Some New Applications of the Faber Polynomial Expansion Method for Generalized Bi-Subordinate Functions of Complex Order γ Defined by q-Calculus
Abstract
:1. Introduction and Definitions
2. The Faber Polynomial Expansion Method and Its Applications
Set of Lemmas
3. Main Results
4. Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, W.C.; Minda, D. A unified treatment of some special classes of univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China, 1 October 1992; International Press: Tianjin, China, 1992; pp. 157–169. [Google Scholar]
- Ravichandran, V.; Polatoglu, Y.; Bolcal, M.; En, A.S. Certain subclasses of starlike and convex functions of complex order. Hacet. J. Math. Stat. 2005, 34, 9–15. [Google Scholar]
- Duren, P.L. Univalent functions. In Grundlehren der Mathematischen Wissenschaften; Springer: New York, NY, USA, 1983; Volume 259. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Styer, D.; Wright, D.J. Results on bi-univalent functions. Proc. Am. Math. Soc. 1981, 82, 243–248. [Google Scholar] [CrossRef]
- Brannan, D.A.; Cluni, J. Aspects of contemporary complex analysis. In Deterministic and Stochastic Scheduling, Proceedings of the NATO Advanced Study and Research Institute on Theoretical Approaches to Scheduling Problems, Durham, UK, 6–17 July 1981; Academic Press: New York, NY, USA, 1981. [Google Scholar]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Coefficient estimates for some general subclasses of analytic and bi-univalent functions. Afr. Mat. 2017, 28, 693–706. [Google Scholar] [CrossRef]
- Alb Lupas, A.; El-Deeb, S.M. Subclasses of bi-univalent functions connected with Integral operator based upon Lucas polynomial. Symmetry 2022, 14, 622. [Google Scholar] [CrossRef]
- Oros, G.I.; Cotirla, L.I. Coefficient estimates and the Fekete-Szego problem for new classes of m-fold symmetric bi-univalentfunctions. Mathematics 2022, 10, 129. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomials coefficient estimates for analytic bi-close-to-convex functions. C. R. Acad. Sci. Paris Ser. I 2014, 352, 17–20. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations. Bull. Iran. Math. Soc. 2015, 41, 1103–1119. [Google Scholar]
- Faber, G. Uber polynomische Entwickelungen. Math. Ann. 1903, 57, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Gong, S. The Bieberbach Conjecture; Translated from the 1989 Chinese Original and Revised by the Author, AMS/IP Studies in Advanced Mathematics, 12, MR1699322 (2000, 30029); American Mathematical Society: Providence, RI, USA, 1999. [Google Scholar]
- Bulut, S. Faber polynomial coefficient estimates for certain subclasses of meromorphic bi-univalent functions. C. R. Acad. Sci. Paris Ser. I 2015, 353, 113–116. [Google Scholar] [CrossRef]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficients of bi-subordinate functions. C. R. Acad. Sci. Paris Ser. I 2016, 354, 365–370. [Google Scholar] [CrossRef]
- Altinkaya, S.; Yalcin, S. Faber polynomial coefficient bounds for a subclass of bi-univalent functions. C. R. Acad. Sci. Paris Ser. I 2015, 353, 1075–1080. [Google Scholar] [CrossRef]
- Jackson, F.H. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 1909, 46, 253–281. [Google Scholar] [CrossRef]
- Ismail, M.E.H.; Merkes, E.; Styer, D. A generalization of starlike functions. Complex Var. Theory Appl. 1990, 14, 77–84. [Google Scholar] [CrossRef]
- Aldweby, H.; Darus, M. Some subordination results on q-analogue of Ruscheweyh differential operator. Abst. Appl. Anal. 2014, 2014, 958563. [Google Scholar] [CrossRef] [Green Version]
- Kanas, S.; Raducanu, D. Some class of analytic functions related to conic domains. Math. Slovaca 2014, 64, 1183–1196. [Google Scholar] [CrossRef]
- Mahmood, S.; Sokol, J. New subclass of analytic functions in conical domain associated with ruscheweyh q-differential operator. Results Math. 2017, 71, 1–13. [Google Scholar] [CrossRef]
- Huang, C.; Wang, J.; Chen, X.; Cao, J. Bifurcations in a fractional-order BAM neural network with four different delays. Neural Netw. 2021, 141, 344–354. [Google Scholar] [CrossRef]
- Xu, C.; Mu, D.; Liu, Z.; Pang, Y.; Liao, M.; Aouiti, C. New insight into bifurcation of fractional-order 4D neural networks incorporating two different time delays. Commun. Nonlinear Sci. Numer. Simul. 2023, 118, 107043. [Google Scholar] [CrossRef]
- Huang, C.; Liu, H.; Shi, X.; Chen, X.; Xiao, M.; Wang, Z.; Cao, J. Bifurcations in a fractional-order neural network with multiple leakage delays. Neural Netw. 2020, 131, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Xua, C.; Rahmanc, M.U.; Baleanu, D. On fractional-order symmetric oscillator with offset-boosting control. Nonlinear Anal. Model Control 2022, 27, 994–1008. [Google Scholar] [CrossRef]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
- Deniz, E.; Jahangiri, J.M.; Hamidi, S.G.; Kina, S.K. Faber polynomial coefficients for generalized bi-subordinate functions of complex order. J. Math. Inequal. 2018, 12, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Airault, H.; Bouali, H. Differential calculus on the Faber polynomials. Bull. Sci. Math. 2006, 130, 179–222. [Google Scholar] [CrossRef] [Green Version]
- Bouali, A. Faber polynomials. Cayley-Hamilton equation and Newton symmetric functions. Bull. Sci. Math. 2006, 130, 49–70. [Google Scholar] [CrossRef] [Green Version]
- Airault, H.; Ren, J. An algebra of differential operators and generating functions on the set of univalent functions. Bull. Sci. Math. 2002, 126, 343–367. [Google Scholar] [CrossRef] [Green Version]
- Airault, H. Symmetric sums associated to the factorizations of Grunsky coefficients. In Groups and Symmetries: From Neolithic Scots to John McKay; CRM Proceedings and Lecture Notes; American Mathematical Society: Providence, RI, USA, 2009. [Google Scholar]
- Ruscheweyh, S.T. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.F.; AbaOud, M. Some New Applications of the Faber Polynomial Expansion Method for Generalized Bi-Subordinate Functions of Complex Order γ Defined by q-Calculus. Fractal Fract. 2023, 7, 270. https://doi.org/10.3390/fractalfract7030270
Khan MF, AbaOud M. Some New Applications of the Faber Polynomial Expansion Method for Generalized Bi-Subordinate Functions of Complex Order γ Defined by q-Calculus. Fractal and Fractional. 2023; 7(3):270. https://doi.org/10.3390/fractalfract7030270
Chicago/Turabian StyleKhan, Mohammad Faisal, and Mohammed AbaOud. 2023. "Some New Applications of the Faber Polynomial Expansion Method for Generalized Bi-Subordinate Functions of Complex Order γ Defined by q-Calculus" Fractal and Fractional 7, no. 3: 270. https://doi.org/10.3390/fractalfract7030270
APA StyleKhan, M. F., & AbaOud, M. (2023). Some New Applications of the Faber Polynomial Expansion Method for Generalized Bi-Subordinate Functions of Complex Order γ Defined by q-Calculus. Fractal and Fractional, 7(3), 270. https://doi.org/10.3390/fractalfract7030270