Sowing the Seeds of a Pandemic? Mammalian Pathogenicity and Transmissibility of H1 Variant Influenza Viruses from the Swine Reservoir
Abstract
:1. Introduction
2. Genetic Diversity of North American H1 Variant Influenza Viruses
3. Key Determinants of Mammalian Pathogenicity and Transmissibility of H1 Variant Influenza Viruses
4. Pathogenicity of H1 Variant Influenza Viruses in the Murine Model
5. Pathogenicity of H1 Variant Influenza Viruses in the Ferret Model
6. Transmissibility of H1 Variant Influenza Viruses in the Ferret Model
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fields, B.N.; Knipe, D.M.; Howley, P.M. Fields Virology; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013. [Google Scholar]
- Parrish, C.R.; Murcia, P.R.; Holmes, E.C. Influenza virus reservoirs and intermediate hosts: Dogs, horses, and new possibilities for influenza virus exposure of humans. J. Virol. 2015, 89, 2990–2994. [Google Scholar] [CrossRef] [PubMed]
- Webster, R.G.; Bean, W.J.; Gorman, O.T.; Chambers, T.M.; Kawaoka, Y. Evolution and ecology of influenza A viruses. Microbiol. Rev. 1992, 56, 152–179. [Google Scholar] [PubMed]
- Shope, R.E. Swine Influenza: Iii. Filtration Experiments and Etiology. J. Exp. Med. 1931, 54, 373–385. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.J.; Bahl, J.; Vijaykrishna, D.; Zhang, J.; Poon, L.L.; Chen, H.; Webster, R.G.; Peiris, J.S.; Guan, Y. Dating the emergence of pandemic influenza viruses. Proc. Natl. Acad. Sci. USA 2009, 106, 11709–11712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahn, R.E.; Ma, W.; Richt, J.A. Swine and influenza: A challenge to one health research. Curr. Top. Microbiol. Immunol. 2014, 385, 205–218. [Google Scholar] [PubMed]
- Rajao, D.S.; Anderson, T.K.; Kitikoon, P.; Stratton, J.; Lewis, N.S.; Vincent, A.L. Antigenic and genetic evolution of contemporary swine H1 influenza viruses in the United States. Virology 2018, 518, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Nelson, M.I.; Worobey, M. Origins of the 1918 Pandemic: Revisiting the Swine “Mixing Vessel” Hypothesis. Am. J. Epidemiol. 2018, 187, 2498–2502. [Google Scholar] [CrossRef] [PubMed]
- WHO. Antigenic and Genetic Characteristics of Zoonotic Influenza Viruses and Development of Candidate Vaccine Viruses for Pandemic Preparedness. 2015–2017. Available online: https://www.who.int/influenza/vaccines/virus/characteristics_virus_vaccines/en/ (accessed on 21 December 2018).
- Uyeki, T.M.; Katz, J.M.; Jernigan, D.B. Novel influenza A viruses and pandemic threats. Lancet 2017, 389, 2172–2174. [Google Scholar] [CrossRef]
- Cox, N.J.; Trock, S.C.; Burke, S.A. Pandemic preparedness and the Influenza Risk Assessment Tool (IRAT). Curr. Top. Microbiol. Immunol. 2014, 385, 119–136. [Google Scholar] [PubMed]
- WHO. Tool for Influenza Pandemic Risk Assessment (TIPRA). Available online: https://www.who.int/influenza/areas_of_work/human_animal_interface/tipra/en/ (accessed on 21 December 2018).
- Belser, J.A.; Barclay, W.; Barr, I.; Fouchier, R.A.M.; Matsuyama, R.; Nishiura, H.; Peiris, M.; Russell, C.J.; Subbarao, K.; Zhu, H.; et al. Ferrets as Models for Influenza Virus Transmission Studies and Pandemic Risk Assessments. Emerg. Infect. Dis. 2018, 24, 965–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Widdowson, M.A.; Bresee, J.S.; Jernigan, D.B. The Global Threat of Animal Influenza Viruses of Zoonotic Concern: Then and Now. J. Infect. Dis. 2017, 216, S493–S498. [Google Scholar] [CrossRef] [PubMed]
- CDC. Information on Swine Influenza/Variant Influenza Virus. Available online: https://www.cdc.gov/flu/swineflu/index.htm (accessed on 21 December 2018).
