Transepithelial Photorefractive Keratectomy—Review
Abstract
:1. Introduction
2. History
3. Indications
4. Preoperative Epithelial Thickness Mapping
5. TransPRK Platforms
6. Comparisons with Other Refractive Surgery Options
7. Conventional PRK
8. LASIK
9. Lenticule Extraction
10. Biomechanical Stability Advantages
11. Use in Complex Corneas
12. Wavefront-Guided Aberrations
13. Issues
14. Towards the Future
15. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tomás-Juan, J.; Larranaga, A.M.; Hanneken, L. Corneal Regeneration After Photorefractive Keratectomy: A Review. J. Optom. 2015, 8, 149. [Google Scholar] [CrossRef] [PubMed]
- Bakhsh, A.M.; Elwan, S.A.M.; Chaudhry, A.A.; El-Atris, T.M.; Al-Howish, T.M. Comparison between Transepithelial Photorefractive Keratectomy versus Alcohol-Assisted Photorefractive Keratectomy in Correction of Myopia and Myopic Astigmatism. J. Ophthalmol. 2018, 2018, 5376235. [Google Scholar] [CrossRef]
- Alio, J.L.; Ismael, M.M.; Artola, A. Laser epithelium removal before photorefractive keratectomy. Refract. Corneal Surg. 1993, 9, 395. [Google Scholar] [CrossRef]
- Gimbel, H.V.; DeBroff, B.M.; Beldavs, R.A.; van Westenbrugge, J.A.; Ferensowicz, M. Comparison of laser and manual removal of corneal epithelium for photorefractive keratectomy. J. Refract. Surg. 1995, 11, 36–41. [Google Scholar] [CrossRef]
- Kanitkar, K.D.; Camp, J.; Humble, H.; Shen, D.J.; Wang, M.X. Pain after epithelial removal by ethanol-assisted mechanical versus transepithelial excimer laser debridement. J. Refract. Surg. 2000, 16, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.K.; Lee, K.S.; Kim, J.K.; Kim, H.C.; Seo, K.R.; Kim, E.K. Epithelial healing and clinical outcomes in excimer laser photorefractive surgery following three epithelial removal techniques: Mechanical, alcohol, and excimer laser. Am. J. Ophthalmol. 2005, 139, 56–63. [Google Scholar] [CrossRef]
- Luger, M.H.A.; Ewering, T.; Arba-Mosquera, S. Consecutive myopia correction with transepithelial versus alcohol-assisted photorefractive keratectomy in contralateral eyes: One-year results. J. Cataract Refract. Surg. 2012, 38, 1414–1423. [Google Scholar] [CrossRef] [PubMed]
- Fadlallah, A.; Fahed, D.; Khalil, K.; Dunia, I.; Menassa, J.; El Rami, H.; Chlela, E.; Fahed, S. Transepithelial photorefractive keratectomy: Clinical results. J. Cataract Refract. Surg. 2011, 37, 1852–1857. [Google Scholar] [CrossRef]
- Xi, L.; Zhang, C.; He, Y. Clinical outcomes of Transepithelial photorefractive keratectomy to treat low to moderate myopic astigmatism. BMC Ophthalmol. 2018, 18, 115. [Google Scholar] [CrossRef]
- Aslanides, I.M.; Padroni, S.; Arba Mosquera, S.; Ioannides, A.; Mukherjee, A. Comparison of single-step reverse transepithelial all-surface laser ablation (ASLA) to alcohol-assisted photorefractive keratectomy. Clin. Ophthalmol. 2012, 6, 973–980. [Google Scholar] [CrossRef]
- Adib-Moghaddam, S.; Soleyman-Jahi, S.; Adili-Aghdam, F.; Arba Mosquera, S.; Hoorshad, N.; Tofighi, S. Single-step transepithelial photorefractive keratectomy in high myopia: Qualitative and quantitative visual functions. Int. J. Ophthalmol. 2017, 10, 445–452. [Google Scholar] [PubMed]
- Antonios, R.; Abdul Fattah, M.; Arba Mosquera, S.; Abiad, B.H.; Sleiman, K.; Awwad, S.T. Single-step transepithelial versus alcohol-assisted photorefractive keratectomy in the treatment of high myopia: A comparative evaluation over 12 months. Br. J. Ophthalmol. 2017, 101, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Feng, Q.; Ding, W.; Peng, Y.; Long, K. Comparison of clinical results between trans-PRK and femtosecond LASIK for correction of high myopia. BMC Ophthalmol. 2020, 20, 243. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, A.; Chen, S.; Chen, X.; Stojanovic, F.; Zhang, J.; Zhang, T.; Utheim, T.P. One-step transepithelial topography-guided ablation in the treatment of myopic astigmatism. PLoS ONE 2013, 8, e66618. [Google Scholar] [CrossRef]
- Santhiago, M.R.; Smajda, D.; Wilson, S.E.; Randleman, B.J. Relative contribution of flap thickness and ablation depth to the percentage of tissue altered in ectasia after laser in situ keratomileusis. J. Cataract Refract. Surg. 2015, 41, 2493–2500. [Google Scholar] [CrossRef] [PubMed]
