Previous Issue
Volume 9, September
 
 

Quantum Beam Sci., Volume 9, Issue 4 (December 2025) – 9 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
12 pages, 2152 KB  
Article
A Compact Cryogenic Environment for In Situ Neutron Diffraction Under Mechanical Loading
by Dunji Yu, Yan Chen, Harley Skorpenske and Ke An
Quantum Beam Sci. 2025, 9(4), 36; https://doi.org/10.3390/qubs9040036 - 5 Dec 2025
Viewed by 126
Abstract
Understanding the deformation mechanisms of materials at cryogenic temperatures is crucial for cryogenic engineering applications. In situ neutron diffraction is a powerful technique for probing such mechanisms under cryogenic conditions. In this study, we present the development of a compact cryogenic environment (CCE) [...] Read more.
Understanding the deformation mechanisms of materials at cryogenic temperatures is crucial for cryogenic engineering applications. In situ neutron diffraction is a powerful technique for probing such mechanisms under cryogenic conditions. In this study, we present the development of a compact cryogenic environment (CCE) designed to facilitate in situ neutron diffraction experiments under mechanical loading at temperatures as low as 77 K with a maximum cooling rate of 6 K/min. The CCE features a polystyrene foam cryogenic chamber, aluminum blocks serving as neutron-transparent cold sinks, a liquid nitrogen dosing system for cryogen delivery, a nitrogen gas flow control system for thermal management, a process controller for temperature control, and a pair of thermally isolated grip adapters for mechanical testing. The CCE achieves reliable temperature control with minimal neutron attenuation. Utilizing this setup, we conducted three in situ neutron diffraction tensile tests on a 316L stainless steel at 77, 173, and 298 K, respectively. The results highlight the pronounced effects of cryogenic temperatures on the material’s deformation mechanisms, underscoring both the significance of cryogenic deformation studies and the effectiveness of the CCE. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2025)
Show Figures

Figure 1

18 pages, 2011 KB  
Article
Implementation and Applications of a Precision Weak-Field Sample Environment for Polarized Neutron Reflectometry at J-PARC
by Takayasu Hanashima, Kazuhiro Akutsu-Suyama, Yoshimasa Ohe, Satoshi Kasai, Hiroshi Kira, Azusa N. Hattori, Ai I. Osaka, Hidekazu Tanaka, Jun-Ichi Suzuki and Kazuhisa Kakurai
Quantum Beam Sci. 2025, 9(4), 35; https://doi.org/10.3390/qubs9040035 - 3 Dec 2025
Viewed by 215
Abstract
Polarized neutron reflectometry (PNR) analyzes surface and interfacial structures of materials. For the SHARAKU reflectometer at the Materials and Life Science Experimental Facility in the Japan Proton Accelerator Research Complex, precise measurements under weak magnetic fields, which are critical for modern spintronics, have [...] Read more.
Polarized neutron reflectometry (PNR) analyzes surface and interfacial structures of materials. For the SHARAKU reflectometer at the Materials and Life Science Experimental Facility in the Japan Proton Accelerator Research Complex, precise measurements under weak magnetic fields, which are critical for modern spintronics, have long been challenging. To address this issue, we developed a precise weak-field sample environment equipped with a newly designed coil system. The magnetic field at the sample position can be applied within the surface/interface plane, either in the scattering plane (horizontal configuration) or perpendicular to it (vertical configuration). The horizontal configuration achieved high polarization efficiency across a stable field range, whereas the vertical configuration enabled the experiments to cross zero into negative fields. We demonstrated the instrument’s capability by resolving the remanent magnetic structure of an Fe film. Its applicability to soft matter was proven through analysis of a cellulose thin film with roughness using magnetic contrast variation PNR. In this case, precise weak-field control is essential to tune the magnetic contrast from the reference layer beneath the soft film. These results establish the system as a versatile platform for future PNR and polarized off-specular scattering experiments across a wide range of materials. Full article
(This article belongs to the Section Instrumentation and Facilities)
Show Figures

