Review of VHEE Beam Energy Evolution for FLASH Radiation Therapy Under Ultra-High Dose Rate (UHDR) Dosimetry
Abstract
1. Introduction
- Irradiation time: ti < 100 ms;
- Average dose rate: > 100 Gy/s;
- In-peak dose rate: p > 106 Gy/s;
- Pulse repetition frequency: PRF > 100 Hz;
- Dose per pulse: >1 Gy.
2. VHEE Beam Energy Evolution to Treatment
3. Current VHEE Facilities
- (i)
- (ii)
- (iii)
- (iv)
4. FLASH Electron Beam Injector Simulation Studies
5. Beam Dose Distribution Simulation Studies
6. Radiation Safety
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdel-Wahab, M.; Gondhowiardjo, S.S.; Rosa, A.A.; Lievens, Y.; El-Haj, N.; Rubio, J.A.P.; Ben Prajogi, G.; Helgadottir, H.; Zubizarreta, E.; Meghzifene, A.; et al. Global Radiotherapy: Current Status and Future Directions—White Paper. JCO Glob. Oncol. 2021, 7, 827–842. [Google Scholar] [CrossRef]
- Gazis, N.; Bignami, A.; Trachanas, E.; Moniaki, M.; Gazis, E.; Bandekas, D.; Vordos, N. Simulation Dosimetry Studies for FLASH Radio Therapy with Ultra-High-Dose Rate (UHDR) Beam. Quantum Beam Sci. 2024, 8, 13. [Google Scholar] [CrossRef]
- Gianfaldoni, S.; Gianfaldoni, R.; Wollina, U.; Lotti, J.; Tchernev, G.; Lotti, T. An Overview on Radiotherapy: From Its History to Its Current Applications in Dermatology. Open Access Mac. J. Med. Sci. 2017, 5, 521. [Google Scholar] [CrossRef] [PubMed]
- Birindelli, G. Entropic Model for Dose Calculation in External Beam Radiotherapy and Brachytherapy. Ph.D. Thesis, Université de Bordeaux, Talence, France, 2011. Available online: https://tel.archives-ouvertes.fr/tel-03214566 (accessed on 10 September 2025).
- Tsujii, H. Overview of Carbon-ion Radiotherapy. J. Phys. Conf. Ser. 2017, 777, 012032. [Google Scholar] [CrossRef]
- Tian, X.; Liu, K.; Hou, Y.; Cheng, J.; Zhang, J. The evolution of proton beam therapy: Current and future status (Review). Mol. Clin. Oncol. 2017, 8, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Panaino, C.M.V.; Piccinini, S.; Andreassi, M.G.; Bandini, G.; Borghini, A.; Borgia, M.; Di Naro, A.; Labate, L.U.; Maggiulli, E.; Portaluri, M.G.A.; et al. Very High-Energy Electron Therapy Toward Clinical Implementation. Cancers 2025, 17, 181. [Google Scholar] [CrossRef]
- Gagnebin, S.; Twerenbold, D.; Pedroni, E.; Meer, D.; Zenklusen, S.; Bula, C. Experimental determination of the absorbed dose to water in a scanned proton beam using a water calorimeter and an ionization chamber. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 524–528. [Google Scholar] [CrossRef]
- Bourhis, J.; Sozzi, W.J.; Jorge, P.G.; Gaide, O.; Bailat, C.; Duclos, F.; Patin, D.; Ozsahin, M.; Bochud, F.; Germond, J.F.; et al. Clinical translation of FLASH radiotherapy: Why and how? Radiother. Oncol. 2019, 139, 11–17. [Google Scholar] [CrossRef]
- Pratx, G.; Kapp, D.S. A computational model of radiolytic oxygen depletion during FLASH irradiation and its effect on the oxygen enhancement ratio. Phys. Med. Biol. 2019, 64, 185005. [Google Scholar] [CrossRef] [PubMed]
- Favaudon, V.; Caplier, L.; Monceau, V.; Pouzoulet, F.; Sayarath, M.; Fouillade, C.; Poupon, M.F.; Brito, I.; Hupe, P.; Bourhis, J.; et al. Ultrahigh dose-rate FLASH irradiation increases the differential response between normal and tumor tissue in mice. Sci. Transl. Med. 2014, 6, 245–293. [Google Scholar] [CrossRef] [PubMed]
- Naceur, A.; Bienvenue, C.; Romano, P.; Chilian, C.; Carrier, J.-F. Extending deterministic transport capabilities for very-high and ultra-high energy electron beams. Sci. Rep. 2024, 14, 2796. [Google Scholar] [CrossRef]
