Sub-Saharan Africa Freshwater Fisheries under Climate Change: A Review of Impacts, Adaptation, and Mitigation Measures
Abstract
:1. Introduction
2. Climate Trends and Extreme Weather Events
3. Characteristics of Sub-Saharan African Inland Fisheries
4. Impacts of Climate Change and Variability on SSA’s Inland Fisheries
4.1. Water Temperature
4.2. Thermal Stratification
4.3. Hydrological Cycle
4.4. Eutrophication
4.5. Extreme Weather Events
4.6. Socio-Economic Impacts
4.6.1. Implications for Food and Nutrition Security
4.6.2. Economic Impacts
5. Fisheries’ Climate Change Adaptations in Sub-Saharan Africa
6. Fishery Management and Climate Change Mitigation Strategies
7. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McIntyre, P.B.; Liermann, C.A.R.; Revenga, C. Linking freshwater fishery management to global food security and biodiversity conservation. Proc. Natl. Acad. Sci. USA 2016, 113, 12880–12885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Agriculture Organization. FAO FishStatJ Database: 2019 Dataset. 2019. Available online: http://www.fao.org/fishery/statistics/software/fishstatj/en (accessed on 12 October 2021).
- Kolding, J.; Van Zwieten, P.; Marttín, F.; Poulain, F. Freshwater Small Pelagic Fish and Their Fisheries in Major African Lakes and Reservoirs in Relation to Food Security and Nutrition; FAO: Rome, Italy, 2019. [Google Scholar]
- Muringai, R.T.; Mafongoya, P.; Lottering, R.T.; Mugandani, R.; Naidoo, D. Unlocking the Potential of Fish to Improve Food and Nutrition Security in Sub-Saharan Africa. Sustainability 2021, 14, 318. [Google Scholar] [CrossRef]
- Obiero, K.; Meulenbroek, P.; Drexler, S.; Dagne, A.; Akoll, P.; Odong, R.; Kaunda-Arara, B.; Waidbacher, H. The contribution of fish to food and nutrition security in Eastern Africa: Emerging trends and future outlooks. Sustainability 2019, 11, 1636. [Google Scholar] [CrossRef] [Green Version]
- De Graaf, G.; Garibaldi, L. The Value of African Fisheries; FAO: Rome, Italy, 2014; Volume FIPS/C1093, 67p, Available online: http://www.fao.org/documents/card/es/c/d155e4db-78eb-7304228-8c8c-7aae5fc5cb8e/ (accessed on 15 May 2021).
- Food and Agriculture Orgnization. Climate Change, Inland Fishery and Aquaculture in Africa: Background Information; Committee for Inland Fisheries and Aquaculture of Africa: Maputo, Mozambique, 2010 November 16–18; Available online: http://www.fao.org/docrep/meeting/020/al373e.pdf (accessed on 17 August 2021).
- Bawuro, A.; Voegborlo, R.; Adimado, A. Bioaccumulation of heavy metals in some tissues of fish in Lake Geriyo, Adamawa State, Nigeria. J. Environ. Public Health 2018, 2018, 1854892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, A.S.; Gergurich, E.L.; Kraemer, B.M.; McGlue, M.M.; McIntyre, P.B.; Russell, J.M.; Simmons, J.D.; Swarzenski, P.W. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems. Proc. Natl. Acad. Sci. USA 2016, 113, 9563–9568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kao, Y.-C.; Rogers, M.W.; Bunnell, D.B.; Cowx, I.G.; Qian, S.S.; Anneville, O.; Beard, T.D.; Brinker, A.; Britton, J.R.; Chura-Cruz, R. Effects of climate and land-use changes on fish catches across lakes at a global scale. Nat. Commun. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Magqina, T.; Nhiwatiwa, T.; Dalu, M.T.; Mhlanga, L.; Dalu, T. Challenges and possible impacts of artisanal and recreational fisheries on tigerfish Hydrocynus vittatus Castelnau 1861 populations in Lake Kariba, Zimbabwe. Sci. Afr. 2020, 10, e00613. [Google Scholar] [CrossRef]
- Hara, M. Community response: Decline of the chambo in lake Malawi’s southeast arm. In Poverty Mosaics: Realities and Prospects in Small-Scale Fisheries; Springer: Dordrecht, The Netherlands, 2011; pp. 251–273. [Google Scholar]
- Singini, W.; Kaunda, E.; Kasulo, V.; Jere, W. Wealth based fisheries management of chambo (Oreochromis spp.) fish stock of Lake Malombe in Malawi. Int. J. Fish. Aquac. 2013, 5, 270–277. [Google Scholar]
- Gaber, H.S.; El-Kasheif, M.A.; Ibrahim, S.A.; Authman, M. Effect of water pollution in El-Rahawy drainage canal on hematology and organs of freshwater fish. World Appl. Sci. J. 2013, 21, 329–341. [Google Scholar]
- Raji, A.; Okaeme, A.; Omorinkoba, W.; Bwala, R. Illegal fishing of inland water bodies of Nigeria: Kainji experience. Cont. J. Fish. Aquat. Sci. 2012, 6, 47–58. [Google Scholar]
- Gownaris, N.J.; Rountos, K.J.; Kaufman, L.; Kolding, J.; Lwiza, K.M.; Pikitch, E.K. Water level fluctuations and the ecosystem functioning of lakes. J. Great Lakes Res. 2018, 44, 1154–1163. [Google Scholar] [CrossRef]
- Kolding, J.; van Zwieten, P.A.; Marttin, F.; Poulain, F. Fisheries in the Drylands of Sub-Saharan Africa—“Fish Come with the Rains”. Building Resilience for Fisheries-Dependent Livelihoods to Enhance Food Security and Nutrition in the Drylands; FAO: Rome, Italy, 2016. [Google Scholar]
- Ndebele-Murisa, M.R.; Musil, C.F.; Magadza, C.H.; Raitt, L. A decline in the depth of the mixed layer and changes in other physical properties of Lake Kariba’s water over the past two decades. Hydrobiologia 2014, 721, 185–195. [Google Scholar] [CrossRef]