Figure 1

13 pages, 2712 KB  
Article
Temporal Variation in Nano-Enhanced Laser-Induced Plasma Spectroscopy (NELIPS)
by Ashraf EL Sherbini and AbdelNasser Aboulfotouh
Quantum Beam Sci. 2025, 9(4), 34; https://doi.org/10.3390/qubs9040034 - 28 Nov 2025
Viewed by 171
Abstract
The NELIPS acronym stands for Nano-Enhanced Laser-Induced Plasma Spectroscopy. Within this framework, the temporal variation in the enhanced plasma emissions from pure nanomaterials with respect to corresponding bulk materials was monitored as a function of delay time in the range from 1 to [...] Read more.
The NELIPS acronym stands for Nano-Enhanced Laser-Induced Plasma Spectroscopy. Within this framework, the temporal variation in the enhanced plasma emissions from pure nanomaterials with respect to corresponding bulk materials was monitored as a function of delay time in the range from 1 to 5–11 μs. Six different pure nanomaterials were employed including silver, zinc, aluminum, titanium, iron, and silicon. Radiation from pulsed Nd: YAG laser at wavelength 1064 nm was used to induce both bulk and pure nanomaterial plasmas under similar experimental conditions. Plasma emissions from both targets were monitored via optical emission spectroscopy technique (OES). The spectral line intensities (Signal-To-Noise ratio S/N) from the pure nanomaterial plasma turns out to decline in a constant logarithmic manner but at a slower rate than that from the corresponding bulk material plasma. Consequently, the measured average enhanced emission from different nanomaterials features an increase in an exponential manner with delay time. This trend of increase was accounted for via mathematical elaboration of enhanced emission based on the measured Signal-To-Noise data. Plasma parameters (electron density and temperature) were precisely measured at each delay time as well. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2025)
Show Figures

Figure 1

18 pages, 4770 KB  
Review
Japanese Sword Studies Using Neutron Bragg-Edge Transmission and Computed Tomography
by Yoshiaki Kiyanagi, Kenichi Oikawa, Yoshihiro Matsumoto, Joseph Don Parker, Kenichi Watanabe, Hirotaka Sato and Takenao Shinohara
Quantum Beam Sci. 2025, 9(4), 33; https://doi.org/10.3390/qubs9040033 - 24 Nov 2025
Viewed by 249
Abstract
Japanese swords have a history of more than one thousand years and are recognized as metallic art objects. The sword-making process is not clearly understood, especially for old swords made before about 1600 A.D. Knowledge of structural information such as crystallite sizes and [...] Read more.
Japanese swords have a history of more than one thousand years and are recognized as metallic art objects. The sword-making process is not clearly understood, especially for old swords made before about 1600 A.D. Knowledge of structural information such as crystallite sizes and anisotropy is important to understand the sword characteristics and the sword-making process. Bragg-edge transmission imaging is a useful noninvasive method that can extract this structural information continuously over a wide area of the sword. Neutron CT is powerful enough to detect quenched areas, voids, and precipitates. Using both methods, we measured more than 10 swords and obtained information on the two-dimensional crystallite size distribution, anisotropy parameter, lattice plane spacing, and quenched regions. Comparison of the results indicated the following features: the crystallite size distributions showed two patterns: an almost uniform distribution of small-sized crystallites, and mixed distributions of large- and small-sized crystallites. The patterns were observed in different eras and places. The preferred orientation showed different patterns, and strain areas due to quenching were observed in many swords. The quenched area showed a trend that the quenching was weaker for old swords than newer ones. CT images showed the boundaries of the quenched regions and a void in the layered structure for one sword, for which a layered structure was confirmed. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2025)
Show Figures

Figure 1

65 pages, 2194 KB  
Review
Advances in Pulsed Liquid-Based Nanoparticles: From Synthesis Mechanism to Application and Machine Learning Integration
by Begench Gurbandurdyyev, Berdimyrat Annamuradov, Sena B. Er, Brayden Gross and Ali Oguz Er
Quantum Beam Sci. 2025, 9(4), 32; https://doi.org/10.3390/qubs9040032 - 5 Nov 2025
Viewed by 1313
Abstract
Pulsed liquid-based nanoparticle synthesis has emerged as a versatile and environmentally friendly approach for producing a wide range of nanomaterials with tunable properties. Unlike conventional chemical methods, pulsed techniques—such as pulsed laser ablation in liquids (PLAL), electrical discharge, and other energy-pulsing methods—enable the [...] Read more.
Pulsed liquid-based nanoparticle synthesis has emerged as a versatile and environmentally friendly approach for producing a wide range of nanomaterials with tunable properties. Unlike conventional chemical methods, pulsed techniques—such as pulsed laser ablation in liquids (PLAL), electrical discharge, and other energy-pulsing methods—enable the synthesis of high-purity nanoparticles without the need for toxic precursors or stabilizing agents. This review provides a comprehensive overview of the fundamental mechanisms driving nanoparticle formation under pulsed conditions, including plasma–liquid interactions, cavitation, and shockwave dynamics. We discuss the influence of key synthesis parameters, explore different pulsed energy sources, and highlight the resulting effects on nanoparticle size, shape, and composition. The review also surveys a broad spectrum of material systems and outlines advanced characterization techniques for analyzing synthesized nanostructures. Furthermore, we examine current and emerging applications in biomedicine, catalysis, sensing, energy, and environmental remediation. Finally, we address critical challenges such as scalability, reproducibility, and mechanistic complexity, and propose future directions for advancing the field through hybrid synthesis strategies, real-time diagnostics, and machine learning integration. By bridging mechanistic insights with practical applications, this review aims to guide researchers toward more controlled, sustainable, and innovative nanoparticle synthesis approaches. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2025)
Show Figures

