Exploring the Influence of Cognitive and Ecological Dynamics Approaches on Countermovement Jumping Enhancement: A Comparative Training Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Procedures
2.3. Instruments
2.4. Data Collection
2.5. CG Protocol
2.6. EDG Protocol
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lubans, D.R.; Morgan, P.J.; Cliff, D.P.; Barnett, L.M.; Okely, A.D. Fundamental movement skills in children and adolescents: Review of associated health benefits. Sports Med. 2010, 40, 1019–1035. [Google Scholar] [CrossRef] [PubMed]
- Culjak, Z.; Miletic, D.; Kalinski, S.D.; Kezic, A.; Zuvela, F. Fundamental Movement Skills Development under the Influence of a Gymnastics Program and Everyday Physical Activity in Seven-Year-Old Children. Iran. J. Pediatr. 2014, 24, 124–130. [Google Scholar] [PubMed]
- Goodway, J.D.; Ozmun, J.C.; Gallahue, D.L. Understanding Motor Development: Infants, Children, Adolescents, Adults; Jones & Bartlett Learning: Burlington, MA, USA, 2019. [Google Scholar]
- Gallahue, D.L.; Ozmun, J.C. Understanding Motor Development: Infants, Children, Adolescents, Adults; McGraw-Hill Companies, Incorporated: New York, NY, USA, 2005. [Google Scholar]
- Lorenzetti, S.; Ostermann, M.; Zeidler, F.; Zimmer, P.; Jentsch, L.; List, R.; Taylor, W.R.; Schellenberg, F. How to squat? Effects of various stance widths, foot placement angles and level of experience on knee, hip and trunk motion and loading. BMC Sports Sci. Med. Rehabil. 2018, 10, 14. [Google Scholar] [CrossRef] [PubMed]
- Komi, P.V. Stretch-shortening cycle. In Strength and Power in Sport, 2nd ed.; Komi, P.V., Ed.; Blackwell Science: Oxford, UK, 2000; pp. 184–202. [Google Scholar] [CrossRef]
- Weineck, J. Optimales Training; Spitta: Balingen, Germany, 2014. [Google Scholar]
- Beattie, K.; Carson, B.P.; Lyons, M.; Kenny, I.C. The relationship between maximal strength and reactive strength. Int. J. Sports Physiol. Perform. 2017, 12, 548–553. [Google Scholar] [CrossRef]
- Kons, R.L.; Orssatto, L.B.R.; Ache-Dias, J.; De Pauw, K.; Meeusen, R.; Trajano, G.S.; Dal Pupo, J.; Detanico, D. Effects of Plyometric Training on Physical Performance: An Umbrella Review. Sports Med.—Open 2023, 9, 4. [Google Scholar] [CrossRef]
- Caron, K.E.; Burr, J.F.; Power, G.A. The effect of a stretch-shortening cycle on muscle activation and muscle oxygen consumption: A study of history-dependence. J. Strength Cond. Res. 2020, 34, 3139–3148. [Google Scholar] [CrossRef]
- Trimble, M.H.; Kukulka, C.G.; Thomas, R.S. Reflex facilitation during the stretch-shortening cycle. J. Electromyogr. Kinesiol. 2000, 10, 179–187. [Google Scholar] [CrossRef]
- Li, F.; Newton, R.U.; Shi, Y.; Sutton, D.; Ding, H. Correlation of eccentric strength, reactive strength, and leg stiffness with running economy in well-trained distance runners. J. Strength Cond. Res. 2021, 35, 1491–1499. [Google Scholar] [CrossRef]
- Markovic, G.; Dizdar, D.; Jukic, I.; Cardinale, M. Reliability and factorial validity of squat and countermovement jump tests. J. Strength Cond. Res. 2004, 18, 551–555. [Google Scholar] [CrossRef]
- Souza, A.A.; Bottaro, M.; Rocha, V.A.; Lage, V.; Tufano, J.J.; Vieira, A. Reliability and Test-Retest Agreement of Mechanical Variables Obtained During Countermovement Jump. Int. J. Exerc. Sci. 2020, 13, 6–17. [Google Scholar]
