The Reconstructed Individual Patient Data from Kaplan–Meier (IPDfromKM) Method for Non-Inferiority Analyses: A New Potential Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Selection
2.2. Inclusion Criteria
2.3. Exclusion Criteria
2.4. Data Extraction
2.5. Reconstruction of Individual Patient Data (IPD)
2.6. Statistical Analysis
2.7. Non-Inferiority Analysis
3. Results
3.1. Systematic Review
3.2. Reconstruction of IPD
3.3. Non-Inferiority Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, N.; Zhou, Y.; Lee, J.J. IPDfromKM: Reconstruct individual patient data from published Kaplan-Meier survival curves. BMC Med. Res. Methodol. 2021, 21, 111. [Google Scholar] [CrossRef] [PubMed]
- Messori, A. Reconstruction of individual-patient data from the analysis of Kaplan-Meier curves: This method is widely used in oncology and cardiology—List of 53 studies in oncology and 61 in cardiology (preprint). Open Sci. Framew. 2024. [Google Scholar] [CrossRef]
- Zhang, S.; Li, S.; Cheng, Y. The efficacy and safety of immunotherapy as first-line treatment for extensive-stage small cell lung cancer: Evaluating based on reconstructed individual patient data. Front. Oncol. 2024, 14, 1371313. [Google Scholar] [CrossRef]
- Wang, B.C.; Fu, C.; Lin, G.H. The efficacy of adebrelimab compared with durvalumab and atezolizumab in untreated extensive-stage small-cell lung cancer: A survival analysis of reconstructed patient-level data. Front. Immunol. 2023, 14, 1185577. [Google Scholar] [CrossRef]
- Guyot, P.; Ades, A.E.; Ouwens, M.J.; Welton, N.J. Enhanced secondary analysis of survival data: Reconstructing the data from published Kaplan-Meier survival curves. BMC Med. Res. Methodol. 2012, 12, 9. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Royston, P. Reconstructing time-to-event data from published Kaplan-Meier curves. Stata J. 2017, 17, 786–802. [Google Scholar] [CrossRef] [PubMed]
- Rogula, B.; Lozano-Ortega, G.; Johnston, K.M. A Method for Reconstructing Individual Patient Data From Kaplan-Meier Survival Curves That Incorporate Marked Censoring Times. MDM Policy Pract. 2022, 7, 23814683221077643. [Google Scholar] [CrossRef] [PubMed]
- Piragine, E.; Veneziano, S.; Trippoli, S.; Messori, A.; Calderone, V. Efficacy and Safety of Cardioband in Patients with Tricuspid Regurgitation: Systematic Review and Meta-Analysis of Single-Arm Trials and Observational Studies. J. Clin. Med. 2024, 13, 6393. [Google Scholar] [CrossRef] [PubMed]
- Ossato, A.; Gasperoni, L.; Del Bono, L.; Messori, A.; Damuzzo, V. Efficacy of Immune Checkpoint Inhibitors vs. Tyrosine Kinase Inhibitors/Everolimus in Adjuvant Renal Cell Carcinoma: Indirect Comparison of Disease-Free Survival. Cancers 2024, 16, 557. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.R.; Wu, T.W.; Yi, T.Y.; Wu, A.J. Comparative Efficacy of Adagrasib and Sotorasib in KRAS G12C-Mutant NSCLC: Insights from Pivotal Trials. Cancers 2024, 16, 3676. [Google Scholar] [CrossRef] [PubMed]
- Sá, M.P.; Van den Eynde, J.; Jacquemyn, X.; Tasoudis, P.; Erten, O.; Dokollari, A.; Torregrossa, G.; Sicouri, S.; Ramlawi, B. Late outcomes of transcatheter aortic valve implantation in bicuspid versus tricuspid valves: Meta-analysis of reconstructed time-to-event data. Trends Cardiovasc. Med. 2023, 33, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Wach, J.; Vychopen, M.; Güresir, A.; Guranda, A.; Nestler, U.; Güresir, E. A Long-Term Comparative Analysis of Endovascular Coiling and Clipping for Ruptured Cerebral Aneurysms: An Individual Patient-Level Meta-Analysis Assessing Rerupture Rates. J. Clin. Med. 2024, 13, 1778. [Google Scholar] [CrossRef] [PubMed]