- Anderson, T.K.; Macken, C.A.; Lewis, N.S.; Scheuermann, R.H.; van Reeth, K.; Brown, I.H.; Swenson, S.L.; Simon, G.; Saito, T.; Berhane, Y.; et al. A Phylogeny-Based Global Nomenclature System and Automated Annotation Tool for H1 Hemagglutinin Genes from Swine Influenza A Viruses. mSphere 2016, 1, e00275-16. [Google Scholar] [CrossRef] [PubMed]
- Tumpey, T.M.; Garcia-Sastre, A.; Taubenberger, J.K.; Palese, P.; Swayne, D.E.; Basler, C.F. Pathogenicity and immunogenicity of influenza viruses with genes from the 1918 pandemic virus. Proc. Natl. Acad. Sci. USA 2004, 101, 3166–3171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taubenberger, J.K.; Reid, A.H.; Krafft, A.E.; Bijwaard, K.E.; Fanning, T.G. Initial genetic characterization of the 1918 “Spanish” influenza virus. Science 1997, 275, 1793–1796. [Google Scholar] [CrossRef] [PubMed]
- Gaydos, J.C.; Top, F.H., Jr.; RHodder, A.; Russell, P.K. Swine influenza a outbreak, Fort Dix, New Jersey, 1976. Emerg. Infect. Dis. 2006, 12, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Hodder, R.A.; Gaydos, J.C.; Allen, R.G.; Top, F.H., Jr.; Nowosiwsky, T.; Russell, P.K. Swine influenza A at Fort Dix, New Jersey (January-February 1976). III. Extent of spread and duration of the outbreak. J. Infect. Dis. 1997, 136, S369–S375. [Google Scholar] [CrossRef]
- Lessler, J.; Cummings, D.A.; Fishman, S.; Vora, A.; Burke, D.S. Transmissibility of swine flu at Fort Dix, 1976. J. R. Soc. Interface 2007, 4, 755–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shu, B.; Garten, R.; Emery, S.; Balish, A.; Cooper, L.; Sessions, W.; Deyde, V.; Smith, C.; Berman, L.; Klimov, A.; et al. Genetic analysis and antigenic characterization of swine origin influenza viruses isolated from humans in the United States, 1990–2010. Virology 2012, 422, 151–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, W.; Lager, K.M.; Vincent, A.L.; Janke, B.H.; Gramer, M.R.; Richt, J.A. The role of swine in the generation of novel influenza viruses. Zoonoses Public Health 2009, 56, 326–337. [Google Scholar] [CrossRef] [PubMed]
- Kida, H.; Ito, T.; Yasuda, J.; Shimizu, Y.; Itakura, C.; Shortridge, K.F.; Kawaoka, Y.; Webster, R.G. Potential for transmission of avian influenza viruses to pigs. J. Gen. Virol. 1994, 75, 2183–2188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, N.N.; Senne, D.A.; Landgraf, J.S.; Swenson, S.L.; Erickson, G.; Rossow, K.; Liu, L.; Yoon, K.; Krauss, S.; Webster, R.G. Genetic reassortment of avian, swine, and human influenza A viruses in American pigs. J. Virol. 1999, 73, 8851–8856. [Google Scholar] [PubMed]
- Vincent, A.L.; Ma, W.; Lager, K.M.; Gramer, M.R.; Richt, J.A.; Janke, B.H. Characterization of a newly emerged genetic cluster of H1N1 and H1N2 swine influenza virus in the United States. Virus Genes 2009, 39, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Garten, R.J.; Davis, C.T.; Russell, C.A.; Shu, B.; Lindstrom, S.; Balish, A.; Sessions, W.M.; Xu, X.; Skepner, E.; Deyde, V.; et al. Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) influenza viruses circulating in humans. Science 2009, 325, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.J.; Vijaykrishna, D.; Bahl, J.; Lycett, S.J.; Worobey, M.; Pybus, O.G.; Ma, S.K.; Cheung, C.L.; Raghwani, J.; Bhatt, S.; et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009, 459, 1122–1125. [Google Scholar] [CrossRef] [PubMed]
- Lewis, N.S.; Russell, C.A.; Langat, P.; Anderson, T.K.; Berger, K.; Bielejec, F.; Burke, D.F.; Dudas, G.; Fonville, J.M.; Fouchier, R.A.; et al. The global antigenic diversity of swine influenza A viruses. Elife 2016, 5, e12217. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Anderson, T.K.; Walia, R.R.; Dorman, K.S.; Janas-Martindale, A.; Vincent, A.L. The genomic evolution of H1 influenza A viruses from swine detected in the United States between 2009 and 2016. J. Gen. Virol. 2017, 98, 2001. [Google Scholar] [CrossRef] [PubMed]
- Pulit-Penaloza, J.A.; Jones, J.; Sun, X.; Jang, Y.; Thor, S.; Belser, J.A.; Zanders, N.; Creager, H.M.; Ridenour, C.; Wang, L.; et al. Antigenically Diverse Swine Origin H1N1 Variant Influenza Viruses Exhibit Differential Ferret Pathogenesis and Transmission Phenotypes. J. Virol. 2018, 92, e00095-18. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Wang, F.; Dong, B.; Ou, C.; Meng, D.; Liu, J.; Fan, Z.C. Novel reassortant influenza viruses between pandemic (H1N1) 2009 and other influenza viruses pose a risk to public health. Microb. Pathog. 2015, 89, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.Y.; Albrecht, R.A.; Pica, N.; Lowen, A.C.; Richt, J.A.; Garcia-Sastre, A.; Palese, P.; Hai, R. The M segment of the 2009 new pandemic H1N1 influenza virus is critical for its high transmission efficiency in the guinea pig model. J. Virol. 