- Petrigna, L.; Karsten, B.; Marcolin, G.; Paoli, A.; D’Antona, G.; Palma, A.; Bianco, A. A Review of Countermovement and Squat Jump Testing Methods in the Context of Public Health Examination in Adolescence: Reliability and Feasibility of Current Testing Procedures. Front. Physiol. 2019, 10, 1384. [Google Scholar] [CrossRef] [PubMed]
- Slinde, F.; Suber, C.; Suber, L.; Edwén, C.E.; Svantesson, U. Test-retest reliability of three different countermovement jumping tests. J. Strength Cond. Res. 2021, 22, 640–644. [Google Scholar] [CrossRef] [PubMed]
- Heishman, A.D.; Daub, B.D.; Miller, R.M.; Freitas, E.D.S.; Frantz, B.A.; Bemben, M.G. Countermovement Jump Reliability Performed with and without an Arm Swing in NCAA Division 1 Intercollegiate Basketball Players. J. Strength Cond. Res. 2020, 34, 546–558. [Google Scholar] [CrossRef]
- Vaverka, F.; Jandačka, D.; Zahradník, D.; Uchytil, J.; Farana, R.; Supej, M.; Vodičar, J. Effect of an arm swing on countermovement vertical jump performance in elite volleyball players. J. Hum. Kinet. 2016, 53, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McBride, J.M.; McCaulley, G.O. Power-time, force-time, and velocity-time curve analysis during the jump squat: Impact of load. J. Strength Cond. Res. 2008, 24, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Gerodimos, V.; Zafeiridis, A.; Perkos, S.; Dipla, K.; Manou, V.; Kellis, S. The contribution of stretch-shortening cycle and arm-swing to vertical jumping performance in children, adolescents, and adult basketball players. Pedriatr. Exerc. Sci. 2008, 20, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.N.; Jeffreys, I. The stretch-shortening cycle: Proposed mechanisms and methods for enhancement. Strength Cond. J. 2010, 32, 87–99. [Google Scholar] [CrossRef]
- Mosston, M.; Ashworth, S. Teaching Physical Education, 1st ed; Spectrum Institute for Teaching and Learning: St. Lucie, FL, USA, 2008. [Google Scholar]
- Goldberger, M.; Ashworth, S.; Byra, M. Spectrum of teaching styles retrospectives. Quest 2012, 64, 268–282. [Google Scholar] [CrossRef]
- D’Isanto, T.; Di Domenico, F.; Aliberti, S.; D’Elia, F.; Raiola, G. Criticisms and perspectives of heuristic learning in physical education. Pedag. Phys. Cult. Sports 2022, 26, 93–100. [Google Scholar] [CrossRef]
- Kelso, J.S. Dynamic Patterns: The Self-Organization of Brain and Behavior; MIT Press: Cambridge, MA, USA, 1995. [Google Scholar]
- Davids, K. The constraints-based approach to motor learning: Implications for a nonlinear pedagogy in sport and physical education. In Motor Learning in Practice; Routledge: Oxford, UK, 2010; pp. 23–36. [Google Scholar]
- Chow, J.Y.; Davids, K.; Button, C.; Shuttleworth, R.; Renshaw, I.; Araujo, D. Nonlinear pedagogy: A constraints-led framework for understanding emergence of game play and movement skills. Nonlinear Dyn. Psychol. Life Sci. 2006, 10, 71–103. [Google Scholar]
- Renshaw, I.; Chow, J.Y.; Davids, K.; Hammond, J. A constraints-led perspective to understanding skill acquisition and game play: A basis for integration of motor learning theory and physical education praxis? Phys. Educ. Sport Pedag. 2010, 15, 117–137. [Google Scholar] [CrossRef]
- Correia, V.; Carvalho, J.; Araújo, D.; Pereira, E.; Davids, K. Principles of nonlinear pedagogy in sport practice. Phys. Educ. Sport Pedag. 2019, 24, 117–132. [Google Scholar] [CrossRef]
