On Sharp Estimate of Third Hankel Determinant for a Subclass of Starlike Functions
Abstract
:1. Introduction
2. A Set of Lemmas
3. Coefficient Inequalities for the Class
4. Sharp Bounds of Third Hankel Determinant for the Class
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bieberbach, L. Über dié koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitzungsberichte Preuss. Akad. Der Wiss. 1916, 138, 940–955. [Google Scholar]
- De Branges, L. A proof of the Bieberbach conjecture. Acta Math. 1985, 154, 137–152. [Google Scholar] [CrossRef]
- Ma, W.C.; Minda, D. A unified treatment of some special classesof univalent functions. In Proceedings of the Conference on Complex Analysis, Tianjin, China; Li, Z., Ren, F., Yang, L., Zhang, S., Eds.; Conference Proceedings and Lecture Notes in Analysis. International Press: Cambridge, MA, USA, 1994; Volume I, pp. 157–169. Available online: https://www.researchgate.net/profile/C-Minda/publication/245129813_A_unified_treatment_of_some_special_classes_of_functions/links/543693bf0cf2bf1f1f2be1b2/A-unified-treatment-of-some-special-classes-of-functions.pdf (accessed on 11 June 2022).
- Janowski, W. Extremal problems for a family of functions with positive real part and for some related families. Ann. Pol. Math. 1970, 23, 159–177. [Google Scholar] [CrossRef]
- Cho, N.E.; Kumar, V.; Kumar, S.S.; Ravichandran, V. Radius problems for starlike functions associated with the sine function. Bull. Iran. Math. Soc. 2019, 45, 213–232. [Google Scholar] [CrossRef]
- Mendiratta, R.; Nagpal, S.; Ravichandran, V. On a subclass of strongly starlike functions associated with exponential function. Bull. Malays. Math. Sci. Soc. 2015, 38, 365–386. [Google Scholar] [CrossRef]
- Pommerenke, C. On the coefficients and Hankel determinants of univalent functions. J. Lond. Math. Soc. 1966, 1, 111–122. [Google Scholar] [CrossRef]
- Pommerenke, C. On the Hankel determinants of univalent functions. Mathematika 1967, 14, 108–112. [Google Scholar] [CrossRef]
- Janteng, A.; Halim, S.A.; Darus, M. Coefficient inequality for a function whose derivative has a positive real part. J. Inequalities Pure Appl. Math. 2006, 7, 1–5. [Google Scholar]
- Janteng, A.; Halim, S.A.; Darus, M. Hankel determinant for starlike and convex functions. Int. J. Math. Anal. 2007, 1, 619–625. [Google Scholar]
- Babalola, K.O. On H3(1) Hankel determinant for some classes of univalent functions. Inequal. Theory Appl. 2010, 6, 1–7. [Google Scholar]
- Bansal, D.; Maharana, S.; Prajapat, J.K. Third order Hankel Determinant for certain univalent functions. J. Korean Math. Soc. 2015, 52, 1139–1148. [Google Scholar] [CrossRef]
- Krishna, D.V.; Venkateswarlu, B.; RamReddy, T. Third Hankel determinant for bounded turning functions of order alpha. J. Niger. Math. Soc. 2015, 34, 121–127. [Google Scholar] [CrossRef]
- Zaprawa, P. Third Hankel determinants for subclasses of univalent functions. Mediterr. J. Math. 2017, 14, 19. [Google Scholar] [CrossRef]
- Kowalczyk, B.; Lecko, A.; Sim, Y.J. The sharp bound of the Hankel determinant of the third kind for convex functions. Bull. Aust. Math. Soc. 2018, 97, 435–445. [Google Scholar] [CrossRef]
- Lecko, A.; Sim, Y.J.; Śmiarowska, B. The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2. Complex Anal. Oper. Theory 2019, 13, 2231–2238. [Google Scholar] [CrossRef]
- Shi, L.; Shutaywi, M.; Alreshidi, N.; Arif, M.; Ghufran, M.S. The sharp bounds of the third-order Hankel determinant for certain analytic functions associated with an eight-shaped domain. Fractal Fract. 2022, 6, 223. [Google Scholar] [CrossRef]
