Report on the Short-Term Scavenging of Decomposing Native and Non-Native Trout in Appalachian Streams
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Experimental Design
3.2. Data Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wenger, S.J.; Subalusky, A.L.; Freeman, M.C. The missing dead: The lost role of animal remains in nutrient cycling in North American rivers. Food Webs 2019, 18, 1–6. [Google Scholar] [CrossRef]
- DeVault, T.L.; Rhodes, O.E., Jr.; Shivik, J.A. Scavenging by vertebrates: Behavioral, ecological, and evolutionary perspectives on an important energy transfer pathway in terrestrial ecosystems. Oikos 2003, 102, 225–234. [Google Scholar] [CrossRef]
- Inger, R.; Cox, D.T.C.; Per, E.; Norton, B.A.; Gaston, K.L. Ecological role of vertebrate scavengers in urban ecosystems in the UK. Ecol. Evol. 2016, 6, 7015–7023. [Google Scholar] [CrossRef] [PubMed]
- Willis, T.J.; Babcock, R.C. A baited underwater video system for the determination of relative density of carnivorous reef fish. Mar. Freshw. Res. 2000, 51, 75–763. [Google Scholar] [CrossRef]
- Watson, D.; Harvey, E.S.; Anderson, M.J.; Kendrick, G.A. A comparison of temperate reef fish assemblages recorded by three underwater stereo-video techniques. Mar. Biol. 2005, 148, 415–425. [Google Scholar] [CrossRef]
- Whitmarsh, S.K.; Fairweather, P.G.; Huveneers, C. What is Big BRUVver up to? Methods and uses of baited underwater video. Rev. Fish Biol. Fish. 2017, 27, 53–73. [Google Scholar] [CrossRef]
- King, A.J.; Duncan, A.G.; Buckle, D.J.; Novak, P.A.; Fulton, C.J. Efficacy of remote underwater video cameras for monitoring tropical wetland fishes. Hydrobiologica 2018, 807, 145–164. [Google Scholar] [CrossRef]
- Schmid, K.; Reis-Filho, J.A.; Harvey, E.; Giarrizzo, T. Baited remote underwater video a promising nondestructive tool to assess fish assemblages in clearwater Amazonian rivers: Testing the effect of bait and habitat type. Hydrobiologica 2017, 784, 93–109. [Google Scholar] [CrossRef]
- Richey, J.E.; Perkins, M.A.; Goldman, C.R. Effects of Kokanee Salmon (Oncorhynchus nerka) decomposition on the ecology of a subalpine stream. J. Fish. Res. Board Can. 1975, 32, 817–820. [Google Scholar] [CrossRef]
- Schindler, D.E.; Scheuerell, M.D.; Moore, J.W.; Gende, S.M.; Francs, T.B.; Palen, W.J. Pacific salmon and the ecology of coastal ecosystems. Front. Ecol. Environ. 2003, 1, 31–37. [Google Scholar] [CrossRef]
- Hocking, M.D.; Reimchen, T.E. Consumption and distribution of salmon (Oncorhynchus spp.) nutrients and energy by terrestrial flies. Can. J. Fish. Aquat. Sci. 2006, 63, 2076–2086. [Google Scholar] [CrossRef]
- Schlighting, P.E.; Love, C.N.; Webster, S.C.; Beasley, J.C. Efficiency and composition of vertebrate scavengers at the land-water interface in the Chernobyl Exclusion Zone. Food Webs 2019, 16, 1–7. [Google Scholar]
- Kiggins, R.S.; Knott, N.A.; Davis, A.R. Miniature baited remote underwater video (mini-BRUV) reveals the response of cryptic fishes to seagrass cover. Environ. Biol. Fish. 2018, 101, 1717–1722. [Google Scholar] [CrossRef]
- Strain, E.M.A.; Morris, R.L.; Coleman, R.A.; Fiqueria, W.F.; Steinberg, P.D.; Johnston, E.L.; Bishop, M.J. Increasing microhabitat complexity on seawalls can reduce fish predation on native oysters. Ecol. Eng. 2018, 120, 637–644. [Google Scholar] [CrossRef]
- Letessier, T.B.; Juhel, J.; Vigliola, L.; Meeuwig, J.J. Low-cost small action cameras in stereo generates accurate underwater measurements of fish. J. Exp. Mar. Biol. Ecol. 2015, 466, 120–126. [Google Scholar] [CrossRef]
