Next Issue
Volume 8, September
Previous Issue
Volume 8, March
 
 

Int. J. Turbomach. Propuls. Power, Volume 8, Issue 2 (June 2023) – 8 articles

Cover Story (view full-size image): This study describes the methodology of the optimization of a sewage impeller, carried out on a semi-open two-channel impeller with a given volute casing as an example. Based on given boundary conditions, a basic impeller is designed, which is verified by means of numerical simulation. This basic impeller is manufactured and with the help of 3D-printed parts, the contour of the blades is changed through three modifications to improve the clogging behavior by means of artificial wastewater. The clogging behavior is evaluated with a test rig for functional performance. With regard to optical investigations, the clogging behavior is improved following the modifications to finally present an impeller with good efficiency and a low clogging tendency. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
13 pages, 3851 KiB  
Article
Development of Sewage Pumps with Numerical and Experimental Support
by David Beck and Paul Uwe Thamsen
Int. J. Turbomach. Propuls. Power 2023, 8(2), 18; https://doi.org/10.3390/ijtpp8020018 - 02 Jun 2023
Cited by 1 | Viewed by 1251
Abstract
Especially in the field of sewage pumps, the design of radial impellers focuses not only on maximum efficiency but also on functionality in terms of susceptibility to clogging by fibrous media. In general, the efficiency of sewage impellers is significantly lower than that [...] Read more.
Especially in the field of sewage pumps, the design of radial impellers focuses not only on maximum efficiency but also on functionality in terms of susceptibility to clogging by fibrous media. In general, the efficiency of sewage impellers is significantly lower than that of clear water impellers. These sewage impellers are designed with a low number of blades to ensure that fibrous media can be pumped. This paper describes the methodology of an optimisation for a sewage impeller. The optimisation is carried out on a semi-open two-channel impeller as an example. Therefore, a new impeller is designed for a given volute casing. Based on a basic design for given boundary conditions, the impeller is verified by means of numerical simulation. The manufactured impeller is then tested on the test rig to verify the simulation. With regard to the optical investigations, the clogging behaviour of the impeller is specifically improved over three different modifications in order to finally present an impeller with good efficiency and a low clogging tendency. Full article
Show Figures

Figure 1

10 pages, 3373 KiB  
Article
Effects of Tip Leakage Vortex Cavitation on Flow Field under Cavitation Instability
by Youngkuk Yoon and Seung Jin Song
Int. J. Turbomach. Propuls. Power 2023, 8(2), 17; https://doi.org/10.3390/ijtpp8020017 - 01 Jun 2023
Viewed by 1093
Abstract
Cavitation instabilities can induce axial and circumferential vibrations, as well as noise in turbopump inducers. Therefore, the purpose of the present study is to investigate the mechanism of cavitation instability. The flow field near the two-bladed inducer leading edge under alternate blade cavitation [...] Read more.
Cavitation instabilities can induce axial and circumferential vibrations, as well as noise in turbopump inducers. Therefore, the purpose of the present study is to investigate the mechanism of cavitation instability. The flow field near the two-bladed inducer leading edge under alternate blade cavitation was experimentally investigated using particle image velocimetry (PIV). It was found that the tip leakage vortex cavitation draws the flow toward its region of collapse and induces a negative change in the incidence to the adjacent blade. Moreover, this blade-to-blade interaction was identified as the main cause of alternate blade cavitation. Furthermore, it was demonstrated that this blade-to-blade interaction is strongest when the cavity collapse occurs in the inducer throat area, where the leading edge of the following blade is located. Full article
Show Figures

Figure 1

22 pages, 5782 KiB  
Review
State of the Art on Two-Phase Non-Miscible Liquid/Gas Flow Transport Analysis in Radial Centrifugal Pumps-Part A: General Considerations on Two-Phase Liquid/Gas Flows in Centrifugal Pumps
by Gerard Bois
Int. J. Turbomach. Propuls. Power 2023, 8(2), 16; https://doi.org/10.3390/ijtpp8020016 - 10 May 2023
Cited by 2 | Viewed by 1401
Abstract
Gas–liquid mixtures are present in numerous industrial applications, such as in the process industry, oil production and transport with natural gas, deep-sea extraction, and irrigation. Any pump may have to carry multiphase flows. However, the present document is related to non-miscible liquid/gas flow [...] Read more.
Gas–liquid mixtures are present in numerous industrial applications, such as in the process industry, oil production and transport with natural gas, deep-sea extraction, and irrigation. Any pump may have to carry multiphase flows. However, the present document is related to non-miscible liquid/gas flow transport analysis in centrifugal pumps because which topic can be a more challenging task compared with axial and mixed flow machines due to specific body force and buoyancy actions and large density differences between the phases. The present document first introduces the main usual gas–liquid two-phase definitions and simplifications. A dimensional analysis introduces the main flow variables and parameters that are used for pumps. Basic physical aspects of flow motion in an impeller channel are explained, and a rapid description of two-phase flow patterns in radial flow pumps is described. Finally, a review of simplified empirical and semi-empirical analytical models is proposed with their limitations. Full article
(This article belongs to the Special Issue Advances in Critical Aspects of Turbomachinery Components and Systems)
Show Figures