- Cashman, K.D.; Ritz, C. Individual participant data (IPD)-level meta-analysis of randomised controlled trials among dark-skinned populations to estimate the dietary requirement for vitamin D. Syst. Rev. 2019, 8, 128. [Google Scholar] [CrossRef]
- Oliva, A.; Ioppolo, A.M.; Chiarito, M.; Cremonesi, A.; Azzano, A.; Micciche, E.; Mangiameli, A.; Ariano, F.; Ferrante, G.; Reimers, B.; et al. Left Atrial Appendage Closure Compared with Oral Anticoagulants for Patients with Atrial Fibrillation: A Systematic Review and Network Meta-Analysis. J. Am. Heart Assoc. 2024, 13, e034815. [Google Scholar] [CrossRef]
- Saleh, A.; Haldar, S. Atrial fibrillation: A contemporary update. Clin. Med. 2023, 23, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Elsheikh, S.; Hill, A.; Irving, G.; Lip, G.Y.H.; Abdul-Rahim, A.H. Atrial fibrillation and stroke: State-of-the-art and future directions. Curr. Probl. Cardiol. 2024, 49 Pt C, 102181. [Google Scholar] [CrossRef]
- Essa, H.; Hill, A.M.; Lip, G.Y.H. Atrial Fibrillation and Stroke. Card. Electrophysiol. Clin. 2021, 13, 243–255. [Google Scholar] [CrossRef]
- Salmasi, S.; Loewen, P.S.; Tandun, R.; Andrade, J.G.; De Vera, M.A. Adherence to oral anticoagulants among patients with atrial fibrillation: A systematic review and meta-analysis of observational studies. BMJ Open 2020, 10, e034778. [Google Scholar] [CrossRef]
- Spruit, J.R.; de Vries, T.A.C.; Hemels, M.E.W.; Pisters, R.; de Groot, J.R.; Jansen, R.W.M.M. Direct Oral Anticoagulants in Older and Frail Patients with Atrial Fibrillation: A Decade of Experience. Drugs Aging 2024, 41, 725–740. [Google Scholar] [CrossRef]
- Xu, K.; Chan, N.C.; Eikelboom, J.W. Strategies for the prevention and treatment of bleeding in patients treated with dabigatran: An update. Expert Opin. Drug Metab. Toxicol. 2021, 17, 1091–1102. [Google Scholar] [CrossRef]
- Silverio, A.; Di Maio, M.; Prota, C.; De Angelis, E.; Radano, I.; Citro, R.; Carrizzo, A.; Ciccarelli, M.; Vecchione, C.; Capodanno, D.; et al. Safety and efficacy of non-vitamin K antagonist oral anticoagulants in elderly patients with atrial fibrillation: Systematic review and meta-analysis of 22 studies and 440 281 patients. Eur. Heart J. Cardiovasc. Pharmacother. 2021, 7, f20–f29. [Google Scholar] [CrossRef] [PubMed]
- Ballestri, S.; Romagnoli, E.; Arioli, D.; Coluccio, V.; Marrazzo, A.; Athanasiou, A.; Di Girolamo, M.; Cappi, C.; Marietta, M.; Capitelli, M. Risk and Management of Bleeding Complications with Direct Oral Anticoagulants in Patients with Atrial Fibrillation and Venous Thromboembolism: A Narrative Review. Adv. Ther. 2023, 40, 41–66. [Google Scholar] [CrossRef] [PubMed]
- Bing, S.; Chen, R.R. Clinical efficacy and safety comparison of Watchman device versus ACP/Amulet device for percutaneous left atrial appendage closure in patients with nonvalvular atrial fibrillation: A study-level meta-analysis of clinical trials. Clin. Cardiol. 2023, 46, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Ueno, H.; Imamura, T.; Tanaka, S.; Fukuda, N.; Kinugawa, K. Left atrial appendage closure for stroke prevention in nonvalvular atrial fibrillation: A current overview. J. Cardiol. 2023, 81, 420–428. [Google Scholar] [CrossRef]
- Damuzzo, V.; Agnoletto, L.; Leonardi, L.; Chiumente, M.; Mengato, D.; Messori, A. Analysis of Survival Curves: Statistical Methods Accounting for the Presence of Long-Term Survivors. Front. Oncol. 2019, 9, 453. [Google Scholar] [CrossRef]
- Walker, E.; Nowacki, A.S. Understanding equivalence and noninferiority testing. J. Gen. Intern. Med. 2011, 26, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Galea, R.; Meneveau, N.; De Marco, F.; Aminian, A.; Heg, D.; Chalkou, K.; Grani, C.; Anselme, F.; Franzone, A.; Vranckx, P.; et al. One-Year Outcomes After Amulet or Watchman Device for Percutaneous Left Atrial Appendage Closure: A Prespecified Analysis of the SWISS-APERO Randomized Clinical Trial. Circulation 2024, 149, 484–486. [Google Scholar] [CrossRef]