- Gamba, D.; Corsini, R.; Curt, S.; Doebert, S.; Frabolini, W.; Mcmonagle, G.; Skowronski, P.K.; Tecket, F.; Zeeshan, S.; Adli, E.; et al. The CLEAR user facility at CERN. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 909, 480–483. [Google Scholar] [CrossRef]
- Marchand, D. A new platform for research and applications with electrons: The PRAE project. EPJ Web Conf. 2017, 138, 01012. [Google Scholar] [CrossRef]
- Delorme, R.; Marchand, D.; Vallerand, C. The PRAE Multidisciplinary Project. Nucl. Phys News 2019, 29, 32–35. [Google Scholar] [CrossRef]
- Han, Y.; Faus-Golfe, A.; Vallerand, C.; Bai, B.; Duchesne, P.; Prezado, Y.; Delorme, R.; Poortmans, P.; Favaudon, V.; Fouillade, C.; et al. Optics design and beam dynamics simulation for a VHEE radiobiology beam line at PRAE accelerator. In Proceedings of the 10th International Particle Accelerator Conference; IPAC2019, Melbourne, Australia, 19–24 May 2019. [Google Scholar] [CrossRef]
- Angal-Kalinin, D.; Boogert, S.; Jones, J.K. Potential of the CLARA test facility for VHEE rationteraly research. Front. Phys. 2024, 12, 1496850. [Google Scholar] [CrossRef]
- Ferrario, M.; Alesini, D.; Anania, M.; Bacci, A.; Bellaveglia, M.; Bogdanov, O.; Boni, R.; Castellano, M.; Chiadroni, E.; Cianchi, A.; et al. SPARC_LAB present and future. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2013, 309, 183–188. [Google Scholar] [CrossRef]
- Small, K.L.; Angal-Kalinin, D.; Jones, J.K.; Jones, R.J. VHEE facilities I Europe with the potential for FLASH dose irradiation; Conspectus and dose rate parameterization. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2025, 565, 165752. [Google Scholar] [CrossRef]
- Masilela, T.A.M.; Delorme, R.; Prezado, Y. Dosimetry and radioprotection evaluations of very-high energy electron beams. Sci. Rep. 2021, 11, 20184. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, K.; Yuan, J.; Chen, L.; Sheng, Z. Laser-driven very high energy electron/photon beam radiation therapy in conjunction with a robotic system. Appl. Sci. 2015, 5, 1–20. [Google Scholar] [CrossRef]
- DesRosiers, C.; Moskvin, V.; Cao, M.; Joshi, C.J.; Langer, M. Laser-plasma generated very high energy electrons in radiation therapy of the prostate. Proc. SPIE 2008, 6881, 49–62. [Google Scholar] [CrossRef]
- Kokurewicz, K.; Welsh, C.H.; Brunetti, E.; Wiggins, S.M.; Boyd, M.; Sorensen, A.; Chalmers, A.; Schettino, G.; Subiel, A.; DesRosiers, C.; et al. Laser-plasma generated very high energy electrons (VHEEs) in radiotherapy. Proc. SPIE 2017, 10239, 61–69. [Google Scholar] [CrossRef]
- Poppinga, D.; Kranzer, R.; Farabolini, W.; Gilardi, A.; Corsini, R.; Wyrwoll, V.; Looe, H.K.; Delfs, B.; Gabrisch, L.; Poppe, L. VHEE beam dosimetry at CERN linear electron accelerator for research under ultra-high dose rate conditions. Biomed. Phys. Eng. Express 2020, 7, 015012. [Google Scholar] [CrossRef] [PubMed]
- Kokurewicz, K.; Brunetti, E.; Welsh, G.H.; Wiggins, S.M.; Boyd, M.; Sorensen, A.; Chalmers, A.J.; Schettino, G.; Subiel, A.; DesRosiers, C.; et al. Focused very high-energy electron beams as a novel radiotherapy modality for producing high-dose volumetric elements. Sci. Rep. 2019, 9, 10837. [Google Scholar] [CrossRef] [PubMed]
- Kaiser, A.; Eley, J.G.; Onyeuku, N.E.; Rice, S.R.; Wright, C.C.; McGovern, N.E.; Sank, M.; Zhu, M.; Vujaskovic, Z.; Simone, C.B.; et al. Proton Therapy Delivery and Its Clinical Application in Select Solid Tumor Malignancies. J. Vis. Exp. 2019, 144, e58372. [Google Scholar] [CrossRef]