2011, 85, 11235–11241. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Shen, H.; Liu, Q.; Bawa, B.; Qi, W.; Duff, M.; Lang, Y.; Lee, J.; Yu, H.; Bai, J.; et al. Pathogenicity and transmissibility of novel reassortant H3N2 influenza viruses with 2009 pandemic H1N1 genes in pigs. J. Virol. 2015, 89, 2831–2841. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Xu, Q.; Shen, Y.; Liu, L.; Wei, K.; Sun, H.; Pu, J.; Chang, K.-C.; Liu, J. Naturally Occurring Mutations in the PA Gene Are Key Contributors to Increased Virulence of Pandemic H1N1/09 Influenza Virus in Mice. J. Virol. 2014, 88, 4600–4604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taubenberger, J.K.; Hultin, J.V.; Morens, D.M. Discovery and characterization of the 1918 pandemic influenza virus in historical context. Antivir. Ther. 2007, 12, 581–591. [Google Scholar] [PubMed]
- Lipsitch, M.; Barclay, W.; Raman, R.; Russell, C.J.; Belser, J.A.; Cobey, S.; Kasson, P.M.; Lloyd-Smith, J.O.; Maurer-Stroh, S.; Riley, S.; et al. Viral factors in influenza pandemic risk assessment. Elife 2016, 5. [Google Scholar] [CrossRef] [PubMed]
- Long, J.S.; Mistry, B.; Haslam, S.M.; Barclay, W.S. Host and viral determinants of influenza A virus species specificity. Nat. Rev. Microbiol. 2018, 17, 61–87. [Google Scholar] [CrossRef] [PubMed]
- Rogers, G.N.; D’Souza, B.L. Receptor binding properties of human and animal H1 influenza virus isolates. Virology 1989, 173, 317–322. [Google Scholar] [CrossRef]
- Chen, L.M.; Rivailler, P.; Hossain, J.; Carney, P.; Balish, A.; Perry, I.; Davis, C.T.; Garten, R.; Shu, B.; Xu, X.; et al. Receptor specificity of subtype H1 influenza A viruses isolated from swine and humans in the United States. Virology 2011, 412, 401–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelli, R.K.; Kuchipudi, S.V.; White, G.A.; Perez, B.B.; Dunham, S.P.; Chang, K.C. Comparative distribution of human and avian type sialic acid influenza receptors in the pig. BMC Vet. Res. 2010, 6, 4. [Google Scholar] [CrossRef] [PubMed]
- Tumpey, T.M.; Maines, T.R.; van Hoeven, N.; Glaser, L.; Solorzano, A.; Pappas, C.; Cox, N.J.; Swayne, D.E.; Palese, P.; Katz, J.M.; et al. A two-amino acid change in the hemagglutinin of the 1918 influenza virus abolishes transmission. Science 2007, 315, 655–659. [Google Scholar] [CrossRef] [PubMed]
- Glaser, L.; Stevens, J.; Zamarin, D.; Wilson, I.A.; Garcia-Sastre, A.; Tumpey, T.M.; Basler, C.F.; Taubenberger, J.K.; Palese, P. A single amino acid substitution in 1918 influenza virus hemagglutinin changes receptor binding specificity. J. Virol. 2005, 79, 11533–11536. [Google Scholar] [CrossRef] [PubMed]
- Matrosovich, M.; Tuzikov, A.; Bovin, N.; Gambaryan, A.; Klimov, A.; Castrucci, M.R.; Donatelli, I.; Kawaoka, Y. Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. J. Virol. 2000, 74, 8502–8512. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Carney, P.J.; Chang, J.C.; Villanueva, J.M.; Stevens, J. Structural analysis of the hemagglutinin from the recent 2013 H7N9 influenza virus. J. Virol. 2013, 87, 12433–12446. [Google Scholar] [CrossRef] [PubMed]
- Carbone, V.; Schneider, E.K.; Rockman, S.; Baker, M.; Huang, J.X.; Ong, C.; Cooper, M.A.; Yuriev, E.; Li, J.; Velkov, T. Molecular Characterisation of the Haemagglutinin Glycan-Binding Specificity of Egg-Adapted Vaccine Strains of the Pandemic 2009 H1N1 Swine Influenza A Virus. Molecules 2015, 20, 10415–10434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Wu, Y.; Zhang, W.; Qi, J.; Gao, G.F. Enabling the ‘host jump’: Structural determinants of receptor-binding specificity in influenza A viruses. Nat. Rev. Microbiol. 2014, 12, 822–831. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, A.; Viswanathan, K.; Raman, R.; Chandrasekaran, A.; Raguram, S.; Tumpey, T.M.; Sasisekharan, V.; Sasisekharan, R. Quantitative biochemical rationale for differences in transmissibility of 1918 pandemic influenza A viruses. Proc. Natl. Acad. Sci. USA 2008, 105, 2800–2805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, Q.; Wang, W.; Cheng, X.; Zengel, J.; Jin, H. Influenza H1N1 A/Solomon Island/3/06 virus receptor binding specificity correlates with virus pathogenicity, antigenicity, and immunogenicity in ferrets. J. Virol. 2010, 84, 4936–4945. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Q.; Gao, Y.; He, X.; Kong, H.; Jiang, Y.; Guan, Y.; Xia, X.; Shu, Y.; Kawaoka, Y.; et al. Key molecular factors in hemagglutinin and PB2 contribute to efficient transmission of the 2009 H1N1 pandemic influenza virus. J. Virol. 2002, 86, 9666–9674. [Google Scholar] [CrossRef] [PubMed]