Figure 1

13 pages, 6797 KB  
Article
Multi-Scale PbSe Structures: A Complete Transformation Using a Biphasic Mixture of Precursors
by Hugo Rojas-Chávez, Nina Daneu, Guillermo Carbajal-Franco, Marcela Achimovičová, José M. Juárez-García and Manuel A. Valdés-Madrigal
Quantum Beam Sci. 2025, 9(4), 31; https://doi.org/10.3390/qubs9040031 - 14 Oct 2025
Viewed by 460
Abstract
With the recently acquired knowledge of the use of a multiphase mixture of precursors under electron beam irradiation (EBI), new possibilities were opened for this technique. In the present work, we obtained quantum dots, nanocrystals, nanoparticles, and grains of PbSe with a sintered [...] Read more.
With the recently acquired knowledge of the use of a multiphase mixture of precursors under electron beam irradiation (EBI), new possibilities were opened for this technique. In the present work, we obtained quantum dots, nanocrystals, nanoparticles, and grains of PbSe with a sintered appearance using a biphasic mixture of PbSe and PbSeO3 under EBI. High-energy milling was used to obtain the biphasic mixture of precursors, which is composed of agglomerates with sizes ranging from ~400 to ~1700 nm, but nanoparticles were also present. The structural details of the biphasic mixture were studied using X-ray diffraction and the Rietveld method. The driving force of the EBI caused instantaneous physical and chemical changes due to the high internal energy of the biphasic mixture of precursors. The abrupt release of high internal energy, due to localized heating effects during EBI, gave way to the formation of multi-scale PbSe structures. Large particles with a sintered appearance formed near the electron beam impact point and in regions between ~800 nm and ~1400 nm, while well-defined faceted nanostructures were predominantly observed beyond ~1400 nm. The latter tended to be surrounded by {200} facets as the main growth direction. Furthermore, coalescence was anticipated to occur during EBI. It occurred simultaneously with the sublimation mechanism when the particle size was below the critical size of 10 nm. Multi-scale PbSe structures, obtained via EBI, are promising for developing thermoelectric devices due to their crystallinity and nanostructured features. Full article
(This article belongs to the Special Issue New Challenges in Electron Beams)
Show Figures

Figure 1

12 pages, 1523 KB  
Article
Methodological Approach to the Characterization of Single-Photon Sources Using a Hanbury Brown–Twiss Interferometer in a Laser-Excited Fluorescence Microscope
by Sergey Mikushev and Aleksei Kalinichev
Quantum Beam Sci. 2025, 9(4), 30; https://doi.org/10.3390/qubs9040030 - 13 Oct 2025
Viewed by 687
Abstract
The development of quantum-enhanced technologies requires single-photon sources, as well as methods for their characterization and verification. Here, we describe a methodology for measuring the correlation function of a single-photon source using an experimental setup that comprises a laser-excited fluorescence microscope equipped with [...] Read more.
The development of quantum-enhanced technologies requires single-photon sources, as well as methods for their characterization and verification. Here, we describe a methodology for measuring the correlation function of a single-photon source using an experimental setup that comprises a laser-excited fluorescence microscope equipped with a Hanbury Brown–Twiss intensity interferometer as one of the detection systems. Measurements of the response function of the device and the reference samples are performed. The second-order autocorrelation function of the exciton state of GaAs quantum dots in AlGaAs nanowires is obtained and reveals a single-photon emission. Full article
(This article belongs to the Section Spectroscopy Technique)
Show Figures