- Santhiago, M.R.; Smadja, D.; Wilson, S.E.; Krueger, R.R.; Monteiro, M.L.R.; Randleman, J.B. Role of Percent Tissue Altered on Ectasia After LASIK in Eyes With Suspicious Topography. J. Refract. Surg. 2015, 31, 258–265. [Google Scholar] [CrossRef] [PubMed]
- Santhiago, M.R.; Smadja, D.; Gomes, B.F.; Mello, G.R.; Monteiro, M.L.; Wilson, S.E.; Randleman, J.B. Association Between the Percent Tissue Altered and Post–Laser In Situ Keratomileusis Ectasia in Eyes With Normal Preoperative Topography. Am. J. Ophthalmol. 2014, 158, 87–95.e1. [Google Scholar] [CrossRef] [PubMed]
- Suh, L.H.; Behrens, A.; McDonnell, P.J. Surface ablation: Techniques and postoperative management. In Corneal Surgery: Theory Technique and Tissue, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 811–820. [Google Scholar]
- Mounir, A.; Mostafa, E.M.; Ammar, H.; Mohammed, O.A.; Alsmman, A.H.; Farouk, M.M.; Elghobaier, M.G. Clinical outcomes of transepithelial photorefractive keratectomy versus femtosecond laser assisted keratomileusis for correction of high myopia in South Egyptian population. Int. J. Ophthalmol. 2020, 13, 129–134. [Google Scholar] [CrossRef]
- Abdel-Radi, M.; Rateb, M.; Saleh, M.G.A.; Aly, M.O.M. Twelve-month outcomes of single-step transepithelial photorefractive keratectomy for moderate hyperopia and hyperopic astigmatism. Eye Vis. 2023, 10, 7. [Google Scholar] [CrossRef]
- Kaluzny, B.J.; Verma, S.; Piotrowiak-Słupska, I.; Kaszuba-Modrzejewska, M.; Rzeszewska-Zamiara, J.; Stachura, J.; Arba-Mosquera, S. Three-year outcomes of mixed astigmatism correction with single-step transepithelial photorefractive keratectomy with a large ablation zone. J. Cataract Refract. Surg. 2021, 47, 450–458. [Google Scholar] [CrossRef]
- Jun, I.; Kang, D.S.; Arba-Mosquera, S.; Jean, S.K.; Kim, E.K.; Seo, K.Y. Clinical outcomes of mechanical and transepithelial photorefractive keratectomy in low myopia with a large ablation zone. J. Cataract Refract. Surg. 2019, 45, 977–984. [Google Scholar] [CrossRef]
- Lin, D.T.C.; Holland, S.P.; Verma, S.; Hogden, J.; Arba-Mosquera, S. Postoperative Corneal Asphericity in Low, Moderate, and High Myopic Eyes After Transepithelial PRK Using a New Pulse Allocation. J. Refract. Surg. 2017, 33, 820–826. [Google Scholar] [CrossRef]
- Chen, X.; Stojanovic, A.; Nitter, T.A. Topography-guided transepithelial surface ablation in treatment of recurrent epithelial ingrowths. J. Refract. Surg. 2010, 26, 529–532. [Google Scholar] [CrossRef] [PubMed]
- Kapadia, M.S.; Wilson, S.E. Transepithelial photorefractive keratectomy for treatment of thin flaps or caps after complicated laser in situ keratomileusis. Am. J. Ophthalmol. 1998, 126, 827–829. [Google Scholar] [CrossRef]
- Chen, X.; Stojanovic, A.; Zhou, W.; Utheim, T.P.; Stojanovic, F.; Wang, Q. Transepithelial, Topography-guided Ablation in the Treatment of Visual Disturbances in LASIK Flap or Interface Complications. J. Refract. Surg. 2012, 28, 120–126. [Google Scholar] [CrossRef] [PubMed]
- Seiler, T.; Kaemmerer, M.; Mierdel, P.; Krinke, H.E. Ocular Optical Aberrations After Photorefractive Keratectomy for Myopia and Myopic Astigmatism. Arch. Ophthalmol. 2000, 118, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Xi, L. Wavefront properties of the anterior and posterior corneal surface after transepithelial photorefractive keratectomy in myopia. Exp. Ther. Med. 2020, 19, 1183–1188. [Google Scholar] [CrossRef] [PubMed]
- Reinstein, D.Z.; Yap, T.E.; Archer, T.J.; Gobbe, M.; Silverman, R.H. Comparison of Corneal Epithelial Thickness Measurement Between Fourier-Domain OCT and Very High-Frequency Digital Ultrasound. J. Refract. Surg. 2015, 31, 438. [Google Scholar] [CrossRef] [PubMed]
- Abtahi, M.A.; Beheshtnejad, A.H.; Latifi, G.; Akbari-Kamrani, M.; Ghafarian, S.; Masoomi, A.; Sonbolastan, S.A.; Jahanbani-Ardakani, H.; Atighechian, M.; Banan, L.; et al. Corneal Epithelial Thickness Mapping: A Major Review. J. Ophthalmol. 2024, 2024, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Simon, G.; Ren, Q.; Kervick, G.N.; Parel, J.M. Optics of the corneal epithelium. Refract. Corneal Surg. 1993, 9, 42–50. [Google Scholar] [CrossRef]