- Baumann, J.; Kouassi, N.M.; Foni, E.; Klenk, H.D.; Matrosovich, M. H1N1 Swine Influenza Viruses Differ from Avian Precursors by a Higher pH Optimum of Membrane Fusion. J. Virol. 2016, 90, 1569–1577. [Google Scholar] [CrossRef] [PubMed]
- Childs, R.A.; Palma, A.S.; Wharton, S.; Matrosovich, T.; Liu, Y.; Chai, W.; Campanero-Rhodes, M.A.; Zhang, Y.; Eickmann, M.; Kiso, M.; et al. Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nat. Biotechnol. 2009, 27, 797–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pulit-Penaloza, J.A.; Pappas, C.; Belser, J.A.; Sun, X.; Brock, N.; Zeng, H.; Tumpey, T.M.; Maines, T.R. Comparative in vitro and in vivo analysis of H1N1 and H1N2 variant influenza viruses isolated from humans between 2011 and 2016. J. Virol. 2018, 92, e01444-18. [Google Scholar] [CrossRef] [PubMed]
- Bradley, K.C.; Jones, C.A.; Tompkins, S.M.; Tripp, R.A.; Russell, R.J.; Gramer, M.R.; Heimburg-Molinaro, J.; Smith, D.F.; Cummings, R.D.; Steinhauer, D.A. Comparison of the receptor binding properties of contemporary swine isolates and early human pandemic H1N1 isolates (Novel 2009 H1N1). Virology 2011, 413, 169–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakdawala, S.S.; Jayaraman, A.; Halpin, R.A.; Lamirande, E.W.; Shih, A.R.; Stockwell, T.B.; Lin, X.; Simenauer, A.; Hanson, C.T.; Vogel, L.; et al. The soft palate is an important site of adaptation for transmissible influenza viruses. Nature 2015, 526, 122–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Childs, R.A.; Matrosovich, T.; Wharton, S.; Palma, A.S.; Chai, W.; Daniels, R.; Gregory, V.; Uhlendorff, J.; Kiso, M.; et al. Altered receptor specificity and cell tropism of D222G hemagglutinin mutants isolated from fatal cases of pandemic A(H1N1) 2009 influenza virus. J. Virol. 2010, 84, 12069–12074. [Google Scholar] [CrossRef] [PubMed]
- Belser, J.A.; Jayaraman, A.; Raman, R.; Pappas, C.; Zeng, H.; Cox, N.J.; Katz, J.M.; Sasisekharan, R.; Tumpey, T.M. Effect of D222G mutation in the hemagglutinin protein on receptor binding, pathogenesis and transmissibility of the 2009 pandemic H1N1 influenza virus. PLoS ONE 2011, 6, e25091. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Shinya, K.; Watanabe, S.; Imai, M.; Hatta, M.; Li, C.; Wolter, B.F.; Neumann, G.; Hanson, A.; Ozawa, M.; et al. Avian-type receptor-binding ability can increase influenza virus pathogenicity in macaques. J. Virol. 2011, 85, 13195–13203. [Google Scholar] [CrossRef] [PubMed]
- Russell, C.J.; Hu, M.; Okda, F.A. Influenza Hemagglutinin Protein Stability, Activation, and Pandemic Risk. Trends Microbiol. 2018, 26, 841–853. [Google Scholar] [CrossRef] [PubMed]
- Carr, C.M.; Kim, P.S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 1993, 73, 823–832. [Google Scholar] [CrossRef]
- Fischer, H.; Widdicombe, J.H. Mechanisms of acid and base secretion by the airway epithelium. J. Membr. Biol. 2006, 211, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Russier, M.; Yang, G.; Rehg, J.E.; Wong, S.S.; Mostafa, H.H.; Fabrizio, T.P.; Barman, S.; Krauss, S.; Webster, R.G.; Webby, R.J.; et al. Molecular requirements for a pandemic influenza virus: An acid-stable hemagglutinin protein. Proc. Natl. Acad. Sci. USA 2016, 113, 1636–1641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McFadden, E.R., Jr.; Pichurko, B.M.; Bowman, H.F.; Ingenito, E.; Burns, S.; Dowling, N.; Solway, J. Thermal mapping of the airways in humans. J. Appl. Physiol. 1985, 58, 564–570. [Google Scholar] [CrossRef] [PubMed]
- Lindemann, J.; Leiacker, R.; Rettinger, G.; Keck, T. Nasal mucosal temperature during respiration. Clin. Otolaryngol. Allied Sci. 2002, 27, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Scull, M.A.; Gillim-Ross, L.; Santos, C.; Roberts, K.L.; Bordonali, E.; Subbarao, K.; Barclay, W.S.; Pickles, R.J. Avian Influenza virus glycoproteins restrict virus replication and spread through human airway epithelium at temperatures of the proximal airways. PLoS Pathog. 2009, 5, e1000424. [Google Scholar] [CrossRef] [PubMed]
- van Hoeven, N.; Pappas, C.; Belser, J.A.; Maines, T.R.; Zeng, H.; Garcia-Sastre, A.; Sasisekharan, R.; Katz, J.M.; Tumpey, T.M. Human HA and polymerase subunit PB2 proteins confer transmission of an avian influenza virus through the air. Proc. Natl. Acad. Sci. USA 2009, 106, 3366–3371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steel, J.; Lowen, A.C.; Mubareka, S.; Palese, P. Transmission of influenza virus in a mammalian host is increased by PB2 amino acids 627K or 627E/701N. PLoS Pathog. 2009, 5, e1000252. [Google Scholar] [CrossRef] [PubMed]