- Holmes, D.R., Jr.; Kar, S.; Price, M.J.; Whisenant, B.; Sievert, H.; Doshi, S.K.; Huber, K.; Reddy, V.Y. Prospective randomized evaluation of the Watchman Left Atrial Appendage Closure device in patients with atrial fibrillation versus long-term warfarin therapy: The PREVAIL trial. J. Am. Coll. Cardiol. 2014, 64, 1–12. [Google Scholar] [CrossRef]
- Lakkireddy, D.; Thaler, D.; Ellis, C.R.; Swarup, V.; Gambhir, A.; Hermiller, J.; Nielsen-Kudsk, J.E.; Worthley, S.; Nair, D.; Schmidt, B.; et al. 3-Year Outcomes From the Amplatzer Amulet Left Atrial Appendage Occluder Randomized Controlled Trial (Amulet IDE). JACC Cardiovasc. Interv. 2023, 16, 1902–1913. [Google Scholar] [CrossRef] [PubMed]
- Mansour, M.J.; Harnay, E.; Al Ayouby, A.; Mansourati, V.; Jobic, Y.; Gilard, M.; Le Ven, F.; Mansourati, J. One year outcome and analysis of peri-device leak of left atrial appendage occlusion devices. J. Interv. Card. Electrophysiol. 2022, 64, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Reddy, V.Y.; Doshi, S.K.; Sievert, H.; Buchbinder, M.; Neuzil, P.; Huber, K.; Halperin, J.L.; Holmes, D.; Investigators, P.A. Percutaneous left atrial appendage closure for stroke prophylaxis in patients with atrial fibrillation: 2.3-Year Follow-up of the PROTECT AF (Watchman Left Atrial Appendage System for Embolic Protection in Patients with Atrial Fibrillation) Trial. Circulation 2013, 127, 720–729. [Google Scholar] [CrossRef] [PubMed]
- Messori, A.; Trippoli, S.; Fadda, V. Transcatheter Versus Surgical Aortic Valve Replacement in Patients at Low Risk: Long-Term Outcomes From the Three Pivotal Randomised Trials Determined by Reconstruction of Individual Patient Data From Kaplan-Meier Curves. Heart Lung Circ. 2024, 33, e38–e40. [Google Scholar] [CrossRef] [PubMed]
- Panikker, S.; Lord, J.; Jarman, J.W.; Armstrong, S.; Jones, D.G.; Haldar, S.; Butcher, C.; Khan, H.; Mantziari, L.; Nicol, E.; et al. Outcomes and costs of left atrial appendage closure from randomized controlled trial and real-world experience relative to oral anticoagulation. Eur. Heart J. 2016, 37, 3470–3482. [Google Scholar] [CrossRef] [PubMed]
- Price, M.J.; Reddy, V.Y.; Valderrabano, M.; Halperin, J.L.; Gibson, D.N.; Gordon, N.; Huber, K.C.; Holmes, D.R., Jr. Bleeding Outcomes After Left Atrial Appendage Closure Compared with Long-Term Warfarin: A Pooled, Patient-Level Analysis of the WATCHMAN Randomized Trial Experience. JACC Cardiovasc. Interv. 2015, 8, 1925–1932. [Google Scholar] [CrossRef] [PubMed]
- Korsholm, K.; Damgaard, D.; Valentin, J.B.; Packer, E.J.S.; Odenstedt, J.; Sinisalo, J.; Putaala, J.; Naess, H.; Al-Jazi, M.A.; Karlsson, J.E.; et al. Left atrial appendage occlusion vs novel oral anticoagulation for stroke prevention in atrial fibrillation: Rationale and design of the multicenter randomized occlusion-AF trial. Am. Heart J. 2022, 243, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Osmancik, P.; Herman, D.; Neuzil, P.; Hala, P.; Taborsky, M.; Kala, P.; Poloczek, M.; Stasek, J.; Haman, L.; Branny, M.; et al. 4-Year Outcomes After Left Atrial Appendage Closure Versus Nonwarfarin Oral Anticoagulation for Atrial Fibrillation. J. Am. Coll. Cardiol. 2022, 79, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Wazni, O.M.; Boersma, L.; Healey, J.S.; Mansour, M.; Tondo, C.; Phillips, K.; Doshi, R.; Jaber, W.; Hynes, E.; Allocco, D.J.; et al. Comparison of anticoagulation with left atrial appendage closure after atrial fibrillation ablation: Rationale and design of the OPTION randomized trial. Am. Heart J. 2022, 251, 35–42. [Google Scholar] [CrossRef]