- Reinstein, D.Z.; Archer, T.J.; Gobbe, M.; Silverman, R.H.; Coleman, D.J. Epithelial Thickness in the Normal Cornea: Three-dimensional Display with Very High Frequency Ultrasound. J. Refract. Surg. 2008, 24, 571. [Google Scholar] [PubMed]
- Kanellopoulos, A.J.; Asimellis, G. In vivo three-dimensional corneal epithelium imaging in normal eyes by anterior-segment optical coherence tomography: A clinical reference study. Cornea 2013, 32, 1493–1498. [Google Scholar] [CrossRef] [PubMed]
- Colakoglu, A.; Cosar, C.B. Age-Related Changes in Corneal Epithelial Thickness Measured with an Ultrasound Pachymeter. Clin. Interv. Aging 2022, 17, 1461–1470. [Google Scholar] [CrossRef] [PubMed]
- Abusamak, M. Corneal Epithelial Mapping Characteristics in Normal Eyes Using Anterior Segment Spectral Domain Optical Coherence Tomography. Transl. Vis. Sci. Technol. 2022, 11, 6. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Marshall, J.; Fitzke, F.W. Refractive index of the human corneal epithelium and stroma. J. Refract. Surg. 1995, 11, 100–105. [Google Scholar] [CrossRef] [PubMed]
- Reinstein, D.Z.; Srivannaboon, S.; Gobbe, M.; Archer, T.J.; Silverman, R.H.; Sutton, H.; Coleman, D.J. Epithelial Thickness Profile Changes Induced by Myopic LASIK as Measured by Artemis Very High-frequency Digital Ultrasound. J. Refract. Surg. 2009, 25, 444. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Stojanovic, A.; Liu, Y.; Chen, Y.; Zhou, Y.; Utheim, T.P. Postoperative Changes in Corneal Epithelial and Stromal Thickness Profiles After Photorefractive Keratectomy in Treatment of Myopia. J. Refract. Surg. 2015, 31, 446–453. [Google Scholar] [CrossRef] [PubMed]
- Seiler, T.; Kriegerowski, M.; Schnoy, N.; Bende, T. Ablation rate of human corneal epithelium and Bowman’s layer with the excimer laser (193 nm). Refract. Corneal Surg. 1990, 6, 99–102. [Google Scholar] [CrossRef]
- Mosquera, S.A.; Awwad, S.T. Theoretical analyses of the refractive implications of transepithelial PRK ablations. Br. J. Ophthalmol. 2013, 97, 905–911. [Google Scholar] [CrossRef]
- de Ortueta, D.; von Rüden, D.; Arba-Mosquera, S. Comparison of Refractive and Visual Outcomes after Transepithelial Photorefractive Keratectomy (TransPRK) in Low versus Moderate Myopia. Photonics 2021, 8, 262. [Google Scholar] [CrossRef]
- Vinciguerra, P.; Camesasca, F.I.; Vinciguerra, R.; Arba-Mosquera, S.; Torres, I.; Morenghi, E.; Randleman, J.B. Advanced Surface Ablation With a New Software for the Reduction of Ablation Irregularities. J. Refract. Surg. 2017, 33, 89–95. [Google Scholar] [CrossRef]
- Aslanides, I.M.; Kymionis, G.D. Trans advanced surface laser ablation (TransPRK) outcomes using SmartPulseTechnology. Cont. Lens. Anterior Eye 2017, 40, 42–46. [Google Scholar] [CrossRef]
- de Ortueta, D.; von Rüden, D. Transepithelial photorefractive keratectomy: Results and clinical experiences. Ophthalmologe 2019, 116, 534–541. [Google Scholar] [CrossRef]
- Arba Mosquera, S.; Verma, S. Analysis of the change in peak corneal temperature during excimer laser ablation in porcine eyes. J. Biomed. Opt. 2015, 20, 1. [Google Scholar] [CrossRef]
- Brunsmann, U.; Sauer, U.; Dressler, K.; Triefenbach, N.; Mosquera, S.A. Minimisation of the thermal load of the ablation in high-speed laser corneal refractive surgery: The ‘intelligent thermal effect control’ of the AMARIS platform. J. Mod. Opt. 2010, 57, 466–479. [Google Scholar] [CrossRef]
- De Ortueta, D.; Arba-Mosquera, S.; Magnago, T. High-speed recording of thermal load during laser trans-epithelial corneal refractive surgery using a 750 Hz ablation system. J. Optom. 2019, 12, 84. [Google Scholar] [CrossRef]
- Betney, S.; Morgan, P.B.; Doyle, S.J.; Efron, N. Corneal temperature changes during photorefractive keratectomy. Cornea 1997, 16, 158–161. [Google Scholar] [CrossRef]
- Özülken, K.; İlhan, Ç. Comparison of Higher-Order Aberrations After Single-Step Transepithelial and Conventional Alcohol-Assisted Photorefractive Keratectomy. Turk. J. Ophthalmol. 2020, 50, 127. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahab, S.M.; Salem, M.H.; Elfayoumi, M.A. Single-Step Transepithelial Photorefractive Keratectomy in Low to Moderate Myopia: A One-Year Follow-Up Study. Clin. Ophthalmol. 2021, 15, 3305. [Google Scholar] [CrossRef] [PubMed]