- Subbarao, E.K.; London, W.; Murphy, B.R. A single amino acid in the PB2 gene of influenza A virus is a determinant of host range. J. Virol. 1993, 67, 1761–1764. [Google Scholar] [PubMed]
- Barman, S.; Krylov, P.S.; Fabrizio, T.P.; Franks, J.; Turner, J.C.; Seiler, P.; Wang, D.; Rehg, J.E.; Erickson, G.A.; Gramer, M.; et al. Pathogenicity and transmissibility of North American triple reassortant swine influenza A viruses in ferrets. PLoS Pathog. 2012, 8, e1002791. [Google Scholar] [CrossRef] [PubMed]
- Bussey, K.A.; Bousse, T.L.; Desmet, E.A.; Kim, B.; Takimoto, T. PB2 residue 271 plays a key role in enhanced polymerase activity of influenza A viruses in mammalian host cells. J. Virol. 2010, 84, 4395–4406. [Google Scholar] [CrossRef] [PubMed]
- Belser, J.A.; Szretter, K.J.; Katz, J.M.; Tumpey, T.M. Use of animal models to understand the pandemic potential of highly pathogenic avian influenza viruses. Adv. Virus Res. 2009, 73, 55–97. [Google Scholar] [PubMed]
- Tumpey, T.M.; Basler, C.F.; Aguilar, P.V.; Zeng, H.; Solorzano, A.; Swayne, D.E.; Cox, N.J.; Katz, J.M.; Taubenberger, J.K.; Palese, P.; et al. Characterization of the reconstructed 1918 Spanish influenza pandemic virus. Science 2005, 310, 77–80. [Google Scholar] [CrossRef] [PubMed]
- Belser, J.A.; Wadford, D.A.; Pappas, C.; Gustin, K.M.; Maines, T.R.; Pearce, M.B.; Zeng, H.; Swayne, D.E.; Pantin-Jackwood, M.; Katz, J.M.; et al. Pathogenesis of pandemic influenza A (H1N1) and triple-reassortant swine influenza A (H1) viruses in mice. J. Virol. 2010, 84, 4194–4203. [Google Scholar] [CrossRef] [PubMed]
- Lenny, B.J.; Sonnberg, S.; Danner, A.F.; Friedman, K.; Webby, R.J.; Webster, R.G.; Jones, J.C. Evaluation of multivalent H2 influenza pandemic vaccines in mice. Vaccine 2017, 35, 1455–1463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappas, C.; Aguilar, P.V.; Basler, C.F.; Solorzano, A.; Zeng, H.; Perrone, L.A.; Palese, P.; Garcia-Sastre, A.; Katz, J.M.; Tumpey, T.M. Single gene reassortants identify a critical role for PB1, HA, and NA in the high virulence of the 1918 pandemic influenza virus. Proc. Natl. Acad. Sci. USA 2008, 105, 3064–3069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, W.; Liu, Q.; Sun, Y.; Wang, Y.; Gao, H.; Liu, L.; Qin, Z.; He, Q.; Sun, H.; Pu, J.; et al. Transmission and pathogenicity of novel reassortants derived from Eurasian avian-like and 2009 pandemic H1N1 influenza viruses in mice and guinea pigs. Sci. Rep. 2016, 6, 27067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boon, A.C.; de Beauchamp, J.; Hollmann, A.; Luke, J.; Kotb, M.; Rowe, S.; Finkelstein, D.; Neale, G.; Lu, L.; Williams, R.W.; et al. Host genetic variation affects resistance to infection with a highly pathogenic H5N1 influenza A virus in mice. J. Virol. 2009, 83, 10417–10426. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.S.; Kok, T.; Li, P. The virus inoculum volume influences outcome of influenza A infection in mice. Lab. Anim. 2013, 47, 74–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Yi, C.; Zhao, L.; Wang, S.; Zhou, L.; Hu, Y.; Zou, W.; Chen, H.; Jin, M. PB2-588I enhances 2009 H1N1 pandemic influenza virus virulence by increasing viral replication and exacerbating PB2 inhibition of beta interferon expression. J. Virol. 2014, 88, 2260–2267. [Google Scholar] [CrossRef] [PubMed]
- Zamarin, D.; Ortigoza, M.B.; Palese, P. Influenza A virus PB1-F2 protein contributes to viral pathogenesis in mice. J. Virol. 2006, 80, 7976–7983. [Google Scholar] [CrossRef] [PubMed]
- Conenello, G.M.; Zamarin, D.; Perrone, L.A.; Tumpey, T.; Palese, P. A single mutation in the PB1-F2 of H5N1 (HK/97) and 1918 influenza A viruses contributes to increased virulence. PLoS Pathog. 2007, 3, 1414–1421. [Google Scholar] [CrossRef] [PubMed]
- Kamal, R.P.; Alymova, I.V.; York, I.A. Evolution and Virulence of Influenza A Virus Protein PB1-F2. Int. J. Mol. Sci. 2017, 19, 96. [Google Scholar] [CrossRef] [PubMed]
- Triana-Baltzer, G.B.; Gubareva, L.V.; Nicholls, J.M.; Pearce, M.B.; Mishin, V.P.; Belser, J.A.; Chen, L.M.; Chan, R.W.; Chan, M.C.; Hedlund, M.; et al. Novel pandemic influenza A(H1N1) viruses are potently inhibited by DAS181, a sialidase fusion protein. PLoS ONE 2009, 4, e7788. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, H.; Xue, Y.; Zhao, S.; Li, C.; Qu, L.; Zhang, Y.; Liu, M. Characterization of Monoclonal Antibodies against HA Protein of H1N1 Swine Influenza Virus and Protective Efficacy against H1 Viruses in Mice. Viruses 2017, 9, 209. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, Y.; Qiao, C.; He, X.; Zhou, H.; Sun, Y.; Yin, H.; Meng, S.; Liu, L.; Zhang, Q.; et al. Prevalence, genetics, and transmissibility in ferrets of Eurasian avian-like H1N1 swine influenza viruses. Proc. Natl. Acad. Sci. USA 2016, 113, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zhang, H.; Xiang, X.; Zhong, L.; Yang, L.; Guo, J.; Xie, Y.; Li, F.; Deng, Z.; Feng, H.; et al. Reassortant Eurasian Avian-Like Influenza A(H1N1) Virus from a Severely Ill Child, Hunan Province, China, 2015. Emerg. Infect. Dis. 2016, 22, 1930–1936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kash, J.C.; Tumpey, T.M.; Proll, S.C.; Carter, V.; Perwitasari, O.; Thomas, M.J.; Basler, C.F.; Palese, P.; Taubenberger, J.K.; Garcia-Sastre, A.; et al. Genomic analysis of increased host immune and cell death responses induced by 1918 influenza virus. Nature 2006, 443, 578–581. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.; Andrewes, C.H.; Laidlaw, P.P. A virus obtained from influenza patients. Lancet Infect. Dis. 1933, 222, 66–68. [Google Scholar] [CrossRef]
- Belser, J.A.; Katz, J.M.; Tumpey, T.M. The ferret as a model organism to study influenza A virus infection. Dis. Model. Mech. 2011, 4, 575–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearce, M.B.; Pappas, C.; Gustin, K.M.; Davis, C.T.; Pantin-Jackwood, M.J.; Swayne, D.E.; Maines, T.R.; Belser, J.A.; Tumpey, T.M. Enhanced virulence of clade 2.3.2.1 highly pathogenic avian influenza A H5N1 viruses in ferrets. Virology 2017, 502, 114–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belser, J.A.; Lu, X.; Maines, T.R.; Smith, C.; Li, Y.; Donis, R.O.; Katz, J.M.; Tumpey, T.M. Pathogenesis of avian influenza (H7) virus infection in mice and ferrets: Enhanced virulence of Eurasian H7N7 viruses isolated from humans. J. Virol. 2007, 81, 11139–11147. [Google Scholar] [CrossRef] [PubMed]
- Maines, T.R.; Lu, X.H.; Erb, S.M.; Edwards, L.; Guarner, J.; Greer, P.W.; Nguyen, D.C.; Szretter, K.J.; Chen, L.M.; Thawatsupha, P.; et al. Avian influenza (H5N1) viruses isolated from humans in Asia in 2004 exhibit increased virulence in mammals. J. Virol. 2005, 79, 11788–11800. [Google Scholar] [CrossRef] [PubMed]
- Yen, H.L.; Lipatov, A.S.; Ilyushina, N.A.; Govorkova, E.A.; Franks, J.; Yilmaz, N.; Douglas, A.; Hay, A.; Krauss, S.; Rehg, J.E.; et al. Inefficient transmission of H5N1 influenza viruses in a ferret contact model. J. Virol. 2007, 81, 6890–6898. [Google Scholar] [CrossRef] [PubMed]
- Maines, T.R.; Jayaraman, A.; Belser, J.A.; Wadford, D.A.; Pappas, C.; Zeng, H.; Gustin, K.M.; Pearce, M.B.; Viswanathan, K.; Shriver, Z.H.; et al. Transmission and pathogenesis of swine-origin 2009 A(H1N1) influenza viruses in ferrets and mice. Science 2009, 325, 484–487. [Google Scholar] [CrossRef] [PubMed]
- Pearce, M.B.; Belser, J.A.; Gustin, K.M.; Pappas, C.; Houser, K.V.; Sun, X.; Maines, T.R.; Pantin-Jackwood, M.J.; Katz, J.M.; Tumpey, T.M. Seasonal trivalent inactivated influenza vaccine protects against 1918 Spanish influenza virus infection in ferrets. J. Virol. 2012, 86, 7118–7125. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.; Shin, K.; Kim, S.; Ha, Y.; Choi, J.H.; Yang, J.S.; Lee, J.Y.; Chae, C.; Oh, H.B.; Kang, C. Replication and pathogenesis of the pandemic (H1N1) 2009 influenza virus in mammalian models. J. Microbiol. 2010, 48, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Munster, V.J.; de Wit, E.; van den Brand, J.M.; Herfst, S.; Schrauwen, E.J.; Bestebroer, T.M.; van de Vijver, D.; Boucher, C.A.; Koopmans, M.; Rimmelzwaan, G.F.; et al. Pathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferrets. Science 2009, 325, 481–483. [Google Scholar] [CrossRef] [PubMed]
- Belser, J.A.; Gustin, K.M.; Maines, T.R.; Blau, D.M.; Zaki, S.R.; Katz, J.M.; Tumpey, T.M. Pathogenesis and transmission of triple-reassortant swine H1N1 influenza viruses isolated before the 2009 H1N1 pandemic. J. Virol. 2011, 85, 1563–1572. [Google Scholar] [CrossRef] [PubMed]
- Itoh, Y.; Shinya, K.; Kiso, M.; Watanabe, T.; Sakoda, Y.; Hatta, M.; Muramoto, Y.; Tamura, D.; Sakai-Tagawa, Y.; Noda, T.; et al. In vitro and in vivo characterization of new swine-origin H1N1 influenza viruses. Nature 2009, 460, 1021–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maines, T.R.; Chen, L.M.; Matsuoka, Y.; Chen, H.; Rowe, T.; Ortin, J.; Falcon, A.; Nguyen, T.H.; Le, Q.M.; Sedyaningsih, E.R.; et al. Lack of transmission of H5N1 avian-human reassortant influenza viruses in a ferret model. Proc. Natl. Acad. Sci. USA 2006, 103, 12121–12126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowen, A.C.; Mubareka, S.; Tumpey, T.M.; Garcia-Sastre, A.; Palese, P. The guinea pig as a transmission model for human influenza viruses. Proc. Natl. Acad. Sci. USA 2006, 103, 9988–9992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belser, J.A.; Tumpey, T.M. Mammalian models for the study of H7 virus pathogenesis and transmission. Curr. Top. Microbiol. Immunol. 2014, 385, 275–305. [Google Scholar] [PubMed]
