Challenges in Assessing the Cost-Effectiveness of Newborn Screening: The Example of Congenital Adrenal Hyperplasia
Abstract
:1. Introduction
2. Review of Previous Estimates
2.1. Cost and Cost-Effectiveness Estimates in the United States
2.2. Economic Estimates in Canada
2.3. Economic Estimates in Brazil
3. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention. CDC Grand Rounds: Newborn screening and improved outcomes. MMWR Morb. Mortal. Wkly. Rep. 2012, 61, 390–393. [Google Scholar]
- Wilson, J.M.G.; Jungner, G. Principles and Practice of Screening for Disease; Public Health Papers 34; World Health Organization: Geneva, Switzerland, 1968. [Google Scholar]
- Grosse, S.D.; Thompson, J.D.; Ding, Y.; Glass, M. The use of economic evaluation to inform newborn screening policy decisions: The Washington State experience. Milbank Q. 2016, 94, 366–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, K.E.; Grosse, S.D.; Rogowski, W.H. The role of health technology assessment in coverage decisions on newborn screening. Int. J. Technol. Assess. Health Care 2011, 27, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Fischer, K.E.; Rogowski, W.H. Funding decisions for newborn screening: A comparative review of 22 decision processes in Europe. Int. J. Environ. Res. Public Health 2014, 11, 5403–5430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosse, S.D. Cost effectiveness as a criterion for newborn screening policy decisions. In Ethics and Newborn Genetic Screening: New Technologies, New Challenges; Baily, M.A., Murray, T.H., Eds.; Johns Hopkins University Press: Baltimore, MD, USA, 2009; pp. 58–88. [Google Scholar]
- Grosse, S.D.; Rogowski, W.H.; Ross, L.F.; Cornel, M.C.; Dondorp, W.J.; Khoury, M.J. Population screening for genetic disorders in the 21st century: Evidence, economics, and ethics. Public Health Genom. 2010, 13, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Prosser, L.A.; Grosse, S.D.; Kemper, A.R.; Tarini, B.A.; Perrin, J.M. Decision analysis, economic evaluation, and newborn screening: Challenges and opportunities. Genet. Med. 2013, 14, 703–712. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kemper, A.R.; Green, N.S.; Calonge, N.; Lam, W.K.; Comeau, A.M.; Goldenberg, A.J.; Ojodu, J.; Prosser, L.A.; Tanksley, S.; Bocchini, J.A., Jr. Decision-making process for conditions nominated to the recommended uniform screening panel: Statement of the US Department of Health and Human Services Secretary’s Advisory Committee on Heritable Disorders in Newborns and Children. Genet. Med. 2014, 16, 183–187. [Google Scholar] [CrossRef]
- Grosse, S.D. Showing value in newborn screening: Challenges in quantifying the effectiveness and cost-effectiveness of early detection of phenylketonuria and cystic fibrosis. Healthcare 2015, 3, 1133–1157. [Google Scholar] [CrossRef] [Green Version]
- Grosse, S.D. Economic evaluations of newborn screening interventions. In Economic Evaluation in Child Health; Ungar, W.J., Ed.; Oxford University Press: New York, NY, USA, 2009; pp. 113–132. [Google Scholar]
- Grosse, S.D. Assessing the clinical utility of newborn screening. In Human Genome Epidemiology, 2nd Edition: Building the Evidence for Using Genetic Information to Improve Health and Prevent Disease; Khoury, M., Bedrosian, S., Gwinn, M., Higgins, J., Ioannidis, J., Little, J., Eds.; Oxford University Press: New York, NY, USA, 2009; pp. 517–532. [Google Scholar]
- Grosse, S.D.; Van Vliet, G. Prevention of intellectual disability through screening for congenital hypothyroidism: How much and at what level? Arch. Dis. Child. 2011, 96, 374–379. [Google Scholar] [CrossRef]
- Merke, D.P.; Auchus, R.J. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. N. Engl. J. Med. 2020, 383, 1248–1261. [Google Scholar] [CrossRef]
- Speiser, P.W.; Arlt, W.; Auchus, R.J.; Baskin, L.S.; Conway, G.S.; Merke, D.P.; Meyer-Bahlburg, H.F.L.; Miller, W.L.; Murad, M.H.; Oberfield, S.E.; et al. Congenital adrenal hyperplasia due to steroid 21-hydroxylase deficiency: An Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 2018, 103, 4043–4088. [Google Scholar] [CrossRef]
- Miranda, M.C.; Haddad, L.B.P.; Madureira, G.; Mendonca, B.B.; Bachega, T.A.S.S. Adverse outcomes and economic burden of congenital adrenal hyperplasia late diagnosis in the newborn screening absence. J. Endocr. Soc. 2020, 4, bvz013, Corrigendum. 2020, bvaa147. [Google Scholar] [CrossRef] [PubMed]