- Gaeckle, H.C. Early clinical outcomes and comparison between trans-PRK and PRK, regarding refractive outcome, wound healing, pain intensity and visual recovery time in a real-world setup. BMC Ophthalmol. 2021, 21, 181. [Google Scholar] [CrossRef] [PubMed]
- Goggin, M.; Stewart, P.; Andersons, V.; Criscenti, G. Fine tuning of the default depth and rate of ablation of the epithelium in customized trans-epithelial one-step superficial refractive excimer laser ablation. Eye Vis. 2019, 6, 39. [Google Scholar] [CrossRef] [PubMed]
- Slade, S.G. Thin-flap laser-assisted in situ keratomileusis. Curr. Opin. Ophthalmol. 2008, 19, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Zhang, Y.; He, Y.; Wang, S. Research Progress on Morphological Changes and Surgery-Related Parameters of Corneal Cap in Small-Incision Lenticule Extraction. Ophthalmic Res. 2022, 65, 4–13. [Google Scholar] [CrossRef]
- Taneri, S.; Knepper, J.; Rost, A.; Dick, H.B. Long-term outcomes of PRK, LASIK and SMILE. Ophthalmologe 2022, 119, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Melki, S. Small Incision Lenticule Extraction (SMILE): Myths and Realities. Semin. Ophthalmol. 2021, 36, 140–148. [Google Scholar] [CrossRef] [PubMed]
- Alió, J.L.; Muftuoglu, O.; Ortiz, D.; Pérez-Santonja, J.J.; Artola, A.; Ayala, M.J.; Garcia, M.J.; De Luna, G.C. Ten-Year Follow-up of Laser In Situ Keratomileusis for Myopia of up to −10 Diopters. Am. J. Ophthalmol. 2008, 145, 46–54.e1. [Google Scholar] [CrossRef] [PubMed]
- Shortt, A.J.; Bunce, C.; Allan, B.D.S. Evidence for Superior Efficacy and Safety of LASIK over Photorefractive Keratectomy for Correction of Myopia. Ophthalmology 2006, 113, 1897–1908. [Google Scholar] [CrossRef]
- Shah, R. History and Results; Indications and Contraindications of SMILE Compared with LASIK. Asia Pac. J. Ophthalmol. 2019, 8, 371–376. [Google Scholar] [CrossRef]
- Nair, S.; Kaur, M.; Sharma, N.; Titiyal, J.S. Refractive surgery and dry eye—An update. Indian J. Ophthalmol. 2023, 71, 1105–1114. [Google Scholar] [CrossRef]
- Santhiago, M.R.; Giacomin, N.T.; Smadja, D.; Bechara, S.J. Ectasia risk factors in refractive surgery. Clin. Ophthalmol. 2016, 10, 713–720. [Google Scholar] [CrossRef]
- Naderi, M.; Ghadamgahi, S.; Jadidi, K. Photorefractive Keratectomy (PRK) is Safe and Effective for Patients with Myopia and Thin Corneas. Med. Hypothesis Discov. Innov. Ophthalmol. 2016, 5, 58–62. [Google Scholar]
- Xin, Y.; Lopes, B.T.; Wang, J.; Wu, J.; Zhu, M.; Jiang, M.; Miao, Y.; Lin, H.; Cao, S.; Zheng, X.; et al. Biomechanical Effects of tPRK, FS-LASIK, and SMILE on the Cornea. Front Bioeng. Biotechnol. 2022, 10, 834270. [Google Scholar] [CrossRef]
- Moshirfar, M.; Basharat, N.F.; Bundogji, N.; Ungricht, E.L.; Darquea, I.M.; Conley, M.E.; Ronquillo, Y.C.; Hoopes, P.C. Laser-Assisted In Situ Keratomileusis (LASIK) Enhancement for Residual Refractive Error after Primary LASIK. J. Clin. Med. 2022, 11, 4832. [Google Scholar] [CrossRef] [PubMed]
- Siedlecki, J.; Luft, N.; Priglinger, S.G.; Dirisamer, M. Enhancement Options After Myopic Small-Incision Lenticule Extraction (SMILE): A Review. Asia Pac. J. Ophthalmol. 2019, 8, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Sia, R.K.; Ryan, D.S.; Stutzman, R.D.; Psolka, M.; Mines, M.J.; Wagner, M.E.; Weber, E.D.; Wroblewski, K.J.; Bower, K.S. Alcohol versus brush PRK: Visual outcomes and adverse effects. Lasers Surg. Med. 2012, 44, 475–481. [Google Scholar] [CrossRef] [PubMed]
- Sabau, A.; Daas, L.; Behkit, A.; Wagenpfeil, S.; Langenbucher, A.; Ardjomand, N.; Flockerzi, E.; Seitz, B. Efficacy, safety, and predictability of transepithelial photorefractive keratectomy: Meta-analysis. J. Cataract Refract. Surg. 2021, 47, 634–640. [Google Scholar] [CrossRef]
- Alasbali, T. Transepithelial Photorefractive Keratectomy Compared to Conventional Photorefractive Keratectomy: A Meta-Analysis. J. Ophthalmol. 2022, 2022, 3022672. [Google Scholar] [CrossRef] [PubMed]
- Kaluzny, B.J.; Cieslinska, I.; Arba Mosquera, S.; Verma, S. Single-Step Transepithelial PRK vs Alcohol-Assisted PRK in Myopia and Compound Myopic Astigmatism Correction. Medicine 2016, 95, e1993. [Google Scholar] [CrossRef]