- Myers, K.P.; Olsen, C.W.; Gray, G.C. Cases of swine influenza in humans: A review of the literature. Clin. Infect. Dis. 2007, 44, 1084–1088. [Google Scholar] [CrossRef] [PubMed]
- Czako, R.; Subbarao, K. Refining the approach to vaccines against influenza A viruses with pandemic potential. Future Virol. 2015, 10, 1033–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stark, G.V.; Long, J.P.; Ortiz, D.I.; Gainey, M.; Carper, B.A.; Feng, J.; Miller, S.M.; Bigger, J.E.; Vela, E.M. Clinical profiles associated with influenza disease in the ferret model. PLoS ONE 2013, 8, e58337. [Google Scholar] [CrossRef] [PubMed]
- Belser, J.A.; Eckert, A.M.; Tumpey, T.M.; Maines, T.R. Complexities in Ferret Influenza Virus Pathogenesis and Transmission Models. Microbiol. Mol. Biol. Rev. 2016, 80, 733–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buhnerkempe, M.G.; Gostic, K.; Park, M.; Ahsan, P.; Belser, J.A.; Lloyd-Smith, J.O. Mapping influenza transmission in the ferret model to transmission in humans. Elife 2015, 4, e07969. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Pulit-Penaloza, J.A.; Belser, J.A.; Pappas, C.; Pearce, M.B.; Brock, N.; Zeng, H.; Creager, H.M.; Zanders, N.; Jang, Y.; et al. Pathogenesis and Transmission of Genetically Diverse Swine-Origin H3N2 Variant Influenza A Viruses from Multiple Lineages Isolated in the United States, 2011–2016. J. Virol. 2018, 92, e00665-18. [Google Scholar] [CrossRef] [PubMed]
- Pearce, M.B.; Jayaraman, A.; Pappas, C.; Belser, J.A.; Zeng, H.; Gustin, K.M.; Maines, T.R.; Sun, X.; Raman, R.; Cox, N.J.; et al. Pathogenesis and transmission of swine origin A(H3N2)v influenza viruses in ferrets. Proc. Natl. Acad. Sci. USA 2012, 109, 3944–3949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
HA Clade | Virus Name | Virus Name in this Study | Gene Origin | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
U.S. | Global | Subtype | PB2 | PB1 | PA | HA | NP | NA | M | NS | |||||||||||
NA | NA | A/Brevig Mission/1/1918 A/South Carolina/1/1918 | 1918 a | H1N1 | |||||||||||||||||
alpha | 1A.1-like | A/New Jersey/08/1976 | NJ/08 | H1N1v | |||||||||||||||||
1A.1.1 | A/Minnesota/45/2016 | MN/45 | H1N2v | * | * | * | |||||||||||||||
beta | |||||||||||||||||||||
1A.2 | A/Texas/14/2008 | TX/14 | H1N1v | ||||||||||||||||||
gamma | 1A.3.3.3 | A/Ohio/02/2007 | OH/02 | H1N1v | |||||||||||||||||
1A.3.3.3 | A/Ohio/09/2015 | OH/09 | H1N1v | * | |||||||||||||||||
1A.3.3.3 | A/Iowa/39/2015 | IA/39 | H1N1v | * | * | * | |||||||||||||||
H1N1pdm09 | 1A.3.3.2 | A/Mexico/4482/2009 | Mex/4482 | H1N1pdm09 | * | * | * | * | * | * | * | * | |||||||||
1A.3.3.2 | A/California/04/2009 | CA/04 | H1N1pdm09 | * | * | * | * | * | * | * | * | ||||||||||
1A.3.3.2 | A/California/07/2009 | CA/07 | H1N1pdm09 | * | * | * | * | * | * | * | * | ||||||||||
1A.3.3.2 | A/Texas/15/2009 | TX/15 | H1N1pdm09 | * | * | * | * | * | * | * | * | ||||||||||
delta | delta-like | 1B.2 | A/Brisbane/59/2007 | Bris/59 | H1N1 | ||||||||||||||||
delta-1 | 1B.2.2.2 | A/Minnesota/19/2011 | MN/19 | H1N2v | |||||||||||||||||
1B.2.2.1 | A/Wisconsin/71/2016 | WI/71 | H1N2v | * |
Virus | Binding Specificity | Fusion pH | HA a | PB2 | PB1-F2 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sialic Acid | Source | pH | Source | 190 | 225 | 226 | 271 | 588 | 590 | 591 | 627 | 701 | 66 | |||||
1918 | α2,6 | [42,48] | 5.1 | [51] | D | D | Q | T | A | G | Q | K | D | S | ||||
NJ/08 | α2,6/α2,3 | [39,40,52] | 5.5–5.6 | [53] | D | G | Q | T | A | G | Q | K | D | N | ||||
MN/45 | α2,6 | [53] | 5.5–5-6 | [53] | D | G | Q | A | T | S | R | E | D | - b | ||||
TX/14 | α2,6/α2,3 | [40,53] | 5.7 | [53] | D | N | Q | A | T | S | R | E | D | N | ||||
OH/02 | α2,6 | [40,53] | 5.6 | [53] | D | D | Q | A | T | S | R | E | D | N | ||||
OH/09 | α2,6/α2,3 | [53] | 5.7 | [53] | D | G | Q | A | I | S | R | E | D | S | ||||
IA/39 | α2,6 | [53] | 5.6–5.7 | [53] | D | D | Q | A | T | S | R | E | D | N | ||||
CA/07 | α2,6 | [45,46] | 5.5 | [53] | D | D | Q | A | T | S | R | E | D | - | ||||
TX/15 | α2,6/α2,3 | [54] | 5.4–5.5 | [53] | D | D | Q | A | T | S | R | E | D | - | ||||
Bris/59 | α2,6 | [40] | 5.3–5.4 | [53] | D | D | Q | A | I | G | Q | K | D | N | ||||
MN/19 | α2,6/α2,3 | [53] | 5.6–5.7 | [53] | N | D | Q | A | T | S | R | E | D | N | ||||
WI/71 | α2,6/α2,3 | [53] | 5.7 | [53] | D | D | Q | S | T | S | R | E | D | N |
Virus | Subtype | % Weight Loss a | % Lethality b | Mean Viral Titer log10 PFU/mL ± SD c | Data Source | |||
---|---|---|---|---|---|---|---|---|
Day 3 p.i. | Day 6 p.i. | |||||||
Lung | Nose | Lung | Nose | |||||