- Niang, I.; Ruppel, O.C.; Abdrabo, M.A.; Essel, A.; Lennard, C.; Padgham, J.; Urquhart, P. Africa. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 1199–1265. [Google Scholar]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’Reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Fiorella, K.J.; Bageant, E.R.; Schwartz, N.B.; Thilsted, S.H.; Barrett, C.B. Fishers’ response to temperature change reveals the importance of integrating human behavior in climate change analysis. Sci. Adv. 2021, 7, eabc7425. [Google Scholar] [CrossRef] [PubMed]
- Bouraï, L.; Logez, M.; Laplace-Treyture, C.; Argillier, C. How do eutrophication and temperature interact to shape the community structures of phytoplankton and fish in lakes? Water 2020, 12, 779. [Google Scholar] [CrossRef] [Green Version]
- Harrod, C.; Ramírez, A.; Valbo-Jørgensen, J.; Funge-Smith, S. How climate change impacts inland fisheries. In Impacts of Climate Change on Fisheries and Aquaculture; FAO: Rome, Italy, 2019; p. 375. [Google Scholar]
- Islam, M.M.; Islam, N.; Habib, A.; Mozumder, M.M.H. Climate change impacts on a tropical fishery ecosystem: Implications and societal responses. Sustainability 2020, 12, 7970. [Google Scholar] [CrossRef]
- Littlefair, J.E.; Hrenchuk, L.E.; Blanchfield, P.J.; Rennie, M.D.; Cristescu, M.E. Thermal stratification and fish thermal preference explain vertical eDNA distributions in lakes. Mol. Ecol. 2021, 30, 3083–3096. [Google Scholar] [CrossRef]
- Macusi, E.D.; Abreo, N.A.S.; Cuenca, G.C.; Ranara, C.; Cardona, L.; Andam, M.; Guanzon, G.; Katikiro, R.; Deepananda, K. The potential impacts of climate change on freshwater fish, fish culture and fishing communities. J. Nat. Stud. 2015, 14, 14–31. [Google Scholar]
- Carosi, A.; Ghetti, L.; Lorenzoni, M. The role of climate changes in the spread of freshwater fishes: Implications for alien cool and warm-water species in a Mediterranean basin. Water 2021, 13, 347. [Google Scholar] [CrossRef]
- Huang, M.; Ding, L.; Wang, J.; Ding, C.; Tao, J. The impacts of climate change on fish growth: A summary of conducted studies and current knowledge. Ecol. Indic. 2021, 121, 106976. [Google Scholar] [CrossRef]
- Vesseur, L. Adaptation and Resilience in the Face of Climate Change: Protecting the Conditions of Emergence through Good Governance. 2015. Available online: https://sustainabledevelopment.un.org/content/documents/6579124-Vasseur-Adaptation%20and%20resilience%20in%20the%20face%20of%20climate%20change.pdf (accessed on 26 January 2022).
- Ohlberger, J. Climate warming and ectotherm body size–from individual physiology to community ecology. Funct. Ecol. 2013, 27, 991–1001. [Google Scholar] [CrossRef]
- Reddin, C.J.; O’Connor, N.E.; Harrod, C. Living to the range limit: Consumer isotopic variation increases with environmental stress. PeerJ 2016, 4, e2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muringai, R.T. Climate Change Perceptions, Impacts and Adaptation Strategies: Insights of Fishers in Zambezi River Basin, Zimbabwe. Sustainability 2022, 14, 3456. [Google Scholar] [CrossRef]
- Musinguzi, L.; Efitre, J.; Odongkara, K.; Ogutu-Ohwayo, R.; Muyodi, F.; Natugonza, V.; Olokotum, M.; Namboowa, S.; Naigaga, S. Fishers’ perceptions of climate change, impacts on their livelihoods and adaptation strategies in environmental change hotspots: A case of Lake Wamala, Uganda. Environ. Dev. Sustain. 2016, 18, 1255–1273. [Google Scholar] [CrossRef]
- Free, C.M.; Mangin, T.; Molinos, J.G.; Ojea, E.; Burden, M.; Costello, C.; Gaines, S.D. Realistic fisheries management reforms could mitigate the impacts of climate change in most countries. PLoS ONE 2020, 15, e0224347. [Google Scholar] [CrossRef]
- Ndebele-Murisa, M.R.; Mashonjowa, E.; Hill, T. The implications of a changing climate on the Kapenta fish stocks of Lake Kariba, Zimbabwe. Trans. R. Soc. S. Afr. 2011, 66, 105–119. [Google Scholar] [CrossRef]
- Katikiro, R.E.; Macusi, E.D. Impacts of climate change on West African fisheries and its implications on food production. J. Environ. Sci. Manag. 2012, 15, 83–95. [Google Scholar]
- Mboya, O. Effects of Weather and Climate Variability on Fishing Activities and Fishers Adaptive Capacity in Mbita Division-homa Bay County. Ph.D. Thesis, Kenyatta University, Nairobi, Kenya, 2013. [Google Scholar]
- Mohammed, E.Y.; Uraguchi, Z.B. Impacts of climate change on fisheries: Implications for food security in Sub-Saharan Africa. In Global Food Security; Hanjra, M.A., Ed.; Nova Science Publishers Inc.: Hauppauge, NY, USA, 2013; pp. 114–135. [Google Scholar]
- Utete, B.; Phiri, C.; Mlambo, S.S.; Muboko, N.; Fregene, B.T. Fish catches, and the influence of climatic and non-climatic factors in Lakes Chivero and Manyame, Zimbabwe. Cogent Food Agric. 2018, 4, 1435018. [Google Scholar] [CrossRef]
- Muringai, R.T.; Naidoo, D.; Mafongoya, P.; Lottering, S. The impacts of climate change on the livelihood and food security of small-scale fishers in Lake Kariba, Zimbabwe. J. Asian Afr. Stud. 2020, 55, 298–313. [Google Scholar] [CrossRef]
- Muringai, R.T.; Mafongoya, P.L.; Lottering, R. Climate change and variability impacts on sub-Saharan African fisheries: A Review. Rev. Fish. Sci. Aquac. 2021, 29, 706–720. [Google Scholar] [CrossRef]
- Stockdale, N. Sub-Saharan Africa. World Geography: Understanding a Changing World. 2017. Available online: https://www.fortbendisd.com/cms/lib/TX01917858/Centricity/Domain/1006/SSA%20Overview.pdf (accessed on 23 January 2022).