Figure 1

23 pages, 2539 KiB  
Review
State of the Art on Two-Phase Non-Miscible Liquid/Gas Flow Transport Analysis in Radial Centrifugal Pumps Part C: CFD Approaches with Emphasis on Improved Models
by Markus Hundshagen and Romuald Skoda
Int. J. Turbomach. Propuls. Power 2023, 8(2), 15; https://doi.org/10.3390/ijtpp8020015 - 04 May 2023
Cited by 3 | Viewed by 2302
Abstract
Predicting pump performance and ensuring operational reliability under two-phase conditions is a major goal of three-dimensional (3D) computational fluid dynamics (CFD) analysis of liquid/gas radial centrifugal pump flows. Hence, 3D CFD methods are increasingly applied to such flows in academia and industry. The [...] Read more.
Predicting pump performance and ensuring operational reliability under two-phase conditions is a major goal of three-dimensional (3D) computational fluid dynamics (CFD) analysis of liquid/gas radial centrifugal pump flows. Hence, 3D CFD methods are increasingly applied to such flows in academia and industry. The CFD analysis of liquid/gas pump flows demands careful selection of sub-models from several fields in CFD, such as two-phase and turbulence modeling, as well as high-quality meshing of complex geometries. This paper presents an overview of current CFD simulation strategies, and recent progress in two-phase modeling is outlined. Particular focus is given to different approaches for dispersed bubbly flow and coherent gas accumulations. For dispersed bubbly flow regions, Euler–Euler Two-Fluid models are discussed, including population balance and bubble interaction models. For coherent gas pocket flow, essentially interface-capturing Volume-of-Fluid methods are applied. A hybrid model is suggested, i.e., a combination of an Euler–Euler Two-Fluid model with interface-capturing properties, predicting bubbly flow regimes as well as regimes with coherent gas pockets. The importance of considering scale-resolving turbulence models for highly-unsteady two-phase flow regions is emphasized. Full article
(This article belongs to the Special Issue Advances in Critical Aspects of Turbomachinery Components and Systems)
Show Figures

Figure 1

9 pages, 1966 KiB  
Article
Numerical Analysis of the Flow by Using a Free Runner Downstream the Francis Turbine
by Alin Ilie Bosioc, Raul-Alexandru Szakal, Adrian Stuparu and Romeo Susan-Resiga
Int. J. Turbomach. Propuls. Power 2023, 8(2), 14; https://doi.org/10.3390/ijtpp8020014 - 04 May 2023
Cited by 1 | Viewed by 1368
Abstract
The current requirements of industrialized countries require the use of as much renewable energy as possible. One significant problem with renewable energy is that the produced power fluctuates. Currently, the only method available for energy compensation in the shortest time is given by [...] Read more.
The current requirements of industrialized countries require the use of as much renewable energy as possible. One significant problem with renewable energy is that the produced power fluctuates. Currently, the only method available for energy compensation in the shortest time is given by hydroelectric power plants. Instead, hydroelectric power plants (especially the plants equipped with hydraulic turbines with fixed blades) are designed to operate in the vicinity of the optimal operating point with a maximum ±10% deviation. The energy market requires that hydraulic turbines operate in an increasingly wide area between −35% to 20% from the optimum operating point. Operation of hydraulic turbines far from the optimum operating point involves the appearance downstream of the turbine of a decelerated swirling flow with hydraulic instabilities (known in the literature as the vortex rope). The main purpose of this paper is to investigate numerically a new concept by using a free runner downstream on the main hydraulic runner turbine more precisely in the draft tube cone. The free runner concept requires rotations at the runaway speed with vanishing mechanical torque. The main purpose is to redistribute the total pressure and the moment between the shaft and the periphery. In addition, the free runner does not modify the operating point of the main hydraulic turbine runner. Full article
Show Figures