- Santana-Garcon, J.; Leis, J.; Newman, S.; Harvey, E. Presettlement schooling behavior of a priacanthid, the purtplespotted bigeye Priacanthus tayenus (Priacanthidae: Teleostei). Environ. Biol. Fish. 2014, 97, 277–283. [Google Scholar] [CrossRef]
- Egg, L.; Pander, J.; Mueller, M.; Geist, J. Comparison of sonar-, camera-, and net-based methods in detecting riverine fish-movement patterns. Mar. Freshw. Res. 2018, 69, 1905–1912. [Google Scholar] [CrossRef]
- Ebner, B.C.; Fulton, C.J.; Cousins, S.; Donaldson, J.A.; Kennard, M.J.; Meynecke, J.; Schaffer, J. Filming and snorkeling as visual techniques to survey fauna in difficult to access tropical rainforest streams. Mar. Freshw. Res. 2015, 66, 120–126. [Google Scholar] [CrossRef]
- Anderson, N.H.; Sedell, J.R. Detritus processing by macroinvertebrates in stream ecosystems. Annu. Rev. Entomol. 1979, 24, 351–377. [Google Scholar] [CrossRef]
- Chidami, S.; Amyot, M. Fish decomposition in boreal lakes and biogeochemical implications. Limnol. Oceanogr. 2008, 53, 1988–1996. [Google Scholar] [CrossRef]
- Minshall, G.W.; Hitchcock, E.; Barnes, J.R. Decomposition of Rainbow Trout (Oncorhynchus mykiss) carcasses in a forest stream ecosystem inhabitated only by nonanadromous fish populations. Can. J. Fish. Aquat. Sci. 1991, 48, 191–195. [Google Scholar] [CrossRef]
- Miyamoto, L.; Squires, T.; Araki, H. Experimental evaluation of predation of stocked masu salmon by riparian wildlife: Effects of prey size and predator behaviors. Mar. Freshw. Res. 2017, 69, 446–454. [Google Scholar] [CrossRef]
- Levi, T.; Wheat, R.E.; Allen, J.M.; Wilmers, C.C. Differential us of salmon by vertebrate consumers: Implications for conservation. PeerJ 2015, 3, e1157. [Google Scholar] [CrossRef] [PubMed]
- Spelman, L.H. North American river otter (Lutra canadensis) translocation in North Carolina 1989–1996. In Proceedings of the Combined Meeting, Chester Zoo, UK, 21–24 May 1998; Zwart, P., Ed.; European Association of Zoo and Wildlife Veterinarians: Courtland, NY, USA, 1998; pp. 461–465. [Google Scholar]
- Cappo, M.; Speare, P.; De’ath, G. Comparison of baited remote underwater video stations (BRUVS) and prawn trawls for assessments of fish biodiversity in inter-reefal areas of the Great Barrier Reef Marine Park. J. Exp. Mar. Biol. Ecol. 2004, 302, 123–152. [Google Scholar] [CrossRef]
- Gladstone, W.; Lindfield, S.; Coleman, M.; Kelaher, B. Optimisation of baited remote underwater video sampling designs for estuarine fish assemblages. J. Exp. Mar. Biol. Ecol. 2012, 429, 28–35. [Google Scholar] [CrossRef]
- Anderson-Bergman, C. IdenReg: Regression models for interval censored data in R. J. Stat. Softw. 2017, 81, 1–22. [Google Scholar] [CrossRef]
Carcass Type | Max N Nocomis | Nocomis Frequency | Crayfish Frequency |
---|---|---|---|
Brook Trout | 9 | 84% | 31.1% |
Rainbow Trout | 7 | 62.5% | 15.6% |
Total | 16 | Average = 75.3% | Average = 24.7% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unger, S.; Hickman, C. Report on the Short-Term Scavenging of Decomposing Native and Non-Native Trout in Appalachian Streams. Fishes 2019, 4, 17. https://doi.org/10.3390/fishes4010017
Unger S, Hickman C. Report on the Short-Term Scavenging of Decomposing Native and Non-Native Trout in Appalachian Streams. Fishes. 2019; 4(1):17. https://doi.org/10.3390/fishes4010017
Chicago/Turabian StyleUnger, Shem, and Caleb Hickman. 2019. "Report on the Short-Term Scavenging of Decomposing Native and Non-Native Trout in Appalachian Streams" Fishes 4, no. 1: 17. https://doi.org/10.3390/fishes4010017
APA StyleUnger, S., & Hickman, C. (2019). Report on the Short-Term Scavenging of Decomposing Native and Non-Native Trout in Appalachian Streams. Fishes, 4(1), 17. https://doi.org/10.3390/fishes4010017