- Kotir, J.H. Climate change and variability in Sub-Saharan Africa: A review of current and future trends and impacts on agriculture and food security. Environ. Dev. Sustain. 2011, 13, 587–605. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Kanae, S.; Seneviratne, S.I.; Handmer, J.; Nicholls, N.; Peduzzi, P.; Mechler, R.; Bouwer, L.M.; Arnell, N.; Mach, K. Flood risk and climate change: Global and regional perspectives. Hydrol. Sci. J. 2014, 59, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Engelbrecht, F.; Adegoke, J.; Bopape, M.-J.; Naidoo, M.; Garland, R.; Thatcher, M.; McGregor, J.; Katzfey, J.; Werner, M.; Ichoku, C. Projections of rapidly rising surface temperatures over Africa under low mitigation. Environ. Res. Lett. 2015, 10, 85004. [Google Scholar] [CrossRef]
- Gizaw, M.S.; Gan, T.Y. Impact of climate change and El Niño episodes on droughts in sub-Saharan Africa. Clim. Dyn. 2017, 49, 665–682. [Google Scholar] [CrossRef]
- National Aeronautics and Space Administration (NASA). World of Change: Global Temperatures. 2021. Available online: https://earthoservatory.nasa.gov/world-of-change/globaltemperature#:~:text=According%20to%20an%20ongoing%20temperature,2%C2%BO%20Fahrenheit)%20since%201880 (accessed on 27 January 2022).
- Davis, C.L.; Vincent, K. Climate Risk and Vulnerability: A Handbook for Southern Africa; CSIR: Pretoria, South Africa, 2017. [Google Scholar]
- Greenpeace. Weathering the Storm: Extreme Weather Events and Climate Change in Africa; Technical Report (Review) 04-2020; Greenpeace Research Laboratories: Exeter, UK, 2020. [Google Scholar]
- Adhikari, U.; Nejadhashemi, A.P.; Woznicki, S.A. Climate change and eastern Africa: A review of impact on major crops. Food Energy Secur. 2015, 4, 110–132. [Google Scholar] [CrossRef]
- Nicholson, S.E.; Funk, C.; Fink, A.H. Rainfall over the African continent from the 19th through the 21st century. Glob. Planet. Change 2018, 165, 114–127. [Google Scholar] [CrossRef]
- Girvetz, E.; Ramirez-Villegas, J.; Claessens, L.; Lamanna, C.; Navarro-Racines, C.; Nowak, A.; Thornton, P.; Rosenstock, T.S. Future climate projections in Africa: Where are we headed? In The Climate-Smart Agriculture Papers; Springer: Cham, Switzerland, 2019; pp. 15–27. [Google Scholar]
- Zougmoré, R.; Partey, S.; Ouédraogo, M.; Omitoyin, B.; Thomas, T.; Ayantunde, A.; Ericksen, P.; Said, M.; Jalloh, A. Toward climate-smart agriculture in West Africa: A review of climate change impacts, adaptation strategies and policy developments for the livestock, fishery and crop production sectors. Agric. Food Secur. 2016, 5, 1–16. [Google Scholar] [CrossRef]
- Seneviratne, S.I.; Nicholls, N.; Easterling, D.; Goodess, C.M.; Kanae, S.; Kossin, J.; Luo, Y.; Marengo, J.; McInnes, K.; Rahimi, M.; et al. Changes in Climate Extremes and Their Impacts on the Natural Physical Environment. In Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B., Barros, V., Stocker, T.F., Qin, D., Dokken, D.J., Ebi, K.L., Mastrandrea, M.D., Mach, K.J., Plattner, G.K., Allen, S.K., et al., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 109–230. [Google Scholar]
- Nangombe, S.; Zhou, T.; Zhang, W.; Wu, B.; Hu, S.; Zou, L.; Li, D. Record-breaking climate extremes in Africa under stabilized 1.5 C and 2 C global warming scenarios. Nat. Clim. Change 2018, 8, 375–380. [Google Scholar] [CrossRef]
- Ongoma, V.; Chen, H.; Omony, G.W. Variability of extreme weather events over the equatorial East Africa, a case study of rainfall in Kenya and Uganda. Theor. Appl. Climatol. 2018, 131, 295–308. [Google Scholar] [CrossRef]
- Funge-Smith, S.; Bennett, A. A fresh look at inland fisheries and their role in food security and livelihoods. Fish Fish. 2019, 20, 1176–1195. [Google Scholar] [CrossRef] [Green Version]
- Bartley, D.; Jorgensen, J. Inland Fisheries and Aquaculture1. Available online: https://www.academia.edu/6645736/Inland_Fisheries_and_Aquaculture (accessed on 27 January 2022).
- World Bank. Hidden Harvest: The Global Contribution of Capture Fisheries; WorldFish: Washington, DC, USA, 2012. [Google Scholar]
- World Forum of Fisher People. Inland Small-Scale Fisheries; WFFP: Cape Town, South Africa, 2017; Available online: http://worldfishers.org/wpcontent/uploads/2017/10/WFFP_Inland_Fisheries.pdf (accessed on 4 February 2022).
