Visualization of Mandelbrot and Julia Sets of Möbius Transformations
Abstract
:1. Introduction
2. Iteration Procedure
3. Affine Transformations
4. Inversion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Peitgen, H.-O.; Jürgens, H.; Saupe, D. Chaos and Fractals, 2nd ed.; Springer: New York, NY, USA, 2004. [Google Scholar]
- Falconer, K. Fractal Geometry: Mathematical Foundations and Applications, 2nd ed.; Wiley: Chichester, UK, 2004. [Google Scholar]
- Barnsley, M. Fractals Everywhere, 2nd ed.; Academic Press: Boston, MA, USA, 1993. [Google Scholar]
- Lyndon, R.C. Groups and Geometry; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Beals, R.; Wong, R.S. Explorations in Complex Functions; Springer: New York, NY, USA, 2020. [Google Scholar]
- Katok, S. Fuchsian Groups; University Chicago Press: Chicago, IL, USA, 1992. [Google Scholar]
- Feijs, L.; Toeters, M. Exploring a taxicab-based Mandelbrot-like set. In Bridges 2019 Conference Proceedings; Johannes Kepler University: Linz, Austria, 2019. [Google Scholar]
- Teoters, M.; Feijs, L.M.G.; Van Loenhout, D.; Tieleman, C.; Virtala, N.; Jaakson, G.K. Algorithmic fashion aesthetics: Mandelbrot. In Proceedings of the ISWC ’19: 23rd International Symposium on Wearable Computers, London, UK, 11–13 September 2019. [Google Scholar]
- Yadav, A.; Rani, M.; Verma, V.K.; Mundra, A. A review on controlling of Julia and Mandelbrot sets. Int. J. Adv. Sci. Technol. 2019, 28, 213–223. [Google Scholar]
- Xiang, Z.; Zhou, K.-Q.; Guo, Y. Gaussian mixture noised random fractals with adversarial learning for automated creation of visual objects. Fractals 2020, 28, 2050068. [Google Scholar] [CrossRef]
- Kwun, K.C.; Tanveer, M.; Nazeer, W.; Gdawiec, K.; Kang, S.M. Mandelbrot and Julia Sets via Jungck-CR Iteration with s-Convexity. IEEE Access 2019, 7, 12167–12176. [Google Scholar] [CrossRef]
- Kwun, K.C.; Tanveer, M.; Nazeer, W.; Abbas, M.; Kang, S.M. Fractal generation in modified Jungck-S orbit. IEEE Access 2019, 7, 35060–35071. [Google Scholar] [CrossRef]
- Li, D.; Tanveer, M.; Nazer, W.; Guo, X. Boundaries of filled Julia Sets in generalized Jungck Mann orbit. IEEE Access 2019, 7, 76859–76867. [Google Scholar] [CrossRef]
- Abbas, M.; Iqbal, H.; De la Sen, M. Generation of Julia and Mandelbrot Sets via Fixed Points. Symmetry 2020, 12, 1797. [Google Scholar] [CrossRef]
- Tan, L. Similarity between the Mandelbrot Set and Julia Sets. Commun. Math. Phys. 1990, 134, 587–617. [Google Scholar]
- Kawahira, T. Zalcman functions and similarity between the Mandelbrot set, Julia sets, and the tricorn. Anal. Math. Phys. 2020, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Blankers, V.; Rendfrey, T.; Shukert, A.; Shipman, P.D. Julia and Mandelbrot Setsfor Dynamics over the Hyperbolic Numbers. Fractal Fract. 2019, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Chaves, A.P.; Trojovský, P. A quadratic Diophantine equation involving generalized Fibonacci numbers. Mathematics 2020, 8, 1010. [Google Scholar] [CrossRef]
- Drakopoulos, V. Comparing rendering methods for Julia sets. J. WSCG 2002, 10, 155–161. [Google Scholar]
- Drakopoulos, V. Sequential visualisation methods for the Mandelbrot set. JCMSE 2010, 10, 37–45. [Google Scholar] [CrossRef]
- Mork, L.K.; Vogt, T.; Sullivan, K.; Rutherford, D.; Ulness, D.J. Exploration of filled-in Julia sets arising from centered polygonal lacunary functions. Fractal Fract. 2019, 3, 42. [Google Scholar] [CrossRef] [Green Version]
- Mork, L.K.; Sullivan, K.; Ulness, D.J. Lacunary Möbius fractals on the unit disk. Symmetry 2021, 13, 91. [Google Scholar] [CrossRef]
- Mathematica 12; Wolfram Research: Champaign, IL, USA, 2020.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mork, L.K.; Ulness, D.J. Visualization of Mandelbrot and Julia Sets of Möbius Transformations. Fractal Fract. 2021, 5, 73. https://doi.org/10.3390/fractalfract5030073
Mork LK, Ulness DJ. Visualization of Mandelbrot and Julia Sets of Möbius Transformations. Fractal and Fractional. 2021; 5(3):73. https://doi.org/10.3390/fractalfract5030073
Chicago/Turabian StyleMork, Leah K., and Darin J. Ulness. 2021. "Visualization of Mandelbrot and Julia Sets of Möbius Transformations" Fractal and Fractional 5, no. 3: 73. https://doi.org/10.3390/fractalfract5030073