- Naderi, M.; Jadidi, K.; Mosavi, S.; Daneshi, S. Transepithelial photorefractive keratectomy for low to moderate myopia in comparison with conventional photorefractive keratectomy. J. Ophthalmic Vis. Res. 2016, 11, 358. [Google Scholar] [CrossRef] [PubMed]
- Clinch, T.E.; Moshirfar, M.; Weis, J.R.; Ahn, C.S.; Hutchinson, C.B.; Jeffrey, J.H. Comparison of mechanical and transepithelial debridement during photorefractive keratectomy. Ophthalmology 1999, 106, 483–489. [Google Scholar] [CrossRef]
- Chen, C.C.; Chang, J.H.; Lee, J.B.; Javier, J.; Azar, D.T. Human corneal epithelial cell viability and morphology after dilute alcohol exposure. Investig. Ophthalmol. Vis. Sci. 2002, 43, 2593–2602. [Google Scholar]
- Rodriguez, A.H.; Galvis, V.; Tello, A.; Parra, M.M.; Rojas, M.Á.; Arba, M.S.; Camacho, A.P. Fellow eye comparison between alcohol-assisted and single-step transepithelial photorefractive keratectomy: Late mid-term outcomes. Rom. J. Ophthalmol. 2020, 64, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Ghadhfan, F.; Al-Rajhi, A.; Wagoner, M.D. Laser in situ keratomileusis versus surface ablation: Visual outcomes and complications. J. Cataract Refract. Surg. 2007, 33, 2041–2048. [Google Scholar] [CrossRef]
- Montés-Micó, R.; Rodríguez-Galietero, A.; Alió, J.L. Femtosecond laser versus mechanical keratome LASIK for myopia. Ophthalmology 2007, 114, 62–68. [Google Scholar] [CrossRef] [PubMed]
- Gershoni, A.; Mimouni, M.; Livny, E.; Bahar, I. Z-LASIK and Trans-PRK for correction of high-grade myopia: Safety, efficacy, predictability and clinical outcomes. Int. Ophthalmol. 2019, 39, 753–763. [Google Scholar] [CrossRef]
- Yao, L.; Zhang, M.; Wang, D.; Zhao, Q.; Wang, S.; Bai, H. Small Incision Lenticule Extraction (SMILE) and Laser in Situ Keratomileusis (LASIK) Used to Treat Myopia and Myopic Astigmatism: A Systematic Review and Meta-analysis of Randomized Clinical Trials. Semin. Ophthalmol. 2023, 38, 283–293. [Google Scholar] [CrossRef]
- Song, J.; Cao, H.; Chen, X.; Zhao, X.; Zhang, J.; Wu, G.; Wang, Y. Small Incision Lenticule Extraction (SMILE) Versus Laser Assisted Stromal In Situ Keratomileusis (LASIK) for Astigmatism Corrections: A Systematic Review and Meta-analysis. Am. J. Ophthalmol. 2023, 24, 181–199. [Google Scholar] [CrossRef]
- Cui, G.; Di, Y.; Yang, S.; Chen, D.; Li, Y. Efficacy of small-incision lenticule extraction surgery in high astigmatism: A meta-analysis. Front Med. 2023, 9, 1100241. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Ma, H.; Zhao, C. Corneal biomechanics after small incision lenticule extraction and femtosecond laser in situ keratomileusis: A systematic review and meta-analysis. Medicine 2023, 102, E34580. [Google Scholar] [CrossRef]
- Lee, H.; Kang, D.S.; Reinstein, D.Z.; Arba-Mosquera, S.; Kim, E.K.; Seo, K.Y. Comparing corneal higher-order aberrations in corneal wavefront-guided transepithelial photorefractive keratectomy versus small-incision lenticule extraction. J. Cataract Refract. Surg. 2018, 44, 725–733. [Google Scholar] [CrossRef]
- Randleman, J.B. Ectasia After Corneal Refractive Surgery: Nothing to SMILE About. J. Refract. Surg. 2016, 32, 434–435. [Google Scholar] [CrossRef]
- Chan, C.C.K.; Boxer Wachler, B.S. Corneal ectasia and refractive surgery. Int. Ophthalmol. Clin. 2006, 46, 13–25. [Google Scholar] [CrossRef]
- Wagner, F.M.; Sekundo, W. Iatrogenic Keratectasia after Refractive Surgery-Causes, Prophylaxis, Therapy. Klin Monbl Augenheilkd 2023, 240, 783–793. [Google Scholar]
- Bohac, M.; Koncarevic, M.; Pasalic, A.; Biscevic, A.; Merlak, M.; Gabric, N.; Patel, S. Incidence and Clinical Characteristics of Post LASIK Ectasia: A Review of over 30,000 LASIK Cases. Semin. Ophthalmol. 2018, 33, 869–877. [Google Scholar] [CrossRef]
- Ambrósio, R. Post-LASIK Ectasia: Twenty Years of a Conundrum. Semin. Ophthalmol. 2019, 34, 66–68. [Google Scholar] [CrossRef] [PubMed]
- Arshad, M.; Carnt, N.; Tan, J.; Stapleton, F. Compliance behaviour change in contact lens wearers: A randomised controlled trial. Eye 2021, 35, 988–995. [Google Scholar] [CrossRef] [PubMed]
- Ho, S.K.; Andaya, L.; Weissman, B.A. Complexity of contact lens fitting following penetrating keratoplasty. Int. Contact Lens. Clin. 1999, 26, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Spadea, L.; Mosca, L.; Balestrazzi, E. Effectiveness of LASIK to correct refractive error after penetrating keratoplasty. Ophthalmic Surg. Lasers 2000, 31, 111–120. [Google Scholar] [CrossRef]