1918 d | H1N1 | 20.2 | 100 | 7.0 ± 0.2 (3/3) | NT | NT | NT | Unpublished |
NJ/08 | H1N1v | 2.7 | 0 | 6.0 ± 0.2 (3/3) | ND | 5.9 ± 0.9 (3/3) | ND | [73] |
MN/45 | H1N2v | 13.0 | 0 | 6.0 ± 0.5 (3/3) | 2.1 ± 0.5 (3/3) | 3.8 ± 0.5 (3/3) | ND | [53] |
OH/02 | H1N1v | 14.5 | 0 | 7.0 ± 0.3 (3/3) | 1.8 (1/3) | 4.5 ± 0.1 (3/3) | ND | [73] |
OH/09 | H1N1v | 23.0 | 80 | 5.9 ± 0.4 (3/3) | 3.3 ± 0.1 (3/3) | 5.3 ± 0.1 (3/3) | 3.6 ± 0.2 (3/3) | [53] |
IA/39 | H1N1v | 11.1 | 0 | 5.6 ± 0.2 (3/3) | 2.3 ± 0.4 (3/3) | 3.4 ± 0.3 (3/3) | 3.0 ± 0.4 (3/3) | [53] |
Mex/4482 | H1N1pdm09 | 19.0 | 0 | 6.4 ± 0.2 (3/3) | 1.5 (1/3) | 6.3 ± 0.4 (3/3) | ND | [73] |
CA/04 | H1N1pdm09 | 5.3 | 0 | 5.9 ± 0.9 (3/3) | 1.5 ± 0.2 (3/3) | 6.2 ± 0.1 (3/3) | ND | [73] |
CA/07 | H1N1pdm09 | 19.2 | 75 | 5.4 ± 0.2 (3/3) | 1.7 (1/3) | 5.3 ± 0.3 (3/3) | 1.3 (1/3) | [53] |
TX/15 | H1N1pdm09 | 1.5 | 0 | 5.4 ± 1.0 (3/3) | ND | 4.7 ± 0.8 (3/3) | ND | [73] |
MN/19 | H1N2v | 6.8 | 0 | 6.0 ± 0.3 (3/3) | 3.3 ± 0.2 (3/3) | 4.2 ± 0.4 (3/3) | 3.0 ± 0.3 (3/3) | [53] |
WI/71 | H1N2v | 8.4 | 0 | 7.3 ± 0.3 (3/3) | 4.2 ± 0.1 (3/3) | 4.1 ± 0.6 (3/3) | 2.2 ± 0.7 (3/3) | [53] |
Virus | log10 PFU/mL | % Weight Loss (%) c | % Lethality d | DCT e | RDT e | Data Source | ||||
---|---|---|---|---|---|---|---|---|---|---|
Inoculation Dose a | NW Titer ± SD b | Virus Detection | Seroconversion | Virus Detection | Seroconversion | |||||
1918 f | 6.0 | 5.6 ± 0.2 | ≤13.2 | 20 | NT | NT | 3/3 | 3/3 | [42,95] | |
MN/45 | 6.0 | 6.7 ± 0.6 | 15.6 | 0 | 3/3 | 3/3 | 3/3 | 3/3 | [53] | |
TX/14 | 6.0 | 6.7 ± 0.6 | 11.7 | 33 | 3/3 | 3/3 | 0/3 | 2/3 | [98] | |
OH/02 | 6.0 | 5.2 ± 0.5 | 9.4 | 33 | 3/3 | 3/3 | 0/3 | 1/3 | [98] | |
OH/09 | 5.0 | 6.8 ± 0.7 | 13.7 | 11 | 3/3 | 3/3 | 1/3 | 1/3 | [31] | |
IA/39 | 5.0 | 5.2 ± 0.1 | 6.0 | 0 | 3/3 | 3/3 | 2/3 | 2/3 | [31] | |
Mex/4482 | 6.0 | 7.7 ± 0.2 | 17.5 | 50 | 3/3 | 3/3 | 2/3 | 2/3 | [94] | |
CA/04 | 6.0 | 6.9 ± 0.9 | 10.3 | 0 | 3/3 | 3/3 | 2/3 | 2/3 | [94] | |
CA/07 | 5.0 | 7.1 ± 0.4 | 10.6 | 0 | NT | NT | 3/3 | 3/3 | [31] | |
TX/15 | 6.0 | 6.8 ± 0.6 | 9.1 | 0 | 3/3 | 3/3 | 2/3 | 2/3 | [94] | |
Bris/59 | 6.0 | 7.0 ± 0.5 | 4.9 | 0 | 3/3 | 3/3 | 3/3 | 3/3 | [94] | |
MN/19 | 6.0 | 6.6 ± 0.4 | 9.4 | 0 | 3/3 | 3/3 | 1/3 | 1/3 | [53] | |
WI/71 | 6.0 | 6.7 ± 0.6 | 13.6 | 0 | 3/3 | 3/3 | 2/3 | 2/3 | [53] |
Virus | Inoculation Dose a | Mean Titer (log 10 PFU/mL or g) ± SD b | Data Source | ||
---|---|---|---|---|---|
Nasal Turbinates | Trachea | Lung | |||
1918 c | 6.0 | 5.3 ± 0.9 (3/3) | 5.7 ± 0.5 (3/3) | 5.4 ± 0.7 (3/3) | [95] |
MN/45 | 6.0 | 5.3 ± 0.2 (3/3) | 4.5 ± 1.0 (3/3) | 3.8 ± 2.0 (3/3) | [53] |
TX/14 | 6.0 | 4.7 ± 1.0 (3/3) | 4.1 ± 1.9 (3/3) | 6.0 ± 1.0 (3/3) | [98] |
OH/02 | 6.0 | 5.0 ± 0.7 (3/3) | 4.3 ± 0.4 (3/3) | 4.8 ± 1.0 (3/3) | [98] |
OH/09 | 5.0 | 6.1 ± 0.6 (3/3) | 4.1 ± 0.6 (3/3) | 2.7 ± 0.9 (2/3) | [31] |
IA/39 | 5.0 | 5.1 ± 0.1 (3/3) | 3.9 ± 0.3 (3/3) | 4.3 ± 0.4 (3/3) | [31] |
Mex/4482 | 6.0 | 5.8 ± 0.8 (3/3) | 5.0 ± 0.8 (3/3) | 5.3 ± 0.6 (2/3) | [94] |
CA/04 | 6.0 | 4.6 ± 0.3 (3/3) | 5.0 ± 1.2 (3/3) | 5.8 ± 0.4 (3/3) | [94] |
CA/07 | 5.0 | 4.9 ± 0.3 (3/3) | 4.9 ± 0.3 (3/3) | 4.4 ± 1.4 (3/3) | [31] |
TX/15 | 6.0 | 4.6 ± 0.3 (3/3) | 5.7 ± 0.3 (3/3) | 6.0 ± 1.0 (3/3) | [94] |
Bris/59 | 6.0 | 5.6 ± 0.6 (3/3) | 2.6 ± 0.1 (3/3) | ND (0/3) | [94] |
WI/71 | 6.0 | 4.9 ± 0.5 (3/3) | 4.6 ± 0.5 (3/3) | 4.1 ± 0.5 (3/3) | [53] |
MN/19 | 6.0 | 4.2 ± 0.5 (3/3) | 4.1 ± 1.4 (3/3) | 3.7 ± 1.0 (3/3) | [53] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulit-Penaloza, J.A.; Belser, J.A.; Tumpey, T.M.; Maines, T.R. Sowing the Seeds of a Pandemic? Mammalian Pathogenicity and Transmissibility of H1 Variant Influenza Viruses from the Swine Reservoir. Trop. Med. Infect. Dis. 2019, 4, 41. https://doi.org/10.3390/tropicalmed4010041
Pulit-Penaloza JA, Belser JA, Tumpey TM, Maines TR. Sowing the Seeds of a Pandemic? Mammalian Pathogenicity and Transmissibility of H1 Variant Influenza Viruses from the Swine Reservoir. Tropical Medicine and Infectious Disease. 2019; 4(1):41. https://doi.org/10.3390/tropicalmed4010041
Chicago/Turabian StylePulit-Penaloza, Joanna A., Jessica A. Belser, Terrence M. Tumpey, and Taronna R. Maines. 2019. "Sowing the Seeds of a Pandemic? Mammalian Pathogenicity and Transmissibility of H1 Variant Influenza Viruses from the Swine Reservoir" Tropical Medicine and Infectious Disease 4, no. 1: 41. https://doi.org/10.3390/tropicalmed4010041
APA StylePulit-Penaloza, J. A., Belser, J. A., Tumpey, T. M., & Maines, T. R. (2019). Sowing the Seeds of a Pandemic? Mammalian Pathogenicity and Transmissibility of H1 Variant Influenza Viruses from the Swine Reservoir. Tropical Medicine and Infectious Disease, 4(1), 41. https://doi.org/10.3390/tropicalmed4010041