- D’Isanto, T.; Altavilla, G.; Esposito, G.; D’Elia, F.; Raiola, G. Heuristic Learning and Sport: Theoretical Lines and Operational Proposals. Encyclopaideia 2022, 26, 69–80. [Google Scholar] [CrossRef]
- Kılıç, K.; Ince, M.L. Perceived use and value of reproductive, problem-solving, and athlete-initiated teaching by coaches and athletes. Front. Psychol. 2023, 14, 1167412. [Google Scholar] [CrossRef]
- Mosston, M.; Ashworth, S. The Spectrum of Teaching Styles. From Command to Discovery; Longman, Inc.: White Plains, NY, USA, 1995. [Google Scholar]
- Mosston, M.; Ashworth, S. Teaching Physical Education; Merrill: Columbus, OH, USA, 1986. [Google Scholar]
- Abe, M.O.; Sternad, D. Directionality in distribution and temporal structure of variability in skill acquisition. Front. Human Neurosci. 2013, 7, 225. [Google Scholar] [CrossRef]
- Bompa, T.; Buzzichelli, C. Periodization Training for Sports; Human Kinetics: Champaign, IL, USA, 2015. [Google Scholar]
- Di Domenico, F.; Raiola, G. Effects of training fatigue on performance. J. Hum. Sport Exerc. 2021, 16, 769–780. [Google Scholar] [CrossRef]
- Impellizzeri, F.M.; Marcora, S.M.; Coutts, A.J. Internal and external training load: 15 years on. Int. J. Sports Physiol. Perform. 2019, 14, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Correia, G.A.F.; de Freitas, C.G., Jr.; da Silva Lira, H.A.A.; de Oliveira, S.F.M.; dos Santos, W.R.; de Farias Bezerra da Silva, C.K.; da Silva, P.H.; Paes, P.P. The effect of plyometric training on vertical jump performance in young basketball athletes. J. Phys. Educ. 2020, 31, e-3175. [Google Scholar] [CrossRef]
- Stojanović, E.; Ristić, V.; McMaster, D.T.; Milanović, Z. Effect of plyometric training on vertical jump performance in female athletes: A systematic review and meta-analysis. Sports Med. 2017, 47, 975–986. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Campillo, R.; Andrade, D.C.; Izquierdo, M. Effects of plyometric training volume and training surface on explosive strength. J. Strength Cond. Res. 2013, 27, 2714–2722. [Google Scholar] [CrossRef]
- Smilios, I.; Pilianidis, T.; Sotiropoulos, K.; Antonakis, M.; Tokmakidis, S.P. Short-term effects of selected exercise and load in contrast training on vertical jump performance. J. Strength Cond. Res. 2005, 19, 135–139. [Google Scholar]
- Schmidt, R.A. A schema theory of discrete motor skill learning. Psycol. Rev. 1975, 82, 225–260. [Google Scholar] [CrossRef]
- Fitts, P.; Posner, M. Human Performance; Brooks/Cole: Belmont, CA, USA, 1967. [Google Scholar]
- Summers, J.J.; Anson, J.G. Current status of the motor program: Revisited. Hum. Mov. Sci. 2009, 28, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Strenge, B.; Koester, D.; Schack, T. Cognitive Interaction Technology in Sport-Improving Performance by Individualized Diagnostics and Error Prediction. Front. Psychol. 2020, 11, 597913. [Google Scholar] [CrossRef] [PubMed]
- Tew, M. Circle time: A much neglected resource in secondary schools? Pastor. Care Educ. 1998, 16, 18–27. [Google Scholar] [CrossRef]
- Durlak, J.A.; Weissberg, R.P.; Dymnicki, A.B.; Taylor, R.D.; Schellinger, K.B. The impact of enhancing students’ social and emotional learning: A meta-analysis of school-based universal interventions. Child Dev. 2011, 82, 405–432. [Google Scholar] [CrossRef] [PubMed]