- Giuliano, L.; Franciosini, G.; Palumbo, L.; Aggar, L.; Dutreix, M.; Faillace, L.; Favaudon, V.; Felici, G.; Galante, F.; Mostacci, A.; et al. Characterization of Ultra-High-Dose Rate Electron Beams with Electron Flash Linac. Appl. Sci. 2023, 13, 631. [Google Scholar] [CrossRef]
- Montay-Gruel, P.; Petersson, K.; Jaccard, M.; Boivin, G.; Germond, J.-F.; Petit, B.; Doenlen, R.; Favaudon, V.; Bochud, F.; Bailat, C.; et al. Irradiation in a flash: Unique sparing of memory in mice after whole brain irradiation with dose rates above 100 Gy/s. Radiother. Oncol. 2017, 124, 365–369. [Google Scholar] [CrossRef] [PubMed]
- Desrosiers, C.; Moskvin, V.; Bielajew, A.F.; Papiez, L. 150–250 MeV electron beams in radiation therapy. Phys. Med. Biol. 2000, 45, 1781–1805. [Google Scholar] [CrossRef]
- Chaudhary, P.; Shukla, S.K.; Suman, S. Editorial: Multifaceted Approaches Combining Low or High LET Radiation and Pharmacological Interventions in Cancer and Radioprotection: From Bench to Bedside. Front. Oncol. 2022, 12, 880607. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, L.; Rohrer, S.; Hoffmann, L.; Præstegaard, L.H.; Ankjærgaard, C.; Andersen, C.E.; Kanouta, E.; Johansen, J.G.; Sahlertz, M.; Nijkamp, J.; et al. Electron vs proton FLASH radiation on murine skin toxicity. Radiother. Oncol. 2025, 206, 110796. [Google Scholar] [CrossRef] [PubMed]
- Rongo, M.G.; Cavallone, M.; Patriarca, A.; Leite, A.M.; Loap, P.; Favaudon, V.; Crehange, G.; De Marzi, L. Back to the Future: Very High-Energy Electrons (VHEEs) and their potential applications in Radiation Therapy. Cancers 2021, 13, 4942. [Google Scholar] [CrossRef]
- Hogstrom, K.R.; Almond, P.R. Review of electron beam therapy physics. Phys. Med. Biol. 2006, 51, R455–R489. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.; Fix, M.K.; Henzen, D.; Frei, D.; Frauchiger, D.; Loessl, K.; Stampanoni, M.F.M.; Manser, P. Electron beam collimation with a photon MLC for standard electron treatments. Phys. Med. Biol. 2017, 63, 025017. [Google Scholar] [CrossRef] [PubMed]
- Krempien, R.; Roeder, F. Intraoperative radiation therapy (IORT) in pancreatic cancer. Radiat. Oncol. 2017, 12, 8. [Google Scholar] [CrossRef]
- Vozenin, M.-C.; De Fornel, P.; Petersson, K.; Favaudon, V.; Jaccard, M.; Germond, J.-F.; Petit, B.; Burki, M.; Ferrand, G.; Patin, D.; et al. The Advantage of FLASH Radiotherapy Confirmed in Mini-pig and Cat-cancer Patients. Clin. Cancer Res. 2018, 25, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Vozenin, M.-C.; Hendry, J.; Limoli, C. Biological Benefits of Ultra-high Dose Rate FLASH Radiotherapy: Sleeping Beauty Awoken. Clin. Oncol. 2019, 31, 407–415. [Google Scholar] [CrossRef]
- Wilson, J.D.; Hammond, E.M.; Higgins, G.S.; Petersson, K. Ultra-High Dose Rate (FLASH) Radiotherapy: Silver Bullet or Fool’s Gold? Front. Oncol. 2020, 17, 1563. [Google Scholar] [CrossRef]
- Gazis, N.; Bignami, A.; Trachanas, E.; Alexopoulos, T.; Telali, I.; Apostolopoulos, T.; Pramatari, K.; Karagiannaki, K.; Kotsopoulos, D.; Gazis, E. The Innovative FEL design by the CompactLight collaboration. J. Phys. Conf. Ser. 2022, 2375, 012006. [Google Scholar] [CrossRef]
- Gazis, N.; Tanke, E.; Apostolopoulos, T.; Pramatari, K.; Rochow, R.; and Gazis, E. Light source in Europe-Case Study: The CompactLight collaboration. Instruments 2019, 3, 43. [Google Scholar] [CrossRef]
- EuPRAXIA PP Project. Available online: https://www.eupraxia-pp.org/ (accessed on 10 September 2025).