- Solomon, R.; Donnenfeld, E.D.; Perry, H.D. Photorefractive keratectomy with mitomycin C for the management of a LASIK flap complication following a penetrating keratoplasty. Cornea 2004, 23, 403–405. [Google Scholar] [CrossRef]
- Buzard, K.; Febbraro, J.L.; Fundingsland, B.R. Laser in situ keratomileusis for the correction of residual ametropia after penetrating keratoplasty. J. Cataract Refract. Surg. 2004, 30, 1006–1013. [Google Scholar] [CrossRef]
- Spadea, L.; Visioli, G.; Mastromarino, D.; Alexander, S.; Pistella, S. Topography-Guided Trans-Epithelial No-Touch Photorefractive Keratectomy for High Irregular Astigmatism After Penetrating Keratoplasty: A Prospective 12-Months Follow-Up. Ther. Clin. Risk Manag. 2021, 17, 1027–1035. [Google Scholar] [CrossRef]
- Chung, M.S.; Pepose, J.S.; Manche, E.E. Management of the corneal flap in laser in situ keratomileusis after previous radial keratotomy. Am. J. Ophthalmol. 2001, 132, 252–253. [Google Scholar] [CrossRef]
- Pedrotti, E.; Sbabo, A.; Marchini, G. Customized transepithelial photorefractive keratectomy for iatrogenic ametropia after penetrating or deep lamellar keratoplasty. J. Cataract Refract. Surg. 2006, 32, 1288–1291. [Google Scholar] [CrossRef]
- Camellin, M.; Arba Mosquera, S. Simultaneous aspheric wavefront-guided transepithelial photorefractive keratectomy and phototherapeutic keratectomy to correct aberrations and refractive errors after corneal surgery. J. Cataract Refract. Surg. 2010, 36, 1173–1180. [Google Scholar] [CrossRef]
- Kanellopoulos, A.J. Comparison of sequential vs same-day simultaneous collagen cross-linking and topography-guided PRK for treatment of keratoconus. J. Refract. Surg. 2009, 25, S812–S818. [Google Scholar] [CrossRef]
- Gore, D.M.; Leucci, M.T.; Anand, V.; Fernandez-Vega Cueto, L.; Arba Mosquera, S.; Allan, B.D. Combined wavefront-guided transepithelial photorefractive keratectomy and corneal crosslinking for visual rehabilitation in moderate keratoconus. J. Cataract Refract. Surg. 2018, 44, 571–580. [Google Scholar] [CrossRef]
- Jun, I.; Kang, D.S.; Arba-Mosquera, S.; Choi, J.Y.; Lee, H.K.; Kim, E.K.; Seo, K.Y.; Kim, T.I. Comparison between Wavefront-optimized and corneal Wavefront-guided Transepithelial photorefractive keratectomy in moderate to high astigmatism. BMC Ophthalmol. 2018, 18, 154. [Google Scholar] [CrossRef] [PubMed]
- Jun, I.; Kang, D.S.; Tan, J.; Choi, J.Y.; Heo, W.; Kim, J.Y.; Lee, M.G.; Kim, E.K.; Seo, K.Y. Comparison of clinical outcomes between wavefront-optimized versus corneal wavefront-guided transepithelial photorefractive keratectomy for myopic astigmatism. J. Cataract Refract. Surg. 2017, 43, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Gebril, R.M.A.; El-lakwa, A.F.; Zaky, M.A. Corneal wavefront-guided versus aberration-free transepithelial photorefractive keratectomy in patients with myopia with high pre-existing corneal higher order aberrations. Menoufia Med. J. 2019, 32, 683. [Google Scholar] [CrossRef]
- Stein, H.A.; Salim, A.G.; Stein, R.M.; Cheskes, A. Corneal cooling and rehydration during photorefractive keratectomy to reduce postoperative corneal haze. J. Refract. Surg. 1999, 15 (Suppl. 2), S232–S233. [Google Scholar]
- Kaiserman, I.; Sadi, N.; Mimouni, M.; Sela, T.; Munzer, G.; Levartovsky, S. Corneal Breakthrough Haze After Photorefractive Keratectomy with Mitomycin C: Incidence and Risk Factors. Cornea 2017, 36, 961–966. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.R.; Khamar, P.; Shetty, R.; Sharma, A.; Shetty, N.; Pahuja, N.; Abilash, V.G.; Jhanji, V.; Ghosh, A.; Mohan, R.R.; et al. Identification of novel predictive factors for post surgical corneal haze. Sci. Rep. 2019, 9, 16980. [Google Scholar] [CrossRef] [PubMed]
- Cua, I.Y.; Pepose, J.S. Late corneal scarring after photorefractive keratectomy concurrent with development of systemic lupus erythematosus. J. Refract. Surg. 2002, 18, 750–752. [Google Scholar] [CrossRef] [PubMed]