- Arif, M.; Rani, L.; Raza, M.; Zaprawa, P. Fourth Hankel determinant for the family of functions with bounded turning. Bull. Korean Math. Sci. 2018, 55, 1703–1711. [Google Scholar]
- Wang, Z.G.; Raza, M.; Arif, M.; Ahmad, K. On the third and fourth Hankel determinants for a subclass of analytic functions. Bull. Malays. Math. Sci. Soc. 2022, 45, 323–359. [Google Scholar] [CrossRef]
- Hagen, H. Curve and Surface Design; Geometric Design Publications; Society for Industrial and Applied Mathematics (SIAM): Philadelphia, PA, USA, 1992. [Google Scholar]
- Goel, P.; Kumar, S.S. Certain Class of Starlike Functions Associated with Modified Sigmoid Function. Bull. Malays. Math. Sci. Soc. 2020, 43, 957–991. [Google Scholar] [CrossRef]
- Wani, L.A.; Swaminathan, A. Radius problems for functions associated with a nephroid domain. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2020, 114, 178. [Google Scholar] [CrossRef]
- Raina, R.K.; Sokół, J. Some properties related to a certain class of starlike functions. C. R. Math. Acad. Sci. Paris 2015, 353, 973–978. [Google Scholar] [CrossRef]
- Kumar, S.S.; Arora, K. Starlike Functions associated with a Petal Shaped Domain. arXiv 2020, arXiv:2010.10072. [Google Scholar]
- Gandhi, S. Radius estimates for three leaf function and convex combination of starlike functions. In Mathematical Analysis 1: Approximation Theory; ICRAPAM; Deo, N., Gupta, V., Agrawal, P., Eds.; Spinger: Singapore, 2018; Volume 306. [Google Scholar]
- Gandhi, S.; Gupta, P.; Nagpal, S.; Ravichandran, V. Geometric properties of a domain with cusps. arXiv 2021, arXiv:2104.00907. [Google Scholar]
- Lawrence, J.D. A Catalog of Special Plane Curves; Dover Publications: Mineola, NY, USA, 1972. [Google Scholar]
- Arif, M.; Barukab, O.M.; Afzal Khan, S.; Abbas, M. The Sharp Bounds of Hankel Determinants for the Families of Three-Leaf-Type Analytic Functions. Fractal Fract. 2022, 6, 291. [Google Scholar] [CrossRef]
- Shi, L.; Khan, M.G.; Ahmad, B.; Mashwani, W.K.; Agarwal, P.; Momani, S. Certain Coefficient Estimate Problems for Three-Leaf-Type Starlike Functions. Fractal Fract. 2021, 5, 137. [Google Scholar] [CrossRef]
- Kwon, O.S.; Lecko, A.; Sim, Y.J. On the fourth coefficient of functions in the Carathéodory class. Comput. Methods Funct. Theory 2018, 18, 307–314. [Google Scholar] [CrossRef]
- Keough, F.; Merkes, E. A coefficient inequality for certain subclasses of analytic functions. Proc. Am. Math. Soc. 1969, 20, 8–12. [Google Scholar] [CrossRef]
- Prokhorov, D.V.; Szynal, J. Inverse coefficients for (α,β)-convex functions. Ann. Univ. Mariae Curie-Sk lodowska Sect. A 1981, 35, 125–143. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, L.; Arif, M.; Ullah, K.; Alreshidi, N.; Shutaywi, M. On Sharp Estimate of Third Hankel Determinant for a Subclass of Starlike Functions. Fractal Fract. 2022, 6, 437. https://doi.org/10.3390/fractalfract6080437
Shi L, Arif M, Ullah K, Alreshidi N, Shutaywi M. On Sharp Estimate of Third Hankel Determinant for a Subclass of Starlike Functions. Fractal and Fractional. 2022; 6(8):437. https://doi.org/10.3390/fractalfract6080437
Chicago/Turabian StyleShi, Lei, Muhammad Arif, Khalil Ullah, Naseer Alreshidi, and Meshal Shutaywi. 2022. "On Sharp Estimate of Third Hankel Determinant for a Subclass of Starlike Functions" Fractal and Fractional 6, no. 8: 437. https://doi.org/10.3390/fractalfract6080437
APA StyleShi, L., Arif, M., Ullah, K., Alreshidi, N., & Shutaywi, M. (2022). On Sharp Estimate of Third Hankel Determinant for a Subclass of Starlike Functions. Fractal and Fractional, 6(8), 437. https://doi.org/10.3390/fractalfract6080437