- Canney, C.; Byrne, A. Evaluating circle time as a support to social skills development: Reflections on a journey in school-based research. Br. J. Spec. Educ. 2006, 33, 19–24. [Google Scholar] [CrossRef]
- Lown, J. Circle time: The perceptions of teachers and pupils. Educ. Psychol. 2002, 18, 93–102. [Google Scholar] [CrossRef]
- Bernstein, N. The Coordination and Regulation of Movements; Pergamon Press Ltd.: Oxford, UK, 1967. [Google Scholar]
- Nuttall, F.Q. Body Mass Index: Obesity, BMI, and Health: A Critical Review. Nutr. Today 2015, 50, 117–128. [Google Scholar] [CrossRef]
Phase | Description | Load | Duration | |||
---|---|---|---|---|---|---|
Initial phase | Neuromuscular and cardiovascular activation with joint mobility exercises | Low to moderate | 15 min | |||
Central phase | Introduction of methodologies, tools, and content aimed at enhancing reactive strength | Weeks 1–12 | Exercises | Moderate to high (40–85% di 1 RM) | 50 min | |
1–4 | Contrast method. Wall sit * + CMJ | Sets: 4 × 40 s + 6 repetitions Rest: 2′ | ||||
Agility: Hops in-out in forward and change of direction with ladder | Sets: 3 × 20′’ Rest: 1′ | |||||
Strength and hypertrophy **: | Sets: 4 × 12 − 10 − 8 − 6 | |||||
5–8 | wall sit with 5 kg medicine ball + CMJ | Sets: 3 × 40 s + 6 repetitions | ||||
Drop jump *** | 3 × 6 repetitions | |||||
Agility: X drill | Sets: 3 × 20′’ | |||||
Strength, hypertrophy **** | Sets: 3 × 8 | |||||
9–12 | wall sit with 5 kg medicine ball + CMJ | Sets: 3 × 40 s + 8 repetitions | ||||
Drop jump *** | 6 × 6 repetitions | |||||
Ladder skip in forward | Sets: 3 × 20′’ | |||||
Strength, hypertrophy ***** | 3 × 10 | |||||
Cool down | De-fatigue and stretching exercises | Low load | 10 min | |||
* Week 1 performed free-body, from week 2 performed with 5 kg medicine ball. ** Fundamental exercises performed with increased intensity over individual 1 RM: day 1 back squat, day 2 flat bench, day 3 barbell rower. *** The drop height corresponds to the maximum jump height achieved in the CMJ test. **** Exercises performed at 80% of 1 RM: day 1 barbell deadlifts; day 2 flat bench press dumbbell stretches; day 3 pull-ups. ***** Exercises performed at 75% of 1 RM: Day 1 Bulgarian squats; day 2 oblique bench presses with dumbbells; day 3 chin-ups. |
Phases | Method | Description | Duration |
---|---|---|---|
Initial phase | Video viewing | Watching short videos showcasing various jumping techniques performed by skilled athletes or group members during the entry test. | 10 min |
Circle time | Athletes and the coach gather to identify issues and goals. Solutions are devised to build upon previous work or propose new strategies while adhering to the plan. | ||
Warm-up | Joint mobility, moderate-intensity work | Engaging in joint mobility exercises and moderate-intensity activities to activate cardiovascular and neuromuscular systems and promote joint lubrication. | 10 min |
Central phases | Strength expression exercises (varied by period) | Employing specific methodologies and tools with varying intensities to enhance different aspects of strength and core stability. Decisions are made through circle time, based on the initial program. | 50 min |
Cool down | De-fatigue and stretching exercises | Performing exercises to alleviate fatigue and engage in stretching routines, aiming to restore the body’s equilibrium. | 10 min |
Final phase | Circle time | A brief meeting to assess the session’s strengths and weaknesses. | 5 min |
The equation to calculate the training volume is Volume = Number of sets × Number of repetitions × Weight lifted (80% of 1 RM). |
CMJ Pre | CMJ Post | CMJ-FA Pre | CMJ-FA Post | Pre-Post Difference in Jump Height | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | Weight (kg) | Height (m) | BMI Pre | BMI Post | Jump Height (cm) | Jump Height (cm) | Jump Height (cm) | Jump Height (cm) | CMJ | CMJ-FA | |||
cm | % | cm | % | ||||||||||
Mean | 28.23 | 67.12 | 1.7 | 23.07 | 22.61 | 23.28 | 25.63 | 26.54 | 28.04 | 2.35 | 12.21 | 1.51 | 7.78 |
SD | 6.47 | 10.41 | 0.05 | 2.73 | 1.85 | 6.81 | 6.57 | 7.42 | 6.34 |
CMJ Pre | CMJ Post | CMJ-FA Pre | CMJ-FA Post | Pre-Post Difference in Jump Height | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Age | Weight (kg) | Height (m) | BMI Pre | BMI Post | Jump Height (cm) | Jump Height (cm) | Jump Height (cm) | Jump Height (cm) | CMJ | CMJ-FA | |||
cm | % | cm | % | ||||||||||
Mean | 28.06 | 70.18 | 1.72 | 23.77 | 23.5 | 23.28 | 24.76 | 27.19 | 30.83 | 1.47 | 10.22 | 3.64 | 19.64 |
SD | 5.46 | 10.31 | 0.07 | 3.21 | 1.93 | 8.12 | 6.67 | 9.89 | 11.05 |
Group | Test | Average | t-Value | p | |
---|---|---|---|---|---|
Pre | Post | ||||
CG | BMI | 23.07 | 22.61 | 1.28 | 0.22 |
CMJ | 23.28 | 25.63 | −4.08 | 0.01 | |
CMJ-FA | 26.54 | 28.04 | −2.85 | 0.05 | |
EDG | BMI | 23.77 | 23.5 | 0.72 | 0.48 |
CMJ | 23.28 | 24.76 | −2.17 | 0.05 | |
CMJ-FA | 27.19 | 30.83 | −4.08 | 0.01 |
Test | Group | Average | Variance | t-Value | p |
---|---|---|---|---|---|
BMI | CG | −1.15 | 7.32 | −1.21 | 0.24 |
EDG | −0.27 | 2.45 | |||
CMJ | CG | 2.35 | 5.97 | 0.98 | 0.33 |
EDG | 1.48 | 8.36 | |||
CMJ-FA | CG | 1.51 | 5.01 | −2.06 | 0.05 |
EDG | 3.64 | 14.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Domenico, F.; D’Isanto, T.; Esposito, G.; Aliberti, S.; Raiola, G. Exploring the Influence of Cognitive and Ecological Dynamics Approaches on Countermovement Jumping Enhancement: A Comparative Training Study. J. Funct. Morphol. Kinesiol. 2023, 8, 133. https://doi.org/10.3390/jfmk8030133
Di Domenico F, D’Isanto T, Esposito G, Aliberti S, Raiola G. Exploring the Influence of Cognitive and Ecological Dynamics Approaches on Countermovement Jumping Enhancement: A Comparative Training Study. Journal of Functional Morphology and Kinesiology. 2023; 8(3):133. https://doi.org/10.3390/jfmk8030133
Chicago/Turabian StyleDi Domenico, Felice, Tiziana D’Isanto, Giovanni Esposito, Sara Aliberti, and Gaetano Raiola. 2023. "Exploring the Influence of Cognitive and Ecological Dynamics Approaches on Countermovement Jumping Enhancement: A Comparative Training Study" Journal of Functional Morphology and Kinesiology 8, no. 3: 133. https://doi.org/10.3390/jfmk8030133
APA StyleDi Domenico, F., D’Isanto, T., Esposito, G., Aliberti, S., & Raiola, G. (2023). Exploring the Influence of Cognitive and Ecological Dynamics Approaches on Countermovement Jumping Enhancement: A Comparative Training Study. Journal of Functional Morphology and Kinesiology, 8(3), 133. https://doi.org/10.3390/jfmk8030133