- O’Brart, D.P.; Lohmann, C.P.; Klonos, G.; Corbett, M.C.; Pollock, W.S.; Kerr-Muir, M.G.; Marshall, J. The effects of topical corticosteroids and plasmin inhibitors on refractive outcome, haze, and visual performance after photorefractive keratectomy. A prospective, randomized, observer-masked study. Ophthalmology 1994, 101, 1565–1574. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, A.; Nitter, T.A. Correlation between ultraviolet radiation level and the incidence of late-onset corneal haze after photorefractive keratectomy. J. Cataract Refract. Surg. 2001, 27, 404–410. [Google Scholar] [CrossRef] [PubMed]
- Lacayo, G.O.; Majmudar, P.A. How and when to use mitomycin-C in refractive surgery. Curr. Opin. Ophthalmol. 2005, 16, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Sy, M.E.; Zhang, L.; Yeroushalmi, A.; Huang, D.; Hamilton, D.R. Effect of mitomycin-C on the variance in refractive outcomes after photorefractive keratectomy. J. Cataract Refract. Surg. 2014, 40, 1980–1984. [Google Scholar] [CrossRef]
- Ouerdane, Y.; Zaazouee, M.S.; Mohamed, M.E.; Hasan, M.T.; Hamdy, M.; Ghoneim, A.M.; Gbreel, M.I.; Ibrahim, A.M.; Ragab, K.M.; Nourelden, A.Z. Mitomycin C application after photorefractive keratectomy in high, moderate, or low myopia: Systematic review and meta-analysis. Indian J. Ophthalmol. 2021, 69, 3421–3431. [Google Scholar]
- Niizuma, T.; Ito, S.; Hayashi, M.; Futemma, M.; Utsumi, T.; Ohashi, K. Cooling the cornea to prevent side effects of photorefractive keratectomy. J. Refract. Corneal Surg. 1994, 10 (Suppl. 2), S262–S266. [Google Scholar] [CrossRef]
- Vetrugno, M.; Maino, A.; Quaranta, G.M.; Cardia, L. The effect of early steroid treatment after PRK on clinical and refractive outcomes. Acta Ophthalmol. Scand. 2001, 79, 23–27. [Google Scholar] [CrossRef]
- Sampaio, L.P.; Hilgert, G.S.L.; Shiju, T.M.; Santhiago, M.R.; Wilson, S.E. Losartan Inhibition of Myofibroblast Generation and Late Haze (Scarring Fibrosis) After PRK in Rabbits. J. Refract. Surg. 2022, 38, 820–829. [Google Scholar] [CrossRef]
- Wilson, S.E. Topical Losartan: Practical Guidance for Clinical Trials in the Prevention and Treatment of Corneal Scarring Fibrosis and Other Eye Diseases and Disorders. J. Ocul. Pharmacol. Ther. 2023, 39, 191–206. [Google Scholar] [CrossRef] [PubMed]
- Haber-Olguin, A.; Polania-Baron, E.J.; Trujillo-Trujillo, F.; Graue Hernandez, E.O. Thermographic Behavior of the Cornea During Treatment with Two Excimer Laser Platforms. Transl. Vis. Sci. Technol. 2021, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Woreta, F.A.; Gupta, A.; Hochstetler, B.; Bower, K.S. Management of post-photorefractive keratectomy pain. Surv. Ophthalmol. 2013, 58, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Sher, N.A.; Golben, M.P.; Bond, W.; Trattler, W.B.; Tauber, S.; Voirin, T.G. Topical bromfenac 0.09% vs. ketorolac 0.4% for the control of pain, photophobia, and discomfort following PRK. J. Refract. Surg. 2009, 25, 214–220. [Google Scholar] [CrossRef] [PubMed]
- Nissman, S.A.; Tractenberg, R.E.; Babbar-Goel, A.; Pasternak, J.F. Oral gabapentin for the treatment of postoperative pain after photorefractive keratectomy. Am. J. Ophthalmol. 2008, 145, 623–629. [Google Scholar] [CrossRef]
- Shetty, R.; Dalal, R.; Nair, A.P.; Khamar, P.; D’Souza, S.; Vaishnav, R. Pain management after photorefractive keratectomy. J. Cataract Refract. Surg. 2019, 45, 972–976. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Radi, M.; Eldaly, Z.; Alattar, S.; Goda, I. Preservative-Free Topical Anesthetic Unit-Dose Eye Drops for the Management of Postoperative Pain Following Photorefractive Keratectomy. Ophthalmol. Ther. 2023, 12, 3025–3038. [Google Scholar] [CrossRef]
- Bilgihan, A.; Bilgihan, K.; Toklu, Y.; Konuk, O.; Yis, O.; Hasanreisoğlu, B. Ascorbic acid levels in human tears after photorefractive keratectomy, transepithelial photorefractive keratectomy, and laser in situ keratomileusis. J. Cataract Refract. Surg. 2001, 27, 585–588. [Google Scholar] [CrossRef]
- Alishiri, A.; Mosavi, S.A. Ascorbic acid versus placebo in postoperative lid edema postphotorefractive keratectomy: A double-masked, randomized, prospective study. Oman J. Ophthalmol. 2019, 12, 4–9. [Google Scholar]