- Giribono, A.; Alesini, D.; Bacci, A.; Bellaveglia, M.; Cardelli, F.; Chiadroni, E.; Del Dotto, A.; Faillace, L.; Ferrario, M.; Gallo, A.; et al. Electron beam analysis and sensitivity studies for the EuPRAXIA@SPARC LAB RF injector. J. Phys. Conf. Ser. 2024, 2687, 032022. [Google Scholar] [CrossRef]
- Bayart, E.; Flacco, A.; Delmas, O.; Pommarel, L.; Levy, D.; Cavallone, M.; Megnin-Chanet, F.; Deutsch, E.; and Malka, V. Fast dose fractionation using ultra-short laser accelerated proton pulses can increase cancer cell mortality, which relies on functional PARP1 protein. Sci. Rep. 2019, 9, 10132. [Google Scholar] [CrossRef]
- Zhu, H.; Li, J.; Deng, X.; Qiu, R.; Wu, Z.; Zhang, H. Modeling of cellular responses after FLASH irradiation: A quantitative analysis based on the radiolytic oxygen depletion hypothesis. arXiv 2021, arXiv:2105.13138. [Google Scholar] [CrossRef]
- Rieker, V.F.; Farabolini, W.; Corsini, R.; Batchman, J.J.; Korysko, P.; Dyks, L.A. VHEE high dose rate dosimetry studies in CLEAR. In Proceedings of the 13th International Particle Accelerator Conference, Bangkok, Thailand, 12–17 June 2022. [Google Scholar] [CrossRef]
- Lagzda Aangal-Kalinin, D.; Jones, J.; Aitkenhead, A.; Kirkby, K.J.; MacKay, R.; Van Herk, M.; Farabolini, W.; Zeeshan, S.; Jones, R.M. Influence of heterogeneous media on Very High Energy Electron (VHEE) penetration and a Monte Carlo-based comparison with existing radiotherapy modalities. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2020, 482, 70–81. [Google Scholar] [CrossRef]
- Grunwald, K.; Desch, K.; Elsner, D.; Proft, D.; Thome, L. Dose simulation of Ultra-High Energy Electron beams for novel FLASH radiation therapy applications. In Proceedings of the 14th International Particle Accelerator Conference, Venice, Italy, 7–12 May 2023; pp. 4993–4995. [Google Scholar] [CrossRef]
- Papiez, L.; DesRosiers, C.M.; Moskvin, V. Very high energy electrons (50-250 MeV) and Radiation Therapy. Technol. Cancer Res. Treat. 2002, 1, 1050110. [Google Scholar] [CrossRef]
- Borghini, A.; Labate, L.; Piccinini, S.; Panaino, C.M.V.; Andreassi, M.G.; Gizzi, L.A. FLASH radiotherapy: Expectations, Challenges and current knowledge. Int. J. Mol. Sci. 2024, 25, 2546. [Google Scholar] [CrossRef]
- Maxim, P.G.; Tantawi, S.G.; Loo, B.W. PHASER: A platform for clinical translation of FLASH cancer radiotherapy. Radiother. Oncol. 2019, 139, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Korysko, P.; Dosanjh, M.; Dyks, L.A.; Bateman, J.J.; Robertson, C.; Corsini, R.; Farabolini, W.; Gilardi, A.; Sjobak, K.N.; Ricker, V. Updates, status and experiments of CLEAR, the CERN Linear Electron Accelerator for Research. In Proceedings of the 13th International Particle Accelerator Conference, Bangkok, Thailand, 12–17 June 2022. [Google Scholar] [CrossRef]
- Burkart, F.; Assmann, R.W.; Dinter, H.; Jaster-Merz, S.; Kuropka, W.; Mayer, F.; Stacey, B.; Vinatier, T. The ARES linac at DESY. In Proceedings of the 31st International Linear Accelerator Conference, Liverpool, UK, 28 August–2 September 2022. [Google Scholar] [CrossRef]
- Vinatier, T.; Assmann, R.W.; Burkart, F.; Dinter, H.; Jaster-Merz, S.; Kellermeier, M.; Kuropka, W.; Mayer, F.; Stacey, B. Characterization of relativistic electron bunch duration and travelling wave structure phase velocity based on momentum spectra. Phys. Rev. Accel. Beams 2023, 27, 022801. [Google Scholar] [CrossRef]
