Certain New Reverse Hölder- and Minkowski-Type Inequalities for Modified Unified Generalized Fractional Integral Operators with Extended Unified Mittag–Leffler Functions
Abstract
:1. Introduction
2. Preliminaries
3. Reverse Hölder Type Inequalities
4. Reverse Minkowski Type Inequalities
5. Some Applications
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardy, G.H.; Littlewood, J.E.; Pólya, G. Inequalities; Cambridge University Press: Cambridge, UK, 1952. [Google Scholar]
- Mitrinović, D.S.; Pečarić, J.; Fink, A.M. Classical and New Inequalities in Analysis; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Zuo, H.; Shi, G.; Fujii, M. Refined Young inequality with Kantorovich constant. J. Math. Inequal 2011, 5, 551–556. [Google Scholar] [CrossRef] [Green Version]
- Sababheh, M.; Choi, D. A complete refinement of Young’s inequality. J. Math. Anal. Appl. 2016, 440, 379–393. [Google Scholar] [CrossRef]
- Yang, W. Certain weighted young and Pólya-Szegö-type inequalities involving Marichev-Saigo-Maeda fractional integral operators with applications. Filomat 2022, 36, 5161–5178. [Google Scholar] [CrossRef]
- Tominaga, M. Specht’s ratio in the Young inequality. Sci. Math. Japon. 2002, 55, 583–588. [Google Scholar]
- Furuichi, S. Refined Young inequalities with Specht’s ratio. J. Egypt. Math. Soc. 2012, 20, 46–49. [Google Scholar] [CrossRef] [Green Version]
- Manjegani, S.M. Hölder and Young inequalities for the trace of operators. Positivity 2007, 11, 239–250. [Google Scholar] [CrossRef]
- Yang, W. Some new fractional quantum integral inequalities. Appl. Math. Lett. 2012, 25, 963–969. [Google Scholar] [CrossRef]
- Chen, G.; Liang, J.; Srivastava, H.M.; Lv, C. Local fractional integral Hölder-type inequalities and some related results. Fractal Fract. 2022, 6, 195. [Google Scholar] [CrossRef]
- Rahman, G.; Khan, A.; Abdeljawad, T.; Nisar, K.S. The Minkowski inequalities via generalized proportional fractional integral operators. Adv. Differ. Equ. 2019, 2019, 287. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.J.; Cheung, W.S. Hölder’s reverse inequality and its applications. Publ. Inst. Math. 2016, 99, 211–216. [Google Scholar] [CrossRef]
- El-Deeb, A.A.; Elsennary, H.A.; Cheung, W.S. Some reverse Hölder inequalities with Specht’s ratio on time scales. J. Nonlinear Sci. Appl. 2018, 11, 444–455. [Google Scholar] [CrossRef]
- Benaissa, B.; Budak, H. More on reverse of Hölder’s integral inequality. Korean J. Math. 2020, 28, 9–15. [Google Scholar]
- Agarwal, R.P.; O’Regan, D.; Saker, S.H. Hardy Type Inequalities on Time Scales; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Yin, L.; Qi, F. Some integral inequalities on time scales. Results Math. 2013, 64, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Zakarya, M.; Abdelhamid, H.A.; Alnemer, G.; Rezk, H.M. More on Hölder’s inequality and it’s reverse via the diamond-alpha integral. Symmetry 2020, 12, 1716. [Google Scholar] [CrossRef]
- Benaissa, B. A generalization of reverse Hölder’s inequality via the diamond-α integral on time scales. Hacet J. Math. Stat. 2022, 51, 383–389. [Google Scholar] [CrossRef]
- Set, E.; Özdemir, M.; Dragomir, S. On the Hermite-Hadamard inequality and other integral inequalities involving two functions. J. Inequal. Appl. 2010, 2010, 148102. [Google Scholar] [CrossRef] [Green Version]
- Dahmani, Z. On Minkowski and Hermite-Hadamard integral inequalities via fractional integration. Ann. Funct. Anal. 2010, 1, 51–58. [Google Scholar] [CrossRef]
- Chinchane, V.L.; Pachpatte, D.B. New fractional inequalities via Hadamard fractional integral. Int. J. Funct. Anal. Oper. Theory Appl. 2013, 5, 165–176. [Google Scholar]
- Taf, S.; Brahim, K. Some new results using Hadamard fractional integral. Int. J. Nonlinear Anal. Appl. 2015, 7, 103–109. [Google Scholar]
- Chinchane, V.L.; Pachpatte, D.B. New fractional inequalities involving Saigo fractional integral operator. Math. Sci. Lett. 2014, 3, 133–139. [Google Scholar] [CrossRef]
- Chinchane, V.L. New approach to Minkowski’s fractional inequalities using generalized k-fractional integral operator. J. Indian Math. Soc. 2018, 85, 32–41. [Google Scholar] [CrossRef] [Green Version]