- Smith, H.; Basurto, X. Defining small-scale fisheries and examining the role of science in shaping perceptions of who and what counts: A systematic review. Front. Mar. Sci. 2019, 6, 236. [Google Scholar] [CrossRef] [Green Version]
- Bartley, D.; De Graaf, G.; Valbo-Jørgensen, J.; Marmulla, G. Inland capture fisheries: Status and data issues. Fish. Manag. Ecol. 2015, 22, 71–77. [Google Scholar] [CrossRef]
- High Level Panel of Experts. Sustainable Fisheries and Aquaculture for Food Security and Nutrition; A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security; European Comission: Luxembourg, 2014. [Google Scholar]
- Kimirei, I.A.; Mubaya, C.P.; Ndebele-Murisa, M.; Kaaya, L.; Mangadze, T.; Mwedzi, T.; Kushata, J.N.T. Trends in Ecological Changes: Implications for East and Southern Africa. In Ecological Changes in the Zambezi River Basin; Ndebele-Murisa, M., Kimire, I.A., Mubaya, C.P., Bere, T., Eds.; Council for the Development of Social Science Research in Africa: Dakar, Senegal, 2021; p. 49. [Google Scholar]
- Lévêque, C.; Paugy, D. Freshwater Fishes in Africa; EOLSS: Paris, France, 2017. [Google Scholar]
- Tweddle, D. Overview of the Zambezi River System: Its history, fish fauna, fisheries, and conservation. Aquat. Ecosyst. Health Manag. 2010, 13, 224–240. [Google Scholar] [CrossRef]
- Welcomme, R.; Lymer, D. An audit of inland capture fishery statistics-Africa. FAO Fish. Aquac. Circ. 2012, 1, 1–61. [Google Scholar]
- Badjeck, M.-C.; Allison, E.H.; Halls, A.S.; Dulvy, N.K. Impacts of climate variability and change on fishery-based livelihoods. Mar. Policy 2010, 34, 375–383. [Google Scholar] [CrossRef]
- Nyboer, E.A.; Chrétien, E.; Chapman, L.J. Divergence in aerobic scope and thermal tolerance is related to local thermal regime in two populations of introduced Nile perch (Lates niloticus). J. Fish Biol. 2020, 97, 231–245. [Google Scholar] [CrossRef]
- O’Gorman, E.J.; Ólafsson, Ó.P.; Demars, B.O.; Friberg, N.; Guðbergsson, G.; Hannesdóttir, E.R.; Jackson, M.C.; Johansson, L.S.; McLaughlin, Ó.B.; Ólafsson, J.S. Temperature effects on fish production across a natural thermal gradient. Glob. Change Biol. 2016, 22, 3206–3220. [Google Scholar] [CrossRef] [Green Version]
- Walberg, E. Effect of increased water temperature on warm water fish feeding behavior and habitat use. J. Undergrad. Res. Minn. State Univ. Mankato 2011, 11, 13. [Google Scholar]
- Sanful, P.; Aikins, S.; Frempong, E.; Hall, R.; Hecky, R. Temporal dynamics and relationship between climate, limnological variables and zooplankton composition in climate-sensitive Lake Bosumtwi, Ghana. Afr. J. Aquat. Sci. 2017, 42, 21–33. [Google Scholar] [CrossRef]
- Tierney, J.E.; Mayes, M.T.; Meyer, N.; Johnson, C.; Swarzenski, P.W.; Cohen, A.S.; Russell, J.M. Late-twentieth-century warming in Lake Tanganyika unprecedented since AD 500. Nat. Geosci. 2010, 3, 422–425. [Google Scholar] [CrossRef]
- Abo-Taleb, H.A.; Aziz, N.E.A.; Ezz, S.M.A.; El Raey, M.; Abou Zaid, M.M. Study of chromista and protozoa in a hotspot area at the Mediterranean coast with special reference to the potentiality to use it as bio-indicators. Int. J. Mar. Sci. 2016, 6, 53. [Google Scholar] [CrossRef]
- Nyboer, E.A.; Chapman, L.J. Elevated temperature and acclimation time affect metabolic performance in the heavily exploited Nile perch of Lake Victoria. J. Exp. Biol. 2017, 220, 3782–3793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magadza, C.H.; Madzivanzira, T.C.; Chifamba, P.C. Decline of zooplankton food resources of Limnothrissa miodon fishery in Lake Kariba: Global warming-induced ecosystem disruption by Cylindrospermopsis raciborskii. Lakes Reserv. Res. Manag. 2020, 25, 117–132. [Google Scholar] [CrossRef]
- Burt, J.; Hinch, S.; Patterson, D. The importance of parentage in assessing temperature effects on fish early life history: A review of the experimental literature. Rev. Fish Biol. Fish. 2011, 21, 377–406. [Google Scholar] [CrossRef]
- Devkota, M.; Kathayat, H. How is freshwater fish reproduction affected from changing climatic patterns. Res. Rev. Res. J. Biol. 2020, 8, 1–13. [Google Scholar]
- Olusanya, H.O.; van Zyll de Jong, M. Assessing the vulnerability of freshwater fishes to climate change in Newfoundland and Labrador. PLoS ONE 2018, 13, e0208182. [Google Scholar] [CrossRef]
- Szekeres, P.; Eliason, E.J.; Lapointe, D.; Donaldson, M.R.; Brownscombe, J.W.; Cooke, S.J. On the neglected cold side of climate change and what it means to fish. Clim. Res. 2016, 69, 239–245. [Google Scholar] [CrossRef]
- Magee, M.R.; Wu, C.H. Response of water temperatures and stratification to changing climate in three lakes with different morphometry. Hydrol. Earth Syst. Sci. 2017, 21, 6253–6274. [Google Scholar] [CrossRef] [Green Version]
- Vincent, W. Effects of climate change on lakes. In Encyclopedia of Inland Waters; Likens, G.E., Ed.; Elsevier: Oxford, UK, 2009; pp. 55–60. [Google Scholar]
- Mellard, J.P.; Yoshiyama, K.; Litchman, E.; Klausmeier, C.A. The vertical distribution of phytoplankton in stratified water columns. J. Theor. Biol. 2011, 269, 16–30. [Google Scholar] [CrossRef]
- Taabu-Munyaho, A.; Kayanda, R.J.; Everson, I.; Grabowski, T.B.; Marteinsdóttir, G. Distribution and exploitation of Nile perch Lates niloticus in relation to stratification in Lake Victoria, East Africa. J. Great Lakes Res. 2013, 39, 466–475. [Google Scholar] [CrossRef]
- Mahere, T.; Mtsambiwa, M.; Chifamba, P.; Nhiwatiwa, T. Climate change impact on the limnology of Lake Kariba, Zambia–Zimbabwe. Afr. J. Aquat. Sci. 2014, 39, 215–221. [Google Scholar] [CrossRef]
- Marshall, B.E. An assessment of climate change and stratification in Lake Kariba (Zambia–Zimbabwe). Lakes Reserv. Res. Manag. 2017, 22, 229–240. [Google Scholar] [CrossRef]
- United States Geological Survey. Natural Processes pf Ground-Water and Surface-Water Interaction. 2016. Available online: https://pubs.usgs.gov/circ/circ1139/htdocs/natural_processes_of_ground.htm (accessed on 27 January 2022).