- Clarke, J.A.; Angal-Kalinin, D.; Bliss, N.; Buckley, R.; Buckley, S.; Cash, R.; Corlett, P.; Cowie, L.; Cox, G.; Diakun, G.P.; et al. CLARA Conceptual Design Report. Sci. Technol. Facil. Counc. 2013, 9, T05001. Available online: https://www.astec.stfc.ac.uk/Pages/CLARA_CDRv2.pdf (accessed on 10 September 2025). [CrossRef]
- Angal-Kalinin, D.; Bainbridge, A.; Brynes, A.D.; Buckley, R.; Buckley, S.; Burt, G.C.; Cash, R.; Castaneda, H.M.; Christie, D. Design, specifications, and first beam measurements of the compact linear accelerator for research and applications front end. Phys. Rev. Accel. Beams 2020, 23, 044801. [Google Scholar] [CrossRef]
- Angal-Kalinin, D.; Bainbridge, A.; Jones, J.K.; Pacey, T.H.; Saveliev, Y.M.; Snedden, E.W. The design of the Full Energy Beam Exploitation (FEBE) beamline on CLARA. In Proceedings of the 31st International Linear Accelerator Conference, Liverpool, UK, 28 August–2 September 2022. [Google Scholar] [CrossRef]
- Snedden, E.W.; Angal-Kalinin, D.; Bainbridge, A.R.; Brynes, A.D.; Buckley, S.R.; Dunning, D.J.; Henderson, J.R.; Jones, J.K.; Middleman, K.J.; Overton, T.J.; et al. Specification and design for full energy beam exploitation of the compact linear accelerator for research applications. Phys. Rev. Accel. Beams 2024, 27, 041602. [Google Scholar] [CrossRef]
- Palumbo, L.; Bosco, F.; Carillo, M.; Chiadroni, E.; De Arcangelis, D.; De Gregorio, A.; Ficcadeni, I.; Francescone, D.; Franciosini, G.; Guliano, L.; et al. SAFEST: A compact C-band linear accelerator for VHEE-FLASH radiotherapy. In Proceedings of the 14th International Particle Accelerator Conference, Venice, Italy, 7–12 May 2023. [Google Scholar] [CrossRef]
- Guiliano, L.; Carillo, M.; Chiadroni, E.; De Arcangelis, D.; De Gregorio, A.; Ficcadeni, I.; Francescone, D.; Franciosini, G.; Magi, M.; Migliorati, M.; et al. SAFEST project, a compact C-band RF linac for VHEE FLASH radiotherapy. In Proceedings of the 15th International Particle Accelerator Conference, Nashville, TN, USA, 19–24 May 2024. [Google Scholar] [CrossRef]
- Flöttmann, K. ASTRA, A Space Charge Tracking Algorithm, Version 3.2; DESY: Hamburg, Germany, 2017. Available online: https://www.desy.de/~mpyflo/Astra_manual/Astra-Manual_V3.2.pdf (accessed on 10 September 2025).
- Bhat, C.M.; Carneiro, J.-P.; Fliller, R.P.; Kazakevich, G.; Ruan, J.; Santucci, J. Envelope and multi-slit emittance measurements at Fermilab A0-photoinjector and comparison with simulations. In Proceedings of the PAC07, Albouquerque, NM, USA, 25–29 June 2007; p. THPMN097. Available online: https://accelconf.web.cern.ch/p07/papers/THPMN097.pdf (accessed on 10 September 2025).
- Prat, E.; Aiba, M.; Bettoni, S.; Beutner, B.; Reiche, S.; Schietinger, T. Emittance measurements and minimization at the SwissFEL injector test facility. Phys. Rev. ST Accel. Beams 2014, 17, 104401. [Google Scholar] [CrossRef]
- Latini, G.; Chiadroni, E.; Mostacci, A.; Martinelli, V.; Serenellini, V.; Silvi, G.J.; Pioli, S. Design of machine learning-based algorithms for virtualized diagnostic on SPARC_LAB accelerator. Photonics 2024, 11, 516. [Google Scholar] [CrossRef]
- FLUKA. Available online: https://www.fluka.eu (accessed on 10 September 2025).