- Osmancik, P.; Herman, D.; Neuzil, P.; Hala, P.; Taborsky, M.; Kala, P.; Poloczek, M.; Stasek, J.; Haman, L.; Branny, M.; et al. Left Atrial Appendage Closure Versus Direct Oral Anticoagulants in High-Risk Patients with Atrial Fibrillation. J. Am. Coll. Cardiol. 2020, 75, 3122–3135. [Google Scholar] [CrossRef] [PubMed]
First Author, Reference | Patient Characteristics | Comparators | No. of Patients (A) | No. of Patients (B) | Age, Years ± SD (A) | Age, Years ± SD (B) | Men, % (A) | Men, % (B) |
---|---|---|---|---|---|---|---|---|
Galea [27] | High-risk AF patients with clinical indication to atrial appendage occlusion devices | Amlet (A) vs. Watchman (B) | 111 | 110 | 76.5 ± 7.1 | 77.3 ± 8.4 | 71.2 | 70.0 |
Lakkireddy [29] | Adult patients with paroxysmal, persistent, or permanent NVAF and at high risk of stroke or systemic embolism (CHADS2 score ≥ 2 or CHA2DS2-VASc score ≥ 3) | Amlet (A) vs. Watchman (B) | 917 | 916 | 75.0 ± 7.6 | 75.2 ± 7.6 | 58.6 | 61.4 |
Mansour [30] | Patients with a mean CHA2DS2-VASc score 3.94 ± 1.2 underwent left atrial appendage occlusion | Amlet (A) vs. Watchman (B) | 26 | 25 | 75 ± 7.4 | 76 ± 6.9 | 76.0 | 76.0 |
Holmes [28] | Patients with NVAF (paroxysmal, persistent, or permanent) with CHADS2 score ≥ 2 or 1 and another risk factor | Watchman (A) vs. warfarin (B) | 269 | 138 | 74.0 ± 7.4 | 74.9 ± 7.2 | 74.6 | 67.7 |
Reddy [31] | Adult patients with a history of paroxysmal, persistent, or permanent NVAF plus at least 1 additional stroke risk factor, eligible for warfarin therapy | Watchman (A) vs. warfarin (B) | 463 | 244 | - | - | - | - |
First Author, Reference | Comparators | No. of Events/Total No. of Patients | Published HR (95% CI) | ||
---|---|---|---|---|---|
Amlet | Watchman | Warfarin | |||
Galea [27] | Amlet vs. Watchman | 10/111 | 11/110 | - | 0.91 (0.39 to 2.14) |
Lakkireddy [29] | Amlet vs. Watchman | 95/917 | 105/916 | - | 0.87 (0.66 to 1.14) |
Mansour [30] | Amlet vs. Watchman | 0/26 | 6/25 | - | Not reported; p = 0.008 |
Holmes [28] | Watchman vs. warfarin | - | 14/269 | 4/138 | 1.07 (0.57 to 1.89) |
Reddy [31] | Watchman vs. warfarin | - | 31/463 | 24/244 | 0.71 (0.44 to 1.30) |
Intervention | RMST (Months) | 95% CI |
---|---|---|
Watchman | 28.146 | 27.826 to 28.466 |
Amlet | 28.443 | 28.049 to 28.838 |
Warfarin | 28.579 | 27.983 to 29.175 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piragine, E.; Trippoli, S.; Veneziano, S.; Messori, A.; Calderone, V. The Reconstructed Individual Patient Data from Kaplan–Meier (IPDfromKM) Method for Non-Inferiority Analyses: A New Potential Application. Methods Protoc. 2025, 8, 13. https://doi.org/10.3390/mps8010013
Piragine E, Trippoli S, Veneziano S, Messori A, Calderone V. The Reconstructed Individual Patient Data from Kaplan–Meier (IPDfromKM) Method for Non-Inferiority Analyses: A New Potential Application. Methods and Protocols. 2025; 8(1):13. https://doi.org/10.3390/mps8010013
Chicago/Turabian StylePiragine, Eugenia, Sabrina Trippoli, Sara Veneziano, Andrea Messori, and Vincenzo Calderone. 2025. "The Reconstructed Individual Patient Data from Kaplan–Meier (IPDfromKM) Method for Non-Inferiority Analyses: A New Potential Application" Methods and Protocols 8, no. 1: 13. https://doi.org/10.3390/mps8010013
APA StylePiragine, E., Trippoli, S., Veneziano, S., Messori, A., & Calderone, V. (2025). The Reconstructed Individual Patient Data from Kaplan–Meier (IPDfromKM) Method for Non-Inferiority Analyses: A New Potential Application. Methods and Protocols, 8(1), 13. https://doi.org/10.3390/mps8010013