Evaluation of the Technical Efficiency of Taiwan’s Milkfish Polyculture in Consideration of Differences in Culturing Models and Environments
Abstract
:1. Introduction
2. Model Specification
2.1. Theoretical Model
2.2. Data Sources and Variables Definitions
2.3. Empirical Model
3. Empirical Analysis
3.1. Descriptive Statistics and Parameter Estimation Results
3.2. GTE, MTE and TGR
3.3. Regression Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mangampa, M.; Burhanuddin, B. Field experiment of polyculture technology of tiger shrimp (P. monodon Farb.) Milkfish (Chanos chanos Forskal), and Seaweed (Gracilaria verrucosa) in Brackhiswater water pond of Borimasunggu village, Maros regency. Saintek Perikan. Indones. J. Fish. Sci. Technol. 2014, 10, 30–36. [Google Scholar] [CrossRef]
- Helminuddin, P.E.; Abdusysyahid, S. A Marketing and Financial Analysis of Milkfish (Chanos chanos) and Giant Tiger Prawn (Penaeus monodon) Farming in East Kalimantan. Int. J. Innov. Creat. Chang. 2020, 11, 581–591. Available online: https://www.ijicc.net/images/vol11iss4/11446_Helminuddin_2020_E_R.pdf (accessed on 26 August 2022).
- Lee, Y.C.; Lu, Y.H.; Lee, J.M.; Schafferer, C.; Yeh, C.Y.; Chu, T.W.; Huang, Y.W. A production economic analysis of different stocking density and fry size combinations of milkfish, Chanos chanos, farming in Taiwan. J. World Aquac. Soc. 2022, 53, 424–451. [Google Scholar] [CrossRef]
- Pai, W.T.; Schafferer, C.; Lee, J.M.; Ho, L.M.; Lu, Y.H.; Yang, H.C.; Yeh, C.Y. Effect of Culture Period and Stocking Density on Input Demand and Scale Economies ofMilkfish (Chanos chanos) Polycultures withWhite Shrimp (Penaeus indicus). Fishes 2022, 7, 110. [Google Scholar] [CrossRef]
- Jaspe, C.J.; Caipang, C.M.A.; Elle, B.J.G. Polyculture of white shrimp, Litopenaeus vannamei and milkfish, Chanos chanos as a strategy for efficient utilization of natural food production in ponds. Anim. Biol. Anim. Husb. 2011, 3, 96–104. Available online: http://www.abah.bioflux.com.ro/docs/2011.3.96-104.pdf (accessed on 26 August 2022).
- Lalramchhani, C.; Balasubramanian, C.P.; Panigrahi, A.; Ghoshal, T.K.; Das, S.; Shyne Anand, P.S.; Vijayan, K.K. Polyculture of Indian white shrimp (Penaeus indicus) with milkfish (Chanos chanos) and its effect on growth performances, water quality and microbial load in brackish water pond. J. Coast. Res. 2019, 86, 43–48. [Google Scholar] [CrossRef]
- Fisheries Agency, Council of Agriculture, Ececutive Yuan. Fisherise Statistical Yearbook; Taiwan, Kinmen and Matsu Area. 2009–2018. Available online: https://www.fa.gov.tw/list.php?theme=FS_AR&subtheme= (accessed on 26 August 2022).
- Chang, C.H.; Mayer, M.; Georgina, R.I.; Eva, B.B.; Wu, W.Y.; Catherine, L.N.; Lee, T.H. Effects of temperature and salinity on antioxidant responses in livers of temperate (Dicentrarchus labrax) and tropical (Chanos Chanos) marine euryhaline fish. J. Therm. Biol. 2021, 99, 103016. [Google Scholar] [CrossRef] [PubMed]
- Fisheries Agency, Council of Agriculture, Ececutive Yuan. Global Information Network for Fishery; 2014–2018. Available online: https://efish.fa.gov.tw/ (accessed on 26 August 2022).
- Sharma, K.R.; Leung, P. Technical efficiency of carp production in Nepal: An application of stochastic frontier production function approach. Aquac. Econ. Manag. 1998, 2, 129–140. [Google Scholar] [CrossRef]
- Iinuma, M.; Sharma, K.R.; Leung, P.S. Technical efficiency of carp pond culture in peninsula Malaysia: An application of stochastic production frontier and technical inefficiency model. Aquaculture 1999, 175, 199–213. [Google Scholar] [CrossRef]
- Sharma, K.R. Technical efficiency of carp production in Pakistan. Aquac. Econ. Manag. 1999, 3, 131–141. [Google Scholar] [CrossRef]
- Onumah, E.E.; Onumah, J.A.; Onumah, G.E. Production risk and technical efficiency of fish farms in Ghana. Aquaculture 2018, 495, 55–61. [Google Scholar] [CrossRef]
- Rahman, M.T.; Nielsen, R.; Khan, M.A.; Asmild, M. Efficiency and production environmental heterogeneity in aquaculture: A meta-frontier DEA approach. Aquaculture 2019, 509, 140–148. [Google Scholar] [CrossRef]
- Dey, M.M.; Paraguas, F.J.; Bimbao, G.B.; Regaspi, P.B. Technical efficiency of tilapia growout pond operations in the Philippines. Aquac. Econ. Manag. 2000, 4, 33–47. [Google Scholar] [CrossRef]
- Kumaran, M.; Anand, P.R.; Kumar, J.A.; Ravisankar, T.; Paul, J.; Vasagam, K.P.K.; Vimala, D.D.; Raja, K.A. Is Pacific white shrimp (Penaeus vannamei) farming in India is technically efficient?–A comprehensive study. Aquaculture 2017, 468, 262–270. [Google Scholar] [CrossRef]
- Long, L.K.; Thap, L.V.; Hoai, N.T. An application of data envelopment analysis with the double bootstrapping technique to analyze cost and technical efficiency in aquaculture: Do credit constraints matter? Aquaculture 2020, 525, 735290. [Google Scholar] [CrossRef]
- Chiang, F.S.; Sun, C.H.; Yu, J.M. Technical efficiency analysis of milkfish (Chanos chanos) production in Taiwan-an application of the stochastic frontier production function. Aquaculture 2004, 230, 99–116. [Google Scholar] [CrossRef]
- Karagiannis, G.; Katranidis, S.D.; Tzouvelekas, V. Measuring technical, allocative and cost efficiencies of seabass and seabream farms in Greece. Aquac. Econ. Manag. 2000, 4, 191–207. [Google Scholar] [CrossRef]
- Yeh, C.Y.; Huang, J.F.; Lee, J.M.; Schafferer, C. An economic analysis of hard clam (Meretrix meretrix) farmer polyculture with milkfish (Chanos chanos), silver sea bream (Rhabdosargus sarba), and shrimps at different hard clam stocking densities: A case study of Yunlin County, Taiwan. Aquac. Int. 2017, 25, 1039–1055. [Google Scholar] [CrossRef]
- Bayazid, Y.; Umetsu, C.; Hamasaki, H.; Miyanishi, T. Measuring the efficiency of collective floodplain aquaculture of Bangladesh using Data Envelopment Analysis. Aquaculture 2019, 503, 537–549. [Google Scholar] [CrossRef]
- Hai, A.T.N.; Speelman, S. Economic-environmental trade-offs in marine aquaculture: The case of lobster farming in Vietnam. Aquaculture 2020, 516, 734593. [Google Scholar] [CrossRef]
- Huang, C.J.; Huang, T.H.; Liu, N.H. A new approach to estimating the metafrontier production function based on a stochastic frontier framework. J. Prod. Anal. 2014, 42, 241–254. [Google Scholar] [CrossRef]
- Battese, G.E.; Rao, D.S.P.; O’Donnell, C.J. A metafrontier production function for estimation of technical efficiencies and technology gaps for firms operating under different technologies. J. Product. Anal. 2004, 21, 91–103. [Google Scholar] [CrossRef]
- O’Donnell, C.J.; Rao, D.S.P.; Battese, G.E. Metafrontier frameworks for the study of firm-level efficiencies and technology ratios. Empir. Econ. 2008, 34, 231–255. [Google Scholar] [CrossRef]
- Huang, T.H.; Chiang, D.L.; Tsai, C.M. Applying the new metafrontier directional distance function to compare banking efficiencies in Central and Eastern European countries. Econ. Model. 2015, 44, 188–199. [Google Scholar] [CrossRef]
- Lu, Y.H.; Chen, K.H.; Cheng, J.C.; Chen, C.C.; Li, S.Y. Analysis of Environmental Productivity on Fossil Fuel Power Plants in the U.S. Sustainability 2019, 11, 6907. [Google Scholar] [CrossRef]
- Cuesta, R.A.; Lovell, C.A.K.; Zofío, J.L. Environmental efficiency measurement with translog distance functions: A parametric approach. Ecol. Econ. 2009, 68, 2232–2242. [Google Scholar] [CrossRef]
- Färe, R.; Primont, D. Multi-Output Production and Duality: Theory and Applications; Kluwer Academic Publishers: Boston, MA, USA, 1995. [Google Scholar]
- Battese, G.E.; Coelli, T.J. A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empir. Econ. 1995, 20, 325–332. [Google Scholar] [CrossRef]
- Shephard, R.W. Theory of Cost and Production Functions; Princeton University Press: Princeton, NJ, USA, 1970. [Google Scholar]
- Ekunwe, P.A.; Emokaro, C.O. Technical efficiency of catfish farmers in Kaduna, Nigeria. J. Appl. Sci. Res. 2009, 5, 802–805. [Google Scholar]
- Onumah, E.E.; Brümmer, B.; Hörstgen-Schwark, G. Elements which delimitate technical efficiency of fish farms in Ghana. J. World Aquacult. Soc. 2010, 41, 506–518. [Google Scholar] [CrossRef]
- Iliyasu, A.; Mohamed, Z.A. Evaluating contextual factors affecting the technical efficiency of freshwater pond culture systems in peninsular Malaysia: A two-stage DEA approach. Aquac. Rep. 2016, 3, 12–17. [Google Scholar] [CrossRef]
- Iliyasu, A.; Mohamed, Z.A.; Terano, R. Comparative analysis of technical efficiency for different production culture systems and species of freshwater aquaculture in peninsular Malaysia. Aquacult. Rep. 2016, 3, 51–57. [Google Scholar] [CrossRef]
- See, K.F.; Ibrahim, R.A.; Goh, K.H. Aquaculture efficiency and productivity: A comprehensive review and bibliometric analysis. Aquaculture 2021, 544, 736881. [Google Scholar] [CrossRef]
- Begum, M.; Hossain, M.I.; Papanagiotou, E. Technical efficiency of shrimp farming in Bangladesh: An application of the stochastic production frontier approach. J. World Aquacult. Soc. 2013, 44, 641–654. [Google Scholar] [CrossRef]
- Tsue, P.T.; Lawal, W.L.; Ayuba, V.O. Productivity and technical efficiency of catfish farmers in Benue State: Nigeria. Adv. J. Agric. Res. 2013, 1, 20–25. [Google Scholar]
- Oluwatayo, I.B.; Adedeji, T.A. Comparative analysis of technical efficiency of catfish farms using different technologies in Lagos State, Nigeria: A Data Envelopment Analysis (DEA) approach. Agric. Food Secur. 2019, 8, 8. [Google Scholar] [CrossRef]
- Nyamuhirwa, D.M.A.; Awotide, B.A.; Kusinza, D.B.; Bishikwabo, V.K.; Mignouna, J.; Bamba, Z.; Nguezet, P.M.D. A Comparative Analysis of Technical Efficiency and Profitability of Agribusiness and Non-Agribusiness Enterprises in Eastern DRC. Sustainability 2022, 14, 8384. [Google Scholar] [CrossRef]
- Dey, M.M.; Paraguas, F.J.; Srichantuk, N.; Xinhua, Y.; Bhatta, R.; Thi Chau Dung, L. Technical efficiency of freshwater pond polyculture production in selected Asian countries: Estimation and implication. Aquac. Econ. Manag. 2005, 9, 39–63. [Google Scholar] [CrossRef]
- Roy, A.K.; Jens, N. Econometric approach for estimation of technical efficiency of aquaculture farms. In Applied Bioinformatics, Statistics and Economics in Fisheries Research; Roy, A.K., Serangi, N., Eds.; New India Publishing Agency: New Delhi, India, 2008; pp. 501–518. [Google Scholar]
- Iliyasu, A.; Mohamed, Z.A.; Hashim, M. Productivity growth, technical change and efficiency change of the Malaysian cage fish farming: An application of malmquist productivity index approach. Aquac. Int. 2015, 23, 1013–1024. [Google Scholar] [CrossRef]
- Cinemre, H.; Ceyhan, V.; Bozoğlu, M.; Demiryürek, K.; Kılıç, O. The costefficiency of trout farms in the Black Sea Region, Turkey. Aquaculture 2006, 251, 324–332. [Google Scholar] [CrossRef]
- Kareem, R.O.; Dipeolu, A.O.; Aromolaran, A.B.; Samson, A. Analysis of technical, allocative and economic efficiency of different pond systems in Ogunstate, Nigeria. Afr. J. Agric. Res. 2008, 3, 246–254. [Google Scholar]
- Kaliba, A.R.; Engle, C.R. Productive efficiency of catfish farms in Chicot county, Arkansas. Aquac. Econ. Manag. 2006, 10, 223–243. [Google Scholar] [CrossRef]
- Kareem, R.O.; Aromolaran, A.B.; Dipeolu, A.O. Economic efficiency of fish farmingin Ogun state, Nigeria. Aquac. Econ. Manag. 2009, 13, 39–52. [Google Scholar] [CrossRef]
- Irz, X.; Mckenzie, V. Profitability and technical efficiency of aquaculturesystems in pampaanga, philippines. Aquacult. Econ. Manag. 2003, 7, 195–211. [Google Scholar] [CrossRef]
Variables | Unit | Mean (N = 340) | Group Means | t Test p-Value | ||
---|---|---|---|---|---|---|
Current Year Harvest (N = 200) | Overwinter Harvest (N = 140) | |||||
Inputs | ||||||
NTD | 14,045.29 | 13,016.56 | 15,514.90 | 0.04 | ** | |
NTD | 7094.16 | 7333.51 | 6752.2 | 0.31 | ||
NTD | 28,185.66 | 20,960.70 | 38,507.03 | <0.01 | *** | |
NTD | 26,430.46 | 27,289.28 | 25,203.58 | 0.04 | ** | |
Outputs | ||||||
kg | 901.93 | 748.06 | 1121.75 | <0.01 | *** | |
kg | 129.94 | 173.96 | 67.06 | <0.01 | *** | |
Group frontier environment variables | ||||||
m | 3.80 | 3.68 | 3.97 | 0.03 | ** | |
in/ha | 3.53 | 3.81 | 3.12 | <0.01 | *** | |
1000/ha | 13.12 | 8.05 | 20.36 | <0.01 | *** | |
1000/ha | 589.08 | 474.77 | 752.38 | <0.01 | *** | |
Metafrontier environment variables | ||||||
°C | 13.01 | 15.13 | 9.99 | <0.01 | *** | |
mm | 238.18 | 208.11 | 281.15 | <0.01 | *** |
Variables | Group Frontier Estimation | Metafrontier Estimation | ||||
---|---|---|---|---|---|---|
Current Year Harvest | Overwinter Harvest | |||||
Parameter Estimates | Standard Errors | Parameter Estimates | Standard Errors | Parameter Estimates | Standard Errors | |
Constant | 0.0039 | 2.3490 | −10.7170 *** | 1.9317 | −6.3016 | 5.9311 |
0.9972 | 0.6366 | −1.6704 *** | 0.3657 | −1.0524 *** | 0.4025 | |
1.1054 ** | 0.5541 | 0.7530 | 0.5642 | 0.9390 *** | 0.3331 | |
−2.8850 *** | 0.8937 | −1.2951 * | 0.6701 | −0.9422 * | 0.5277 | |
−0.1243 | 0.5813 | 1.5618 *** | 0.4133 | 0.6377 ** | 0.3242 | |
−1.9855 *** | 0.3503 | −0.0811 | 0.2555 | −0.4233 ** | 0.2118 | |
−0.0489 | 0.0950 | −0.1929 ** | 0.0748 | −0.0841 | 0.0676 | |
0.3959 *** | 0.0617 | 0.2897 *** | 0.0450 | 0.2386 *** | 0.0487 | |
0.3656 ** | 0.1677 | 0.4720 ** | 0.1876 | 0.0751 | 0.1117 | |
−0.3376 *** | 0.0742 | −0.1800 *** | 0.0600 | −0.2120 *** | 0.0439 | |
−0.0047 | 0.0349 | −0.0919 ** | 0.0375 | −0.0449 ** | 0.0193 | |
0.0270 | 0.0373 | −0.1548 | 0.0951 | −0.1312 *** | 0.0346 | |
−0.0378 | 0.0857 | 0.2684 *** | 0.0986 | 0.1521 *** | 0.0519 | |
−0.0722 | 0.0801 | 0.1543 *** | 0.0334 | 0.1737 *** | 0.0453 | |
−0.0304 | 0.0397 | 0.0645 ** | 0.0289 | −0.0132 | 0.0371 | |
−0.4917 *** | 0.0946 | −0.2993 * | 0.1766 | −0.2412 *** | 0.0554 | |
−0.0361 | 0.0731 | −0.0806 | 0.0567 | −0.0824 ** | 0.0346 | |
−0.0055 | 0.0511 | 0.0165 | 0.0303 | 0.0226 | 0.0341 | |
0.3911 ** | 0.1456 | 0.2282 *** | 0.0614 | 0.2291 *** | 0.0641 | |
0.0594 | 0.0623 | −0.0786 * | 0.0465 | −0.0361 | 0.0373 | |
0.2329 *** | 0.0511 | 0.0518 ** | 0.0227 | 0.0712 *** | 0.0274 | |
−0.9916 | 0.8001 | 0.7639 ** | 0.3791 | −1.0622 | 0.6797 | |
0.0604 | 0.0521 | −0.0469 | 0.0597 | 0.0368 | 0.0410 | |
−0.1036 ** | 0.0438 | 0.0515 * | 0.0282 | −0.0388 | 0.0477 | |
0.0674 | 0.0595 | 0.0381 | 0.0400 | 0.0037 | 0.0551 | |
0.1059 * | 0.0629 | −0.0601 ** | 0.0256 | 0.1115 ** | 0.0495 | |
−0.0590 | 0.0468 | 0.0181 | 0.0195 | −0.0523 ** | 0.0248 | |
Constant | −0.2776 | 0.1823 | −0.6727 ** | 0.2811 | 1.9060 | 9.1800 |
0.0550 ** | 0.0245 | 0.1421 ** | 0.0558 | |||
0.0556*** | 0.0194 | 0.0718 *** | 0.0263 | |||
0.0049 | 0.0079 | −0.0054 | 0.0048 | |||
0.0005 *** | 0.0001 | 0.0004 *** | 0.0001 | |||
−0.0377 *** | 0.0080 | |||||
−0.0009 | 0.0008 | |||||
N | 200 | 140 | 340 |
Group | Region | GTE | MTE | TGR | |||
---|---|---|---|---|---|---|---|
Mean | p-Value | Mean | p-Value | Mean | p-Value | ||
Current Year Harvest[A] | Yunlin | 0.6665 | <0.01 *** | 0.6096 | 0.000 *** | 0.9147 | <0.01 *** |
Chiayi | 0.7783 | 0.6462 | 0.8359 | ||||
Tainan | 0.8335 | 0.6757 | 0.8143 | ||||
Mean [A] | 0.7892 | 0.6539 | 0.8344 | ||||
Overwinter Harvest[B] | Kaohsiung | 0.8701 | 0.500 | 0.6194 | 0.577 | 0.7186 | 0.045 ** |
Pingtung | 0.8437 | 0.6299 | 0.7596 | ||||
Mean [B] | 0.8629 | 0.6222 | 0.7297 | ||||
[A] vs. [B] p-value | - | <0.01 *** | <0.01 *** |
Variables | MTE | TGR | ||
---|---|---|---|---|
Coefficient | Standard Error | Coefficient | Standard Errors | |
Constant | 0.7344 *** | 0.0334 | 0.7244 *** | 0.0533 |
sex | −0.0058 | 0.0104 | −0.0222 | 0.0166 |
age | −0.0012 ** | 0.0004 | −0.0009 | 0.0007 |
education | −0.0081 * | 0.0042 | 0.0211 *** | 0.0067 |
area | 0.0022 * | 0.0012 | −0.0004 | 0.0018 |
average pool age | −0.0005 | 0.0004 | 0.0017 *** | 0.0006 |
fish farming years | 0.0008 * | 0.0004 | 0.0017 ** | 0.0007 |
sea water | −0.0195 ** | 0.0084 | 0.0523 *** | 0.0135 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.-H.; Huang, Y.-W.; Lee, J.-J.; Huang, S.-J. Evaluation of the Technical Efficiency of Taiwan’s Milkfish Polyculture in Consideration of Differences in Culturing Models and Environments. Fishes 2022, 7, 224. https://doi.org/10.3390/fishes7050224
Lu Y-H, Huang Y-W, Lee J-J, Huang S-J. Evaluation of the Technical Efficiency of Taiwan’s Milkfish Polyculture in Consideration of Differences in Culturing Models and Environments. Fishes. 2022; 7(5):224. https://doi.org/10.3390/fishes7050224
Chicago/Turabian StyleLu, Yung-Hsiang, Yi-Wei Huang, Jia-Jan Lee, and Sheng-Ju Huang. 2022. "Evaluation of the Technical Efficiency of Taiwan’s Milkfish Polyculture in Consideration of Differences in Culturing Models and Environments" Fishes 7, no. 5: 224. https://doi.org/10.3390/fishes7050224
APA StyleLu, Y. -H., Huang, Y. -W., Lee, J. -J., & Huang, S. -J. (2022). Evaluation of the Technical Efficiency of Taiwan’s Milkfish Polyculture in Consideration of Differences in Culturing Models and Environments. Fishes, 7(5), 224. https://doi.org/10.3390/fishes7050224