- Rata, R.; Lee, S.C.; Barlow, R.J. FLUKA simulations for radiation protection at 3 different facilities. In Proceedings of the IPAC2016, 7th International Particle Accelerator Conference, Busan, Republic of Korea, 10 May 2016; p. TUPOY018. [Google Scholar] [CrossRef]
- Bõhlen, T.T.; Germond, J.-F.; Desorgher, L.; Veres, I.; Bratel, A.; Landstrõm, E.; Engwall, E.; Herrera, F.G.; Ozsahin, E.M.; Bourhis, J.; et al. Very high-energy electron therapy as light-particle alternative to transmission proton FLASH therapy—An evaluation of dosimetric performances. Radiother. Oncol. 2024, 194, 110177. [Google Scholar] [CrossRef] [PubMed]
- Khallouqi, A.; Halimi, A.; El Rhazouani, O.; Mesradi, M.R.; El Mansouri, K.; Sekkat, H. Comparing tissue-equivalent properties of polyester and epoxy resins with PMMA material using Gate/Geant4 simulation toolkit. Radiat. Phys. Chem. 2024, 220, 111702. [Google Scholar] [CrossRef]
- Queralt, X. Radiation Safety, Chapter II.12, CERN Yellow Reports: Monographs, CERN-2024-003. In The Joint Universities Accelerator School (JUAS)—Courses and Exercises, Proceedings of the 30th Joint Universities Accelerator School (JUAS), Geneva, Switzerland, 28 November 2024; Métral, E., Ed.; CERN: Geneva, Switzerland, 2024. [Google Scholar] [CrossRef]
- Scarmelotto, A.; Delprat, V.; Michiels, C.; Lucas, S.; Heuskin, A.-C. The oxygen puzzle in FLASH radiotherapy: A comprehensive review and experimental outlook. Clin. Transl. Radiat. Oncol. 2024, 49, 100860. [Google Scholar] [CrossRef]
- Gazis, N.; Tanke, E.; Trachanas, E.; Apostolopoulos, T.; Karagiannaki, A.; Pramatari, K.; Telali, I.; Tzanetou, K.; Gazis, E. Photocathode study of the CompactLight Collaboration for a novel XFEL development. Int. J. Mod. Phys. Conf. Ser. 2020, 50, 2060007. [Google Scholar] [CrossRef]
- Schuler, E.; Acharya, M.; Montay-Gruel, P.; Loo, B., Jr.; Vozenin, M.-C.; Maxim, G.P. Ultra-high dose rate electron beams and the FLASH effect: From preclinical evidence to a new radiotherapy paradigm. Med. Phys. 2022, 4993, 2082–2095. [Google Scholar] [CrossRef]
- Wu, Y.F.; No, H.J.; Breitkreutz, D.Y.; Mascia, A.E.; Moeckli, R.; Bourhis, J.; Schüler, E.; Maxim, P.G.; Loo, B.W. Technological basis for clinical trials in FLASH radiation therapy: A review. Appl. Rad. Oncol. 2021, 10, 6–14. Available online: https://cdn.agilitycms.com/applied-radiation-oncology/PDFs/issues/ARO_06-21_all.pdf (accessed on 10 September 2025). [CrossRef]
- Schüler, E.; Eriksson, K.; Hynning, E.; Hancock, S.L.; Hiniker, S.M.; Bazalova-Carter, M.; Wong, T.; Le, Q.; Loo, B.W.; Maxim, P.G. Very high-energy electron (VHEE) beams in radiation therapy; treatment plan comparison between VHEE, VMAT, and PPBS. Med. Phys. 2017, 44, 2544–2555. [Google Scholar] [CrossRef] [PubMed]
- Bazalova-Carter, M.; Qu, B.; Palma, B.; Hårdemark, B.; Hynning, E.; Jensen, C.; Maxim, P.G.; Loo, B.W. Treatment planning for radiotherapy with very high-energy electron beams and comparison of VHEE and VMAT plans. Med. Phys. 2015, 42, 2615–2625. [Google Scholar] [CrossRef] [PubMed]
- Bedford, J.L.; Oelfke, U. Treatment planning for very high energy electrons: Studies that indicate the potential of the modality. Phys. Imaging Radiat. Oncol. 2024, 32, 100670. [Google Scholar] [CrossRef] [PubMed]