- Ubels, J.L.; Edelhauser, H.F.; Austin, K.H. Healing of experimental corneal wounds treated with topically applied retinoids. Am. J. Ophthalmol. 1983, 95, 353–358. [Google Scholar] [CrossRef]
- Bilgihan, K.; Adiguzel, U.; Sezer, C.; Akyol, G.; Hasanreisoglu, B. Effects of topical vitamin E on keratocyte apoptosis after traditional photorefractive keratectomy. Ophthalmologica 2001, 215, 192–196. [Google Scholar] [CrossRef]
- Vetrugno, M.; Maino, A.; Cardia, G.; Quaranta, G.M.; Cardia, L. A randomised, double masked, clinical trial of high dose vitamin A and vitamin E supplementation after photorefractive keratectomy. Br. J. Ophthalmol. 2001, 85, 537–539. [Google Scholar] [CrossRef] [PubMed]
- Shraiki, M.; Arba-Mosquera, S. Simulation of the Impact of Refractive Surgery Ablative Laser Pulses with a Flying-Spot Laser Beam on Intrasurgery Corneal Temperature. Investig. Ophthalmol. Vis. Sci. 2011, 52, 3713–3722. [Google Scholar] [CrossRef] [PubMed]
- Na, K.S.; Chung, S.H.; Kim, J.K.; Jang, E.J.; Lee, N.R.; Joo, C.K. Comparison of LASIK and surface ablation by using propensity score analysis: A multicenter study in Korea. Investig. Ophthalmol. Vis. Sci. 2012, 53, 7116–7121. [Google Scholar] [CrossRef] [PubMed]
- O’Brart, D.P.S.; Patsoura, E.; Jaycock, P.; Rajan, M.; Marshall, J. Excimer laser photorefractive keratectomy for hyperopia: 7.5-year follow-up. J. Cataract Refract. Surg. 2005, 31, 1104–1113. [Google Scholar] [CrossRef]
Correction | Maximum Dioptric Correction |
---|---|
Myopia | Sphere: −10.00 D [19] |
Myopic Astigmatism | Sphere: −10.00 D [19] Cylinder: −6.00 D [14] Vector Sum of Sphere and Cylinder: <10.00 D [19] |
Hyperopia | Sphere: +3.00 D [20] |
Hyperopic Astigmatism | Sphere: +3.00 D Cylinder: +3.00 D [20] |
Mixed Astigmatism | Sphere: −4.00 D [21] Cylinder: +6.00 D [21] |
Aspect | Lasik | Lenticule Extration | Conventional Prk | Transepithelial Prk |
---|---|---|---|---|
Surgical Procedure | Flap creation followed by laser ablation on the stromal bed | Intrastromal corneal lenticule excision | Epithelial removal with alcohol or rotating brush followed by laser ablation | No-touch surface ablation without flap |
Flap Thickness | Deeper flap creation (typically around 90–120 µm) [53] | No flap creation. Involves a small incision (4 mm). The part of the stroma anterior to the lenticule is called the cap. Normal cap thickness varies from 110–140 µm [54] | No flap creation, surface ablation | No flap creation, surface ablation |
Recovery Time | Rapid visual recovery (usually within 24 h) [55] | Quick recovery (often within a few days) [56] | Longer initial recovery (several days to weeks) | Longer initial recovery than LASIK or lenticule extraction, faster recovery than conventional PRK |
Pain And Discomfort | Minimal discomfort after surgery [57,58] | Generally, less discomfort compared to LASIK [59] | Discomfort during recovery | More discomfort during recovery than LASIK or lenticule extraction, less discomfort than conventional PRK |
Dry-Eye Symptoms | Potential for temporary dry eyes [60] | Lower risk of dry-eye symptoms compared to LASIK [60] | Less dry-eye symptoms than LASIK | Less dry-eye symptoms than LASIK |
Suitability For Thin Corneas | Less suitable [61] | Less suitable | May be suitable [62] | May be suitable [63] |
Enhancement Procedures | Easier to perform enhancements [64] | More challenging to perform enhancements [65] | Possible | Possible |
Overall Vision Quality | Excellent [55] | Excellent [55] | Excellent but takes longer to stabilise [66] | Excellent but may take longer to stabilise [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Way, C.; Elghobaier, M.G.; Nanavaty, M.A. Transepithelial Photorefractive Keratectomy—Review. Vision 2024, 8, 16. https://doi.org/10.3390/vision8010016
Way C, Elghobaier MG, Nanavaty MA. Transepithelial Photorefractive Keratectomy—Review. Vision. 2024; 8(1):16. https://doi.org/10.3390/vision8010016
Chicago/Turabian StyleWay, Christopher, Mohamed Gamal Elghobaier, and Mayank A. Nanavaty. 2024. "Transepithelial Photorefractive Keratectomy—Review" Vision 8, no. 1: 16. https://doi.org/10.3390/vision8010016
APA StyleWay, C., Elghobaier, M. G., & Nanavaty, M. A. (2024). Transepithelial Photorefractive Keratectomy—Review. Vision, 8(1), 16. https://doi.org/10.3390/vision8010016