Abstract
Point-of-Interest (POI) recommendation predicts users’ future check-ins based on their historical trajectories and plays a key role in location-based services (LBS). Traditional approaches such as collaborative filtering and matrix factorization model user–POI interaction matrices fail to fully leverage spatio-temporal information and semantic attributes, leading to weak performance on sparse and long-tail POIs. Recently, Graph Neural Networks (GNNs) have been applied by constructing heterogeneous user–POI graphs to capture high-order relations. However, they still struggle to effectively integrate spatio-temporal and semantic information and enhance the discriminative power of learned representations. To overcome these issues, we propose Spatio-Temporal and Semantic Dual-Channel Contrastive Alignment for POI Recommendation (S DCRec), a novel framework integrating spatio-temporal and semantic information. It employs hierarchical relational encoding to capture fine-grained behavioral patterns and high-level semantic dependencies. The model jointly captures user–POI interactions, temporal dynamics, and semantic correlations in a unified framework. Furthermore, our alignment strategy ensures micro-level collaborative and spatio-temporal consistency and macro-level semantic coherence, enabling fine-grained embedding fusion and interpretable contrastive learning. Experiments on real-world datasets, Foursquare NYC, and Yelp, show that S DCRec outperforms all baselines, improving F1 scores by 4.04% and 3.01%, respectively. These results demonstrate the effectiveness of the dual-channel design in capturing both sequential and semantic dependencies for accurate POI recommendation.