- D’Andrea, F.S.; Chuter, R.; Aitkenhead, A.H.; MacKay, R.I.; Jones, R.M. Comparative treatment planning of very high-energy electrons and photon volumetric arc theory: Optimising energy and beam parameters. Phys. Imaging Radiat. Oncol. 2025, 33, 100732. [Google Scholar] [CrossRef] [PubMed]
Beam Characteristics | Conventional RT | FLASH RT |
---|---|---|
Dose Per Pulse | ~0.4 mGy | >1 Gy |
Dose Rate | ~102 Gy/s | ~105 Gy/s |
Mean Dose Rate | ~0.1 Gy/s | ~100 Gy/s |
Total Treatment Time | ~seconds | <500 ms |
Factors | Hadron Therapy | e-FLASH RT |
---|---|---|
Mechanism | hits the tumor volume by causing heavy particles to deposit; most energy is in a specific tumor location | reduces toxicity through high dose rates, sparing the health tissues |
Biological | provides high linear energy transfer (LET), effective against radio-resistant tumors | maintains effectiveness against tumors due to the ultra-fast delivery time of beam pulse |
Precision | offers superior physical targeting and dose distribution for deep-seated tumors | offers a biological advantage in sparing healthy tissues |
Technology | uses established accelerator technology: cyclotron or synchrotron | a new generation of linear electron compact accelerator is needed with very high intensity and ultra-fast beam pulse |
Applications | ideal for deeply located and inoperable tumors | treats skin cancer and soft tissue sarcomas |
Size–Cost | a hadron synchrotron has a sizeable diameter of about one hundred meters and costs hundreds of millions of EUR | an electron linac is tens of meters in length and costs tens of millions of EUR |
Beam Parameter | CLARA | CLEAR | ARES | SAFEST |
---|---|---|---|---|
Energy Range (MeV) | 50–250 | 60–220 | 59–155 | 80–100 |
Bunch Charge (nC) | 0.005–0.25 | 0.01–1.5 | 0.00001–0.2 | 200 |
Relative Energy Spread | 0.01% (low charge) | <0.2% | 0.039% | 0.2% |
0.1% (high Charge) | ||||
Pulse Repetition Frequency (Hz) | 1–100 | 0.8–10 | 1–50 | 100 |
Micro-bunches per Train | 1 | 1–150 | 1 | n/a |
Beam Exit Window | 250 μm Be | 100 μm (Al) | 50 μm (Ti) | n/a |
Parameters | Unit | Value |
---|---|---|
Photocathode material | - | Cs2Te |
RMS laser spot size (XY) | mm | 0.90 |
Laser pulse duration | ps | 10.00 |
Laser rise/fall time | ps | 7.00 |
Laser wavelength | nm | 262.0 (UVC) |
Laser photon energy | eV | 4.73 |
Initial kinetic energy | eV | 1.61 |
Beam charge | nC | 1.00 |
Electric field applied at cathode | MV/m | 99.00 |
Beam energy distribution | Isotropic | |
Beam longitudinal distribution | Uniform Ellipsoid | |
Beam transverse distribution | Radial |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gazis, N.; Gazis, E. Review of VHEE Beam Energy Evolution for FLASH Radiation Therapy Under Ultra-High Dose Rate (UHDR) Dosimetry. Quantum Beam Sci. 2025, 9, 29. https://doi.org/10.3390/qubs9040029
Gazis N, Gazis E. Review of VHEE Beam Energy Evolution for FLASH Radiation Therapy Under Ultra-High Dose Rate (UHDR) Dosimetry. Quantum Beam Science. 2025; 9(4):29. https://doi.org/10.3390/qubs9040029
Chicago/Turabian StyleGazis, Nikolaos, and Evangelos Gazis. 2025. "Review of VHEE Beam Energy Evolution for FLASH Radiation Therapy Under Ultra-High Dose Rate (UHDR) Dosimetry" Quantum Beam Science 9, no. 4: 29. https://doi.org/10.3390/qubs9040029
APA StyleGazis, N., & Gazis, E. (2025). Review of VHEE Beam Energy Evolution for FLASH Radiation Therapy Under Ultra-High Dose Rate (UHDR) Dosimetry. Quantum Beam Science, 9(4), 29. https://doi.org/10.3390/qubs9040029