- Wang, X.; Zhang, P.; Liu, L.; Li, D.; Wang, Y. Effects of human activities on hydrological components in the Yiluo River basin in middle Yellow River. Water 2019, 11, 689. [Google Scholar] [CrossRef] [Green Version]
- Nan, Y.; Bao-hui, M.; Chun-Kun, L. Impact analysis of climate change on water resources. Procedia Eng. 2011, 24, 643–648. [Google Scholar] [CrossRef] [Green Version]
- Hodnebrog, Ø.; Myhre, G.; Samset, B.H.; Alterskjær, K.; Andrews, T.; Boucher, O.; Faluvegi, G.; Fläschner, D.; Forster, P.M.; Kasoar, M. Increased water vapour lifetime due to global warming. Atmos. Chem. Phys. Discuss. 2019, 19, 12887–12899. [Google Scholar] [CrossRef] [Green Version]
- Roudier, P.; Ducharne, A.; Feyen, L. Climate change impacts on runoff in West Africa: A review. Hydrol. Earth Syst. Sci. 2014, 18, 2789–2801. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E. Changes in precipitation with climate change. Clim. Res. 2011, 47, 123–138. [Google Scholar] [CrossRef] [Green Version]
- Eludoyin, A.O.; Olanrewaju, O.E. Water Supply and Quality in the Sub-Saharan Africa. In Clean Water and Sanitation; Leal Filho, W., Azul, A.M., Brandli, L., Lange Salvia, A., Wall, T., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–17. [Google Scholar]
- Ofori, S.A.; Cobbina, S.J.; Obiri, S. Climate Change, Land, Water, and Food Security: Perspectives from Sub-Saharan Africa. Front. Sustain. Food Syst. 2021, 5, 680924. [Google Scholar] [CrossRef]
- Rameshwaran, P.; Bell, V.A.; Davies, H.N.; Kay, A.L. How might climate change affect river flows across West Africa? Clim. Change 2021, 169, 1–27. [Google Scholar] [CrossRef]
- Ipinjolu, J.K.; Magawata, I.; Shinkafi, B.A. Potential impact of climate change on fisheries and aquaculture in Nigeria. J. Fish. Aquat. Sci. 2013, 9, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Fu, B.; Piao, S.; Lü, Y.; Ciais, P.; Feng, X.; Wang, Y. Reduced sediment transport in the Yellow River due to anthropogenic changes. Nat. Geosci. 2016, 9, 38–41. [Google Scholar] [CrossRef]
- Miranda, L.E.; Coppola, G.; Boxrucker, J. Reservoir fish habitats: A perspective on coping with climate change. Rev. Fish. Sci. Aquac. 2020, 28, 478–498. [Google Scholar] [CrossRef]
- Helfer, F.; Lemckert, C.; Zhang, H. Impacts of climate change on temperature and evaporation from a large reservoir in Australia. J. Hydrol. 2012, 475, 365–378. [Google Scholar] [CrossRef] [Green Version]
- Urama, K.C.; Ozor, N. Impacts of climate change on water resources in Africa: The role of adaptation. Afr. Technol. Policy Stud. Netw. 2010, 29, 1–29. [Google Scholar]
- World Bank. The Zambezi River Basin a Multi-Sector Investment Opportunities Analysis. In Modeling, Analysis and Input Data; The World Bank Washington: Washington, DC, USA, 2010; Volume 4, p. 158. [Google Scholar]
- Pierce, M. Building Resilience to Water Scarcity in Sub-Saharan Africa: The Role of Family Planning. Population Reference Bureau. Policy Brief. 2017. Available online: https://www.prb.org/wp-content/uploads/2017/08/PRB_Brief_water_4P-1.pdf (accessed on 15 February 2022).
- Cohen, P.J.; Allison, E.H.; Andrew, N.L.; Cinner, J.; Evans, L.S.; Fabinyi, M.; Garces, L.R.; Hall, S.J.; Hicks, C.C.; Hughes, T.P. Securing a just space for small-scale fisheries in the blue economy. Front. Mar. Sci. 2019, 6, 171. [Google Scholar] [CrossRef]
- Busobozi, E. Eutrophication in Ugandan Crater Lakes: A Case Study of Six Crater Lakes Located in Kabarole District Western Uganda. Master’s Dissertation, University of Canterbury, Christchurch, New Zealand, 2017. Available online: https://ir.canterbury.ac.nz/bitstream/handle/10092/13802/Busobozi,%20Emmanuel_Master's%20Thesis.pdf?sequence=1 (accessed on 2 February 2022).