Figure 1

12 pages, 24958 KiB  
Article
Aeroacoustic Simulations of an Axial Fan with Modelled Turbulent Inflow Conditions
by Philipp Dietrich and Marc Schneider
Int. J. Turbomach. Propuls. Power 2023, 8(2), 13; https://doi.org/10.3390/ijtpp8020013 - 18 Apr 2023
Cited by 2 | Viewed by 1833
Abstract
In applications, the acoustics of fans can differ significantly from the measurements of the standalone fan. This is due to disturbed inflow conditions, for example, caused by a heat exchanger upstream of an axial fan. Resolving the complex geometry and dimensions of typical [...] Read more.
In applications, the acoustics of fans can differ significantly from the measurements of the standalone fan. This is due to disturbed inflow conditions, for example, caused by a heat exchanger upstream of an axial fan. Resolving the complex geometry and dimensions of typical heat exchangers in aeroacoustic scale-resolving simulations leads to a very high computation effort, which is currently not economically feasible. Turbulence reconstruction tools, such as the FRPM, provide the possibility to model the turbulent inflow conditions, thereby avoiding the representation of the heat exchanger in the aeroacoustic simulations. This approach is tested on a benchmark experiment of a ducted fan with an upstream turbulence grid. Full article
(This article belongs to the Special Issue Fan Noise, Aerodynamics, Applications and Systems)
Show Figures

Figure 1

10 pages, 3887 KiB  
Article
Optimization, Control, and Design of Arbitrarily Shaped Fan Arrays
by Daniel Conrad, Jonathan Mayer and Erik Reichert
Int. J. Turbomach. Propuls. Power 2023, 8(2), 12; https://doi.org/10.3390/ijtpp8020012 - 06 Apr 2023
Viewed by 1525
Abstract
In many air conditioning applications fan arrays offer an increasingly popular alternative to single large fans due to redundancy and ease of maintainability. Additionally, there is the possibility to dynamically resize the array by selectively turning off a number of fans. In this [...] Read more.
In many air conditioning applications fan arrays offer an increasingly popular alternative to single large fans due to redundancy and ease of maintainability. Additionally, there is the possibility to dynamically resize the array by selectively turning off a number of fans. In this work, a new method for the optimal control of such fan arrays is derived with the goal to minimize the overall power consumption, i.e., maximizing the system efficiency. The approach is universal in the sense that a fan array can be composed of any number, size, and type of fans or mixtures thereof. We explore the achievable power savings for a real world example by applying the method. Moreover, we give an outline of the optimal design of fan arrays and future work. Full article
(This article belongs to the Special Issue Fan Noise, Aerodynamics, Applications and Systems)
Show Figures

Figure 1

40 pages, 10585 KiB  
Review
Experimental Investigation Techniques for Non-Ideal Compressible Fluid Dynamics
by Stefan aus der Wiesche
Int. J. Turbomach. Propuls. Power 2023, 8(2), 11; https://doi.org/10.3390/ijtpp8020011 - 03 Apr 2023
Cited by 2 | Viewed by 2592
Abstract
The rising number of applications of the organic Rankine cycle (ORC) or supercritical CO2 (sCO2) power systems have shaped a new branch of fluid mechanics called non-ideal compressible fluid dynamics (NICFD). This field of fluid mechanics is concerned with flows [...] Read more.
The rising number of applications of the organic Rankine cycle (ORC) or supercritical CO2 (sCO2) power systems have shaped a new branch of fluid mechanics called non-ideal compressible fluid dynamics (NICFD). This field of fluid mechanics is concerned with flows of vapors or gases, which are characterized by substantial deviations from the perfect gas model. In extreme cases, even non-classical gas dynamic phenomena could occur. Although these non-ideal compressible flows are the subject of sophisticated numerical simulation studies today, there is also a growing need for experimental data for validating purposes. In the last couple of years, new experimental test rigs designed for investigating non-ideal compressible fluid dynamics have been developed and commissioned. Classical practical measurement techniques are currently being re-developed and applied to non-ideal compressible flows. Despite its substantial relevance, information about these measurement techniques and their differences from conventional methods in the open literature is scarce. The present review article is an attempt to reduce that gap. After briefly discussing the thermodynamics and fluid dynamics of non-ideal compressible flows, the currently available test rigs and their utilized measurement techniques are reviewed. This review discusses schlieren optical investigations, pneumatic and laser-optical methods, and hot-wire anemometry for non-ideal compressible flows. Full article
(This article belongs to the Special Issue Advances in Critical Aspects of Turbomachinery Components and Systems)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop