Numerical Investigation on Effect of Opening Ratio on Structural Performance of Reinforced Concrete Deep Beam Reinforced with CFRP Enhancements
Abstract
:1. Introduction
2. Research Objectives
- Investigate different CFRP strengthening solutions for singly/ doubly RC deep beams on the STM stress web opening.
- Analyze the effectiveness of the suggested strengthening solutions to restore the beams’ shear resistance through a comparison between laboratory testing and the finite element models, then verify numerical predictions.
- Investigate the effect of opening size for doubly/singly reinforced concrete deep beams on STM stress behavior and CFRP’s effect on the capacity of the structure and stress–strain distributions.
3. Model Development and Validation
3.1. Experiment Description
3.2. Finite Element Description
3.3. Validation of the FE Models
4. Parametric Studies
4.1. General Description
4.2. Results and Discussions
4.2.1. Effect of Opening Ratio
4.2.2. Effect of Reinforcement Detailing
4.2.3. Effect of CFRP
5. Application of RC Deep Beam in Infrastructure
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chin, S.C.; Yahaya, F.M.; Ing, D.S.; Kusbiantoro, A.; Chong, W.K. Experimental Study on Shear Strengthening of RC Deep Beams with Large Openings Using CFRP. In Proceedings of the International Conference on Architecture, Structure and Civil Engineering ICASCE-15, Antalya, Turkey, 7–8 September 2015. [Google Scholar] [CrossRef]
- Rahim, N.I.; Mohammed, B.S.; Al-Fakih, A.; Wahab, M.M.A.; Liew, M.S.; Anwar, A.; Amran, Y.H.M. Strengthening the Structural Behavior of Web Openings in RC Deep Beam Using CFRP. Materials 2020, 13, 2804. [Google Scholar] [CrossRef] [PubMed]
- ACI Committee 318. 318-19: Building Code Requirements for Structural Concrete and Commentary. American Concrete Institute ACI. 2019. Available online: https://www.concrete.org/store/productdetail.aspx?ItemID=318U19&Language=English (accessed on 30 October 2020).
- Yang, K.-H.; Chung, H.-S.; Lee, E.-T.; Eun, H.-C. Shear characteristics of high-strength concrete deep beams without shear reinforcements. Eng. Struct. 2003, 25, 1343–1352. [Google Scholar] [CrossRef]
- Mohammed, B.; Bakar, B.H.A.; Choong, K. The Effects of Opening on the Structural Behavior of Masonry Wall Subjected to Compressive Loading-Strain Variation. Open Civ. Eng. J. 2009, 3, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Aarabzadeh, A.; Hizaji, R. Failure Mechanism in Fixed-Ended Reinforced Concrete Deep Beams under Cyclic Load. Int. J. Civ. Environ. Eng. 2017, 11, 562–566. [Google Scholar] [CrossRef]
- Garber, D.B.; Gallardo, J.M.; Huaco, G.D.; Samaras, V.A.; Breen, J.E. Experimental Evaluation of Strut-and-Tie Model of Indeterminate Deep Beam. ACI Struct. J. 2014, 111, 873. [Google Scholar] [CrossRef]
- Ashour, A.; Yang, K.-H. Application of plasticity theory to reinforced concrete deep beams: A review. Mag. Concr. Res. 2008, 60, 657–664. [Google Scholar] [CrossRef] [Green Version]
- El Maaddawy, T.; Sherif, S. FRP composites for shear strengthening of reinforced concrete deep beams with openings. Compos. Struct. 2009, 89, 60–69. [Google Scholar] [CrossRef]
- Cheng, H.T.; Mohammed, B.S.; Mustapha, K.N. Finite element analysis and structural design of pretensioned inverted T-beams with web openings. Front. Archit. Civ. Eng. China 2009, 3, 148–157. [Google Scholar] [CrossRef]
- Hassan, H.M.; Arab, M.A.E.S.; El-Kassas, A.I. Behavior of high strength self compacted concrete deep beams with web openings. Heliyon 2019, 5, e01524. [Google Scholar] [CrossRef]
- Alsaeq, H.M. Effects of Opening Shape and Location on the Structural Strength of R.C. Deep Beams with Openings. Int. J. Civ. Environ. Eng. 2013, 7, 494–499. [Google Scholar] [CrossRef]
- Substances & Technologies, Carbon Fiber Reinforced Polymer Composites [SubsTech], SubsTech. 2012. Available online: https://www.substech.com/dokuwiki/doku.php?id=carbon_fiber_reinforced_polymer_composites (accessed on 26 March 2020).
- Zhang, X.; Hao, H.; Shi, Y.; Cui, J.; Zhang, X. Static and dynamic material properties of CFRP/epoxy laminates. Constr. Build. Mater. 2016, 114, 638–649. [Google Scholar] [CrossRef] [Green Version]
- Melo, J.D.D.; Radford, D.W. Time and temperature dependence of the viscoelastic properties of CFRP by dynamic mechanical analysis. Compos. Struct. 2005, 70, 240–253. [Google Scholar] [CrossRef]
- Li, Y.; Hori, N.; Arai, M.; Hu, N.; Liu, Y.; Fukunaga, H. Improvement of interlaminar mechanical properties of CFRP laminates using VGCF. Compos. Part Appl. Sci. Manuf. 2009, 40, 2004–2012. [Google Scholar] [CrossRef]
- Ryan, J.M.; Adams, R.; Brown, S.G.R. Moisture Ingress Effect on Properties of CFRP. In Proceedings of the 17th International Conference on Composite Materials (ICCM’09), Edinburgh, UK, 2009; p. 10. Available online: http://iccm-central.org/Proceedings/ICCM17proceedings/papers/IA2.14%20Ryan.pdf (accessed on 13 March 2021).
- Moon, J.-B.; Kim, M.-G.; Kim, C.-G.; Bhowmik, S. Improvement of tensile properties of CFRP composites under LEO space environment by applying MWNTs and thin-ply. Compos. Part Appl. Sci. Manuf. 2011, 42, 694–701. [Google Scholar] [CrossRef]
- Bousselham, A.; Chaallal, O. Behavior of Reinforced Concrete T-Beams Strengthened in Shear with Carbon Fiber-Reinforced Polymer—An Experimental Study. Struct. J. 2006, 103, 339–347. [Google Scholar] [CrossRef]
- Abduljalil, B.S. Shear Resistance of Reinforced Concrete Deep Beams with Opening Strengthened by CFRP Strips. J. Eng. Dev. 2014, 18, 19. Available online: https://jeasd.uomustansiriyah.edu.iq/index.php/jeasd/article/view/837 (accessed on 13 March 2021).
- Lee, H.K.; Cheong, S.H.; Ha, S.K.; Lee, C.G. Behavior and performance of RC T-section deep beams externally strengthened in shear with CFRP sheets. Compos. Struct. 2011, 93, 911–922. [Google Scholar] [CrossRef]
- Wang, G.-L.; Meng, S.-P. Modified strut-and-tie model for prestressed concrete deep beams. Eng. Struct. 2008, 30, 3489–3496. [Google Scholar] [CrossRef]
- Zhang, N.; Tan, K.-H. Direct strut-and-tie model for single span and continuous deep beams. Eng. Struct. 2007, 29, 2987–3001. [Google Scholar] [CrossRef]
- Maxwell, B.S.; Breen, J.E. Experimental Evaluation of Strut-and-Tie Model Applied to Deep Beam with Opening. Struct. J. 2000, 97, 142–148. [Google Scholar] [CrossRef]
- Hanoon, A.N.; Jaafar, M.S.; Hejazi, F.; Aziz, F.N.A.A. Strut-and-tie model for externally bonded CFRP-strengthened reinforced concrete deep beams based on particle swarm optimization algorithm: CFRP debonding and rupture. Constr. Build. Mater. 2017, 147, 428–447. [Google Scholar] [CrossRef]
- Arabzadeh, A.; Rahaei, A.R.; Aghayari, R. A Simple Strut-and-Tie Model for Prediction of Ultimate Shear Strength of RC Deep Beams. Int. J. Civ. Eng. 2009, 7, 141–153. Available online: http://ijce.iust.ac.ir/article-1-285-en.html (accessed on 13 March 2021).
- Hawileh, R.A.; Naser, M.Z.; Abdalla, J.A. Finite element simulation of reinforced concrete beams externally strengthened with short-length CFRP plates. Compos. Part B Eng. 2013, 45, 1722–1730. [Google Scholar] [CrossRef]
- Hanoon, A.N.; Jaafar, M.S.; al Zaidee, S.R.; Hejazi, F.; Aziz, F.N.A.A. Effectiveness factor of the strut-and-tie model for reinforced concrete deep beams strengthened with CFRP sheet. J. Build. Eng. 2017, 12, 8–16. [Google Scholar] [CrossRef]
- Falah, M.W.; Ali, Y.A.; Al-Mulali, M.Z.; Al-Khafaji, Z.S. Finite Element Analysis of CFRP Effects on Hollow Reactive Powder Concrete Column Failure Under Different Loading Eccentricity. Solid State Technol. 2020, 63, 1241–1255. [Google Scholar]
- Ali, Y.A.; Hashim, T.M.; Ali, A.H. Finite Element Analysis for the Behavior of Reinforced Concrete T-Section Deep Beams Strengthened with CFRP Sheets. Key Eng. Mater. 2020, 857, 153–161. [Google Scholar] [CrossRef]
- Sugianto, A.; Taufik, S. Numerical Modelling Behaviour of Reinforced Concrete Deep Beam with Strut-and-Tie Model. Int. J. Mech. Appl. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Nadir, W. Experimental and Theoretical Investigation of the Behavior of R.C. Deep Beams with Openings Strengthened by CFRP Laminates; University of Babylon: Babylon, Iraq, 2009. [Google Scholar]
- Taresh, H.R.; Yatim, M.Y.M.; Azmi, M.R. Punching shear behaviour of interior slab-column connections strengthened by steel angle plates. Eng. Struct. 2021, 238, 112246. [Google Scholar] [CrossRef]
- Islam, A.B.M.S. Computer aided failure prediction of reinforced concrete beam. Comput. Concr. 2020, 25, 67–73. [Google Scholar] [CrossRef]
- Lee, J.; Fenves, G.L. Plastic-Damage Model for Cyclic Loading of Concrete Structures. J. Eng. Mech. 1998, 124, 892–900. [Google Scholar] [CrossRef]
- Taresh, H.R.; Md Yatim, M.Y.; Azmi, M.R. Finite element analysis of interior slab-column connections strengthened by steel angle plates. Struct. Concr. 2020, 22, 676–690. [Google Scholar] [CrossRef]
Steel Reinforcement | Concrete | ||
---|---|---|---|
Yield strength (MPa) | 540 | Compressive strength (MPa) | 27.15 |
Modulus of elasticity (MPa) | 2 × 105 | Modulus of elasticity (MPa) | 24.5 × 103 |
Ultimate strength (MPa) | 640 | Poison ratio | 0.2 |
Poison ratio | 0.3 | Dilation angle | 37 |
CFRP Sheet | Eccentricity | 0.1 | |
Tensile strength (MPa) | 4400 | fbo/fco | 1.16 |
Modulus of elasticity (MPa) | 2.38 × 105 | K | 0.667 |
Elongation at break (%) | 1.8 | Viscosity | 0 [33] |
Thickness (mm) | 0.131 |
Group Name | Opening Ratio b/h (mm/mm) | |||||||
---|---|---|---|---|---|---|---|---|
100/200 | 200/200 | 300/200 | 400/200 | 500/200 | 600/200 | 700/200 | 800/200 | |
0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | |
Group A | DA100 | DA200 | DA300 | DA400 | DA500 | DA600 | DA700 | DA800 |
Group B | DB100 | DB200 | DB300 | DB400 | DB500 | DB600 | DB700 | DB800 |
Group C | DC100 | DC200 | DC300 | DC400 | DC500 | DC600 | DC700 | DC800 |
Longitudinal reinforcement | ||||||||
Tension zone | Compression zone | Web zone | - | |||||
Group A | 2Ø16 | - | - | - | ||||
Group B | 2Ø16 | 2Ø16 | - | - | ||||
Group C | 2Ø16 | 2Ø16 | 2Ø16 | - |
Model no. | Opening Ratio (h/b) | Strengthening Technique with CFRP | ||
---|---|---|---|---|
CFRP-Straight Sheet | CFRP-Stirrup Width (mm) | |||
Length (mm) | Width (mm) | |||
DS-700-0 | 200/700 | 700 | 100 | without |
DS-700-100 | 100 | |||
DS-700-120 | 120 | |||
DS-700-140 | 140 | |||
DS-700-160 | 160 | |||
DS-800-0 | 200/800 | 800 | 100 | without |
DS-800-100 | 100 | |||
DS-800-120 | 120 | |||
DS-800-140 | 140 | |||
DS-800-160 | 160 | |||
DS-800-180 | 180 | |||
DS-800-200 | 200 | |||
DS-800-220 | 220 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, Y.A.; Assi, L.N.; Abas, H.; Taresh, H.R.; Dang, C.N.; Ghahari, S. Numerical Investigation on Effect of Opening Ratio on Structural Performance of Reinforced Concrete Deep Beam Reinforced with CFRP Enhancements. Infrastructures 2023, 8, 2. https://doi.org/10.3390/infrastructures8010002
Ali YA, Assi LN, Abas H, Taresh HR, Dang CN, Ghahari S. Numerical Investigation on Effect of Opening Ratio on Structural Performance of Reinforced Concrete Deep Beam Reinforced with CFRP Enhancements. Infrastructures. 2023; 8(1):2. https://doi.org/10.3390/infrastructures8010002
Chicago/Turabian StyleAli, Yasar Ameer, Lateef Najeh Assi, Hussein Abas, Hussein R. Taresh, Canh N. Dang, and SeyedAli Ghahari. 2023. "Numerical Investigation on Effect of Opening Ratio on Structural Performance of Reinforced Concrete Deep Beam Reinforced with CFRP Enhancements" Infrastructures 8, no. 1: 2. https://doi.org/10.3390/infrastructures8010002
APA StyleAli, Y. A., Assi, L. N., Abas, H., Taresh, H. R., Dang, C. N., & Ghahari, S. (2023). Numerical Investigation on Effect of Opening Ratio on Structural Performance of Reinforced Concrete Deep Beam Reinforced with CFRP Enhancements. Infrastructures, 8(1), 2. https://doi.org/10.3390/infrastructures8010002