- Zhang, Y.; Li, M.; Dong, J.; Yang, H.; Van Zwieten, L.; Lu, H.; Alshameri, A.; Zhan, Z.; Chen, X.; Jiang, X. A critical review of methods for analyzing freshwater eutrophication. Water 2021, 13, 225. [Google Scholar] [CrossRef]
- Chislock, M.F.; Doster, E.; Zitomer, R.A.; Wilson, A.E. Eutrophication: Causes, consequences, and controls in aquatic ecosystems. Nat. Educ. Knowl. 2013, 4, 10. [Google Scholar]
- Nazari-Sharabian, M.; Ahmad, S.; Karakouzian, M. Climate change and eutrophication: A short review. Eng. Technol. Appl. Sci. Res. 2018, 8, 3668. [Google Scholar] [CrossRef]
- Moss, B.; Kosten, S.; Meerhoff, M.; Battarbee, R.W.; Jeppesen, E.; Mazzeo, N.; Havens, K.; Lacerot, G.; Liu, Z.; De Meester, L. Allied attack: Climate change and eutrophication. Inland Waters 2011, 1, 101–105. [Google Scholar] [CrossRef] [Green Version]
- Xia, R.; Zhang, Y.; Critto, A.; Wu, J.; Fan, J.; Zheng, Z.; Zhang, Y. The potential impacts of climate change factors on freshwater eutrophication: Implications for research and countermeasures of water management in China. Sustainability 2016, 8, 229. [Google Scholar] [CrossRef] [Green Version]
- Su, J.-Q.; Wang, X.; Yang, Z.-F. Lake eutrophication modeling in considering climatic factors change: A review. Ying Yong Sheng Tai Xue Bao J. Appl. Ecol. 2012, 23, 3197–3206. [Google Scholar]
- Zanchett, G.; Oliveira-Filho, E.C. Cyanobacteria and cyanotoxins: From impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins 2013, 5, 1896–1917. [Google Scholar] [CrossRef] [PubMed]
- Lurling, M.; Mello, M.M.E.; van Oosterhout, F.; de Senerpont Domis, L.; Marinho, M.M. Response of Natural Cyanobacteria and Algae Assemblages to a Nutrient Pulse and Elevated Temperature. Front. Microbiol. 2018, 9, 1851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigosi, A.; Hanson, P.; Hamilton, D.P.; Hipsey, M.; Rusak, J.A.; Bois, J.; Sparber, K.; Chorus, I.; Watkinson, A.J.; Qin, B. Determining the probability of cyanobacterial blooms: The application of Bayesian networks in multiple lake systems. Ecol. Appl. 2015, 25, 186–199. [Google Scholar] [CrossRef]
- Drobac, D.; Tokodi, N.; Lujić, J.; Marinović, Z.; Subakov-Simić, G.; Dulić, T.; Važić, T.; Nybom, S.; Meriluoto, J.; Codd, G.A. Cyanobacteria and cyanotoxins in fishponds and their effects on fish tissue. Harmful Algae 2016, 55, 66–76. [Google Scholar] [CrossRef] [PubMed]
- Moustaka-Gouni, M.; Sommer, U. Effects of harmful blooms of large-sized and colonial cyanobacteria on aquatic food webs. Water 2020, 12, 1587. [Google Scholar] [CrossRef]
- Zi, J.; Pan, X.; MacIsaac, H.J.; Yang, J.; Xu, R.; Chen, S.; Chang, X. Cyanobacteria blooms induce embryonic heart failure in an endangered fish species. Aquat. Toxicol. 2018, 194, 78–85. [Google Scholar] [CrossRef]
- Knockaert, C. Possible Consequences of Eutrophication. 2021. Available online: http://www.coastalwiki.org/wiki/Possible_consequences_of_eutrophication (accessed on 19 February 2022).
- Woodward, G.; Bonada, N.; Brown, L.E.; Death, R.G.; Durance, I.; Gray, C.; Hladyz, S.; Ledger, M.E.; Milner, A.M.; Ormerod, S.J. The effects of climatic fluctuations and extreme events on running water ecosystems. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20150274. [Google Scholar] [CrossRef] [Green Version]
- WorldFish Center. The Threat to Fisheries and Aquaculture from Climate Change. Policy Brief. 2007. Available online: http://pubs.iclarm.net/resource_centre/ClimateChange2.pdf (accessed on 3 February 2022).
- Chukwu, M.N. Impact of flooding on fishermen’s families in Pedro community, Iwaya-Lagos, Nigeria. J. Appl. Sci. Environ. Manag. 2014, 18, 647–651. [Google Scholar] [CrossRef]
- Bêche, L.A.; Connors, P.G.; Resh, V.H.; Merenlender, A.M. Resilience of fishes and invertebrates to prolonged drought in two California streams. Ecography 2009, 32, 778–788. [Google Scholar] [CrossRef]
- Lake, P.S. Drought, the Creeping Disaster Effects on Aquatic Ecosystems; Land and Water Australia: Canberra, Australia, 2008.
- Gao, H.; Bohn, T.; Podest, E.; McDonald, K.; Lettenmaier, D. On the causes of the shrinking of Lake Chad. Environ. Res. Lett. 2011, 6, 034021. [Google Scholar] [CrossRef] [Green Version]
- Eriegha, O.; Ovie, S.; Ovie SOand Aminu, A. Shrinking Lake Chad: Initialization of culture-based fisheries for improved livelihood in Nigeria. Int. J. Fish. Aquat. Stud. 2019, 7, 14–18. [Google Scholar]
- Talbot, C.J.; Bennett, E.M.; Cassell, K.; Hanes, D.M.; Minor, E.C.; Paerl, H.; Raymond, P.A.; Vargas, R.; Vidon, P.G.; Wollheim, W. The impact of flooding on aquatic ecosystem services. Biogeochemistry 2018, 141, 439–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- United Nations Department of Economic and Social Affairs. Population Facts. 2019. Available online: https://www.un.org/en/development/desa/population/publications/pdf/popfacts/PopFacts_2019-6.pdf (accessed on 16 February 2022).