Figure 1

19 pages, 4096 KB  
Review
Review of VHEE Beam Energy Evolution for FLASH Radiation Therapy Under Ultra-High Dose Rate (UHDR) Dosimetry
by Nikolaos Gazis and Evangelos Gazis
Quantum Beam Sci. 2025, 9(4), 29; https://doi.org/10.3390/qubs9040029 - 9 Oct 2025
Viewed by 1236
Abstract
Very-high-energy electron (VHEE) beams, ranging from 50 to 300 or 400 MeV, are the subject of intense research investigation, with considerable interest concerning applications in radiation therapy due to their accurate energy deposition into large and deep-seated tissues, sharp beam edges, high sparing [...] Read more.
Very-high-energy electron (VHEE) beams, ranging from 50 to 300 or 400 MeV, are the subject of intense research investigation, with considerable interest concerning applications in radiation therapy due to their accurate energy deposition into large and deep-seated tissues, sharp beam edges, high sparing properties, and minimal radiation effects on normal tissues. The very-high-energy electron beam, which ranges from 50 to 400 MeV, and Ultra-High-Energy Electron beams up to 1–2 GeV, are considered extremely effective for human tumor therapy while avoiding the spatial requirements and cost of proton and heavy ion facilities. Many research laboratories have developed advanced testing infrastructures with VHEE beams in Europe, the USA, Japan, and other countries. These facilities aim to accelerate the transition to clinical application, following extensive simulations for beam transport that support preclinical trials and imminent clinical deployment. However, the clinical implementation of VHEE for FLASH radiation therapy requires advances in several areas, including the development of compact, stable, and efficient accelerators; the definition of sophisticated treatment plans; and the establishment of clinically validated protocols. In addition, the perspective of VHEE for accessing ultra-high dose rate (UHDR) dosimetry presents a promising procedure for the practical integration of FLASH radiotherapy for deep tumors, enhancing normal tissue sparing while maintaining the inherent dosimetry advantages. However, it has been proven that a strong effort is necessary to improve the main operational accelerator conditions, ensuring a stable beam over time and across space, as well as compact infrastructure to support the clinical implementation of VHEE for FLASH cancer treatment. VHEE-accessing ultra-high dose rate (UHDR) perspective dosimetry is integrated with FLASH radiotherapy and well-prepared cancer treatment tools that provide an advantage in modern oncology regimes. This study explores technological progress and the evolution of electron accelerator beam energy technology, as simulated by the ASTRA code, for developing VHEE and UHEE beams aimed at medical applications. FLUKA code simulations of electron beam provide dose distribution plots and the range for various energies inside the phantom of PMMA. Full article
(This article belongs to the Section Instrumentation and Facilities)
Show Figures

Figure 1

27 pages, 2979 KB  
Review
Review of EDM-Based Machining of Nickel–Titanium Shape Memory Alloys
by Sujeet Kumar Chaubey and Kapil Gupta
Quantum Beam Sci. 2025, 9(4), 28; https://doi.org/10.3390/qubs9040028 - 26 Sep 2025
Viewed by 1191
Abstract
Shape memory alloy (SMA) materials are valued for their shape memory effect, superelasticity, and biocompatibility, making them an ideal choice for applications in biomedical, aerospace, and actuator fields. Nickel–titanium (NiTi) SMA is a promising biomedical material. It is widely used in the manufacture [...] Read more.
Shape memory alloy (SMA) materials are valued for their shape memory effect, superelasticity, and biocompatibility, making them an ideal choice for applications in biomedical, aerospace, and actuator fields. Nickel–titanium (NiTi) SMA is a promising biomedical material. It is widely used in the manufacture of biomedical instruments, devices, implants, and surgical tools. However, its complex thermo-mechanical behavior and poor machinability pose challenges for conventional machining. To manufacture high-quality nitinol parts, traditional machining processes are being replaced by advanced machining technologies. Electric discharge machining (EDM) is an advanced machining technique whose mechanism of material removal involves erosion caused by plasma formation and spark generation. It has proven effective for processing difficult-to-machine materials. This review summarizes EDM and its variants, including hybrid EDM, with a focus on machining NiTi-SMA materials for biomedical, aerospace, microelectromechanical systems, and automotive applications, and systematically explores key factors such as process parameters, material removal mechanisms, surface integrity, tool wear, and optimization strategies. This review begins with an introduction to nitinol (i.e., NiTi-SMA) and its variants, followed by an in-depth discussion of plasma formation, spark generation mechanisms, and other key aspects of EDM. It then provides a detailed analysis of notable past research on the machining of NiTi SMA materials using EDM and its variants. This paper concludes with insights into future research directions, aiming to advance EDM-based machining of SMA materials and serve as a valuable resource for researchers and engineers in the field. Full article
(This article belongs to the Section Engineering and Structural Materials)
Show Figures

Figure 1

Previous Issue
Back to TopTop