- Sousa, J.V.C.; Oliveira, E.C. The Minkowski’s inequality by means of a generalized fractional integral. AIMS Math. 2018, 3, 131–147. [Google Scholar] [CrossRef]
- Rashid, S.; Hammouch, Z.; Kalsoom, H.; Ashraf, R.; Chu, Y.M. New investigation on the generalized K-fractional integral operators. Front. Phys. 2020, 8, 25. [Google Scholar] [CrossRef]
- Aljaaidi, T.A.; Pachpatte, D.B.; Shatanawi, W.; Abdo, M.S.; Abodayeh, K. Generalized proportional fractional integral functional bounds in Minkowski’s inequalities. Adv. Differ. Equ. 2021, 2021, 419. [Google Scholar] [CrossRef]
- Bhatnagar, D.; Pandey, R.M. A study of some integral transforms on Q function. South East Asian J. Math. Math. Sci. 2020, 16, 99–110. [Google Scholar]
- Zhou, S.S.; Farid, G.; Ahmad, A. Fractional versions of Minkowski-type fractional integral inequalities via unified Mittag–Leffler function. Adv. Contin. Discret. Model. 2022, 2022, 9. [Google Scholar] [CrossRef]
- Andrić, M.; Farid, G.; Pečarić, J. A further extension of Mittag–Leffler function. Fract. Calc. Appl. Anal. 2018, 21, 1377–1395. [Google Scholar] [CrossRef]
- Farid, G. A unified integral operator and further its consequences. Open J. Math. Anal. 2020, 4, 1–7. [Google Scholar] [CrossRef]
- Farid, G. Study of inequalities for unified integral operators of generalized convex functions. Open J. Math. Sci. 2021, 5, 80–93. [Google Scholar] [CrossRef]
- Raina, R.K. On generalized Wright’s hypergeometric functions and fractional calculus operators. East Asian Math. J. 2005, 21, 191–203. [Google Scholar]
- Yang, W. Certain new Chebyshev and Grüss-type inequalities for unified fractional integral operators via an extended generalized Mittag–Leffler function. Fractal Fract. 2022, 6, 182. [Google Scholar] [CrossRef]
- Yang, W. Certain new weighted young- and Pólya-Szegö-type inequalities for unified fractional integral operators via an extended generalized Mittag–Leffler function with applications. Fractals 2022, 30, 2250106. [Google Scholar] [CrossRef]
- Zhang, Y.; Farid, G.; Salleh, Z.; Ahmad, A. On a unified Mittag–Leffler function and associated fractional integral operator. Math. Probl. Eng. 2021, 2021, 6043769. [Google Scholar] [CrossRef]
- Gao, T.; Farid, G.; Ahmad, A.; Luangboon, W.; Nonlaopon, K. Fractional Minkowski-type integral inequalities via the unified generalized fractional integral operator. J. Funct. Spaces 2022, 2022, 2890981. [Google Scholar] [CrossRef]
- Abubakar, U.M.; Kabara, S.; Hassan, A.A.; Idris, A. Extended unified Mittag–Leffler function and its properties. ResearchGate 2022. Available online: https://www.researchgate.net/publication/357713705 (accessed on 5 August 2023).
- Liko, R.; Mohammed, P.O.; Kashuri, A.; Hamed, Y.S. Reverse Minkowski Inequalities Pertaining to New Weighted Generalized Fractional Integral Operators. Fractal Fract. 2022, 6, 131. [Google Scholar] [CrossRef]
- Yildiz, Ç.; Gürbüz, M. The Minkowski type inequalities for weighted fractional operators. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2022, 71, 884–897. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W. Certain New Reverse Hölder- and Minkowski-Type Inequalities for Modified Unified Generalized Fractional Integral Operators with Extended Unified Mittag–Leffler Functions. Fractal Fract. 2023, 7, 613. https://doi.org/10.3390/fractalfract7080613
Yang W. Certain New Reverse Hölder- and Minkowski-Type Inequalities for Modified Unified Generalized Fractional Integral Operators with Extended Unified Mittag–Leffler Functions. Fractal and Fractional. 2023; 7(8):613. https://doi.org/10.3390/fractalfract7080613
Chicago/Turabian StyleYang, Wengui. 2023. "Certain New Reverse Hölder- and Minkowski-Type Inequalities for Modified Unified Generalized Fractional Integral Operators with Extended Unified Mittag–Leffler Functions" Fractal and Fractional 7, no. 8: 613. https://doi.org/10.3390/fractalfract7080613
APA StyleYang, W. (2023). Certain New Reverse Hölder- and Minkowski-Type Inequalities for Modified Unified Generalized Fractional Integral Operators with Extended Unified Mittag–Leffler Functions. Fractal and Fractional, 7(8), 613. https://doi.org/10.3390/fractalfract7080613