- Tusting, L.S.; Bisanzio, D.; Alabaster, G.; Cameron, E.; Cibulskis, R.; Davies, M.; Flaxman, S.; Gibson, H.S.; Knudsen, J.; Mbogo, C. Mapping changes in housing in sub-Saharan Africa from 2000 to 2015. Nature 2019, 568, 391–394. [Google Scholar] [CrossRef] [Green Version]
- Tran, N.; Chu, L.; Chan, C.Y.; Genschick, S.; Phillips, M.J.; Kefi, A.S. Fish supply and demand for food security in Sub-Saharan Africa: An analysis of the Zambian fish sector. Mar. Policy 2019, 99, 343–350. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. Africa Regional Overview of Food Security and Nutrition. 2019. Available online: http://www.fao.org/3/ca7704en/CA7704EN.pdf (accessed on 1 February 2021).
- Psaki, S.; Bhutta, Z.A.; Ahmed, T.; Ahmed, S.; Bessong, P.; Islam, M.; John, S.; Kosek, M.; Lima, A.; Nesamvuni, C. Household food access and child malnutrition: Results from the eight-country MAL-ED study. Popul. Health Metr. 2012, 10, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ijarotimi, O.S. Determinants of childhood malnutrition and consequences in developing countries. Curr. Nutr. Rep. 2013, 2, 129–133. [Google Scholar] [CrossRef] [Green Version]
- Drammeh, W.; Hamid, N.A.; Rohana, A. Determinants of household food insecurity and its association with child malnutrition in Sub-Saharan Africa: A review of the literature. Curr. Res. Nutr. Food Sci. J. 2019, 7, 610–623. [Google Scholar] [CrossRef] [Green Version]
- Brglez, M.; Plazar, N.; Poklar Vatovec, T.; Meulenberg, C.J. Health concerns regarding malnutrition among the older populations: Considerations from a Slovenian perspective. Health Promot. Int. 2022, 37, daab097. [Google Scholar] [CrossRef]
- Marinda, P.A.; Genschick, S.; Khayeka-Wandabwa, C.; Kiwanuka-Lubinda, R.; Thilsted, S.H. Dietary diversity determinants and contribution of fish to maternal and under-five nutritional status in Zambia. PLoS ONE 2018, 13, e0204009. [Google Scholar] [CrossRef]
- Lam, V.W.; Cheung, W.W.; Swartz, W.; Sumaila, U.R. Climate change impacts on fisheries in West Africa: Implications for economic, food and nutritional security. Afr. J. Mar. Sci. 2012, 34, 103–117. [Google Scholar] [CrossRef]
- United Nations Conference on Trade and Development. Fishery Exports and the Economic Development of Least Developed Countries: Bangladesh, Cambodia, The Comoros, Mozambique, Myanmar and Uganda. UNCTD. 2017. Available online: https://unctad.org/en/PublicationsLibrary/aldc2017d2_en.pdf (accessed on 26 February 2022).
- Lam, V.W.; Cheung, W.W.; Reygondeau, G.; Sumaila, U.R. Projected change in global fisheries revenues under climate change. Sci. Rep. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Kupaza, M.; Gore, T.; Mukanangana, F.; Makurah, E. Small scale fisheries as a livelihood strategy: A case study of Lake Chivero in Zimbabwe. Glob. J. Interdiscip. Soc. Sci. 2015, 4, 141–147. [Google Scholar]
- Butler, E.C.; Childs, A.-R.; Saayman, A.; Potts, W.M. Can fishing tourism contribute to conservation and sustainability via ecotourism? A case study of the fishery for giant African threadfin Polydactylus quadrifilis on the Kwanza Estuary, Angola. Sustainability 2020, 12, 4221. [Google Scholar] [CrossRef]
- du Preez, M.; Hosking, S.G. The value of the trout fishery at Rhodes, North Eastern Cape, South Africa: A travel cost analysis using count data models. J. Environ. Plan. Manag. 2011, 54, 267–282. [Google Scholar] [CrossRef]
- Shelton, J.M.; Weyl, O.L.; Esler, K.J.; Paxton, B.R.; Impson, N.D.; Dallas, H.F. Temperature mediates the impact of non-native rainbow trout on native freshwater fishes in South Africa’s Cape Fold Ecoregion. Biol. Invasions 2018, 20, 2927–2944. [Google Scholar] [CrossRef]
- Ndhlovu, N.; Saito, O.; Djalante, R.; Yagi, N. Assessing the sensitivity of small-scale fishery groups to climate change in Lake Kariba, Zimbabwe. Sustainability 2017, 9, 2209. [Google Scholar] [CrossRef] [Green Version]
- Parry, M.L.; Canziani, O.; Palutikof, J.; Van der Linden, P.; Hanson, C. Climate Change 2007-Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Tao, J.; He, D.; Kennard, M.J.; Ding, C.; Bunn, S.E.; Liu, C.; Jia, Y.; Che, R.; Chen, Y. Strong evidence for changing fish reproductive phenology under climate warming on the Tibetan Plateau. Glob. Change Biol. 2018, 24, 2093–2104. [Google Scholar] [CrossRef] [Green Version]
- Gallo, B.; Jackson, M.; O’Gorman, E.; Woodward, G. Adaptation of freshwater species to climate change. Encycl. Sustain. Technol. 2017, 8, 331–349. [Google Scholar]
- Getabu, A.; Tumwebaze, R.; MacLennan, D.N. Spatial distribution and temporal changes in the fish populations of Lake Victoria. Aquat. Living Resour. 2003, 16, 159–165. [Google Scholar] [CrossRef]
- Goudswaard, P.; Katunzi, E.; Wanink, J.; Witte, F. Distribution of Nile perch Lates niloticus in southern Lake Victoria is determined by depth and dissolved oxygen concentrations. Afr. J. Aquat. Sci. 2011, 36, 147–153. [Google Scholar] [CrossRef]
