yin B, Liu Y. An Explicit–Implicit Spectral Element Scheme for the Nonlinear Space Fractional Schrödinger Equation. Fractal and Fractional. 2023; 7(9):654. https://doi.org/10.3390/fractalfract7090654
Chicago/Turabian StyleLiu, Zeting, Baoli Yin, and Yang Liu. 2023. "An Explicit–Implicit Spectral Element Scheme for the Nonlinear Space Fractional Schrödinger Equation" Fractal and Fractional 7, no. 9: 654. https://doi.org/10.3390/fractalfract7090654
APA StyleLiu, Z., Yin, B., & Liu, Y. (2023). An Explicit–Implicit Spectral Element Scheme for the Nonlinear Space Fractional Schrödinger Equation. Fractal and Fractional, 7(9), 654. https://doi.org/10.3390/fractalfract7090654