- James, R.; Washington, R. Changes in African temperature and precipitation associated with degrees of global warming. Clim. Change 2013, 117, 859–872. [Google Scholar] [CrossRef]
- Shelton, C. Climate change adaptation in fisheries and aquaculture: Compilation of initial examples. FAO Fish. Aquac. Circ. 2014, I, 8088. [Google Scholar]
- Limuwa, M.M.; Sitaula, B.K.; Njaya, F.; Storebakken, T. Evaluation of small-scale fishers’ perceptions on climate change and their coping strategies: Insights from Lake Malawi. Climate 2018, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Mgana, H.; Kraemer, B.M.; O’Reilly, C.M.; Staehr, P.A.; Kimirei, I.A.; Apse, C.; Leisher, C.; Ngoile, M.; McIntyre, P.B. Adoption and consequences of new light-fishing technology (LEDs) on Lake Tanganyika, East Africa. PLoS ONE 2019, 14, e0216580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McLean, K.A.; Byanaku, A.; Kubikonse, A.; Tshowe, V.; Katensi, S.; Lehman, A.G. Fishing with bed nets on Lake Tanganyika: A randomized survey. Malar. J. 2014, 13, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Njiru, M.; Kazungu, J.; Ngugi, C.; Gichuki, J.; Muhoozi, L. An overview of the current status of Lake Victoria fishery: Opportunities, challenges and management strategies. Lakes Reserv. Res. Manag. 2008, 13, 1–12. [Google Scholar] [CrossRef]
- Bush, E.R.; Short, R.E.; Milner-Gulland, E.J.; Lennox, K.; Samoilys, M.; Hill, N. Mosquito net use in an artisanal East African fishery. Conserv. Lett. 2017, 10, 451–459. [Google Scholar] [CrossRef]
- Makwinja, R.; Kaunda, E.; Mengistou, S.; Alemiew, T.; Njaya, F.; Kosamu, I.B.M.; Kaonga, C.C. Lake Malombe fishing communities’ livelihood, vulnerability, and adaptation strategies. Curr. Res. Environ. Sustain. 2021, 3, 100055. [Google Scholar] [CrossRef]
- Agrawal, A. Local institutions and adaptation to climate change. In Social Dimensions of Climate Change: Equity and Vulnerability in a Warming World; Mearn, R., Norton, A., Eds.; The World Bank: Washington, DC, USA, 2010; Volume 2, pp. 173–178. [Google Scholar]
- Mubaya, C.P.; Mafongoya, P. The role of institutions in managing local level climate change adaptation in semi-arid Zimbabwe. Clim. Risk Manag. 2017, 16, 93–105. [Google Scholar] [CrossRef]
- Smucker, T.A.; Wisner, B. Fishing for a Future: Local Institutions, Aspirations and Agency in a Complex Climate Adaptation System. Tanzan. J. Dev. Stud. 2021, 18, 81–104. [Google Scholar]
- Mosepele, K.; Kolawole, O.D. Fisheries governance, management and marginalisation in developing countries: Insights from Botswana. Cogent Food Agric. 2017, 3, 1338637. [Google Scholar] [CrossRef]
- Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Öhman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Sustainable development goals for people and planet. Nature 2013, 495, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.W.; Pomeroy, R.S. Driving small-scale fisheries in developing countries. Front. Mar. Sci. 2015, 2, 44. [Google Scholar] [CrossRef] [Green Version]
- Kaluma, K.; Umar, B.B. Outcomes of participatory fisheries management: An example from co-management in Zambia’s Mweru-Luapula fishery. Heliyon 2021, 7, e06083. [Google Scholar] [CrossRef]
- Donda, S. Who benefits from fisheries co-management? A case study in Lake Chiuta, Malawi. Mar. Policy 2017, 80, 147–153. [Google Scholar] [CrossRef]
- Conde, C.; Lonsdale, K. Engaging stakeholders in the adaptation process. In Adaptation Policy Frameworks for Climate Change: Developing Strategies, Policies and Measures; Burton, I., Lim, B., Spanger-Siegfried, E., Malone, E.L., Huq, S., Eds.; Cambridge University Press: Cambridge, UK, 2005; pp. 33–46. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muringai, R.T.; Mafongoya, P.; Lottering, R.T. Sub-Saharan Africa Freshwater Fisheries under Climate Change: A Review of Impacts, Adaptation, and Mitigation Measures. Fishes 2022, 7, 131. https://doi.org/10.3390/fishes7030131
Muringai RT, Mafongoya P, Lottering RT. Sub-Saharan Africa Freshwater Fisheries under Climate Change: A Review of Impacts, Adaptation, and Mitigation Measures. Fishes. 2022; 7(3):131. https://doi.org/10.3390/fishes7030131
Chicago/Turabian StyleMuringai, Rodney Tatenda, Paramu Mafongoya, and Romano Trent Lottering. 2022. "Sub-Saharan Africa Freshwater Fisheries under Climate Change: A Review of Impacts, Adaptation, and Mitigation Measures" Fishes 7, no. 3: 131. https://doi.org/10.3390/fishes7030131
APA StyleMuringai, R. T., Mafongoya, P., & Lottering, R. T. (2022). Sub-Saharan Africa Freshwater Fisheries under Climate Change: A Review of Impacts, Adaptation, and Mitigation Measures. Fishes, 7(3), 131. https://doi.org/10.3390/fishes7030131