- Fox, D.A.; Ronsley, R.; Khowaja, A.R.; Haim, A.; Vallance, H.; Sinclair, G.; Amed, S. Clinical impact and cost efficacy of newborn screening for congenital adrenal hyperplasia. J. Pediatr. 2020, 220, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Bialk, E.R.; Lasarev, M.R.; Held, P.K. Wisconsin’s screening algorithm for the identification of newborns with congenital adrenal hyperplasia. Int. J. Neonatal Screen. 2019, 5, 33. [Google Scholar] [CrossRef] [Green Version]
- White, P.C. Neonatal screening for congenital adrenal hyperplasia. Nat. Rev. Endocrinol. 2009, 5, 490–498. [Google Scholar] [CrossRef]
- Speiser, P.W.; Chawla, R.; Chen, M.; Diaz-Thomas, A.; Finlayson, C.; Rutter, M.M.; Sandberg, D.E.; Shimy, K.; Talib, R.; Cerise, J. Newborn screening protocols and positive predictive value for congenital adrenal hyperplasia vary across the United States. Int. J. Neonatal Screen. 2020, 6, 37. [Google Scholar] [CrossRef]
- Sarafoglou, K.; Gaviglio, A.; Hietala, A.; Frogner, G.; Banks, K.; McCann, M.; Thomas, W. Comparison of newborn screening protocols for congenital adrenal hyperplasia in preterm infants. J. Pediatr. 2014, 164, 1136–1140. [Google Scholar] [CrossRef]
- Van Vliet, G.; Czernichow, P. Screening for neonatal endocrinopathies: Rationale, methods and results. Semin. Neonatol. 2004, 9, 75–85. [Google Scholar] [CrossRef]
- Lai, F.; Srinivasan, S.; Wiley, V. Evaluation of a two-tier screening pathway for congenital adrenal hyperplasia in the New South Wales Newborn Screening Programme. Int. J. Neonatal Screen. 2020, 6, 63. [Google Scholar] [CrossRef]
- Edelman, S.; Desai, H.; Pigg, T.; Yusuf, C.; Ojodu, J. Landscape of congenital adrenal hyperplasia newborn screening in the United States. Int. J. Neonatal Screen. 2020, 6, 64. [Google Scholar] [CrossRef]
- Sarafoglou, K.; Banks, K.; Gaviglio, A.; Hietala, A.; McCann, M.; Thomas, W. Comparison of one-tier and two-tier newborn screening metrics for congenital adrenal hyperplasia. Pediatrics 2012, 130, e1261–e1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarafoglou, K.; Banks, K.; Kyllo, J.; Pittock, S.; Thomas, W. Cases of congenital adrenal hyperplasia missed by newborn screening in Minnesota. JAMA 2012, 307, 2371–2374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreiner, F.; Brack, C.; Salzgeber, K.; Vorhoff, W.; Woelfle, J.; Gohlke, B. False negative 17-hydroxyprogesterone screening in children with classical congenital adrenal hyperplasia. Eur. J. Pediatr. 2008, 167, 479–481. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, G.Y.; Carvalho, D.F.; de Miranda, M.C.; Faure, C.; Vallejos, C.; Brito, V.N.; Rodrigues, A.S.; Madureira, G.; Mendonca, B.B.; Bachega, T.A. Neonatal 17-hydroxyprogesterone levels adjusted according to age at sample collection and birthweight improve the efficacy of congenital adrenal hyperplasia newborn screening. Clin. Endocrinol. 2017, 86, 480–487. [Google Scholar] [CrossRef] [Green Version]
- Varness, T.S.; Allen, D.B.; Hoffman, G.L. Additional sensitivity data for newborn screening for congenital adrenal hyperplasia in Wisconsin. J. Pediatr. 2006, 149, 427–428. [Google Scholar] [CrossRef]
- Zetterström, R.H.; Karlsson, L.; Falhammar, H.; Lajic, S.; Nordenström, A. Update on the Swedish newborn screening for congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Int. J. Neonatal Screen. 2020, 6, 71. [Google Scholar] [CrossRef]
- Held, P.K.; Shapira, S.K.; Hinton, C.F.; Jones, E.; Hannon, W.H.; Ojodu, J. Congenital adrenal hyperplasia cases identified by newborn screening in one- and two-screen states. Mol. Genet. Metab. 2015, 116, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Eshragh, N.; Doan, L.V.; Connelly, K.J.; Denniston, S.; Willis, S.; LaFranchi, S.H. Outcome of newborn screening for congenital adrenal hyperplasia at two time points. Horm. Res. Paediatr. 2020, 1–9. [Google Scholar] [CrossRef]
- Held, P.K.; Bird, I.M.; Heather, N.L. Newborn screening for congenital adrenal hyperplasia: Review of factors affecting screening accuracy. Int. J. Neonatal Screen. 2020, 6, 67. [Google Scholar] [CrossRef]
- Sarafoglou, K.; Lorentz, C.P.; Warman, B.; Radloff, G.; Morrison, E.; Hietala, A.; McCann, M.; Greene, C.; Corovado, S.; Wolff, C.; et al. CYP21A2 Variant Panel as a 2nd Tier for Congenital Adrenal Hyperplasia Newborn Screening: Metrics from the Minnesota Experience. In Proceedings of the APHL Newborn Screening and Genetic Testing Symposium, Chicago, IL, USA, 7–10 April 2019. [Google Scholar]
- van der Linde, A.A.A.; Schonbeck, Y.; van der Kamp, H.J.; van den Akker, E.L.T.; van Albada, M.E.; Boelen, A.; Finken, M.J.J.; Hannema, S.E.; Hoorweg-Nijman, G.; Odink, R.J.; et al. Evaluation of the Dutch neonatal screening for congenital adrenal hyperplasia. Arch. Dis. Child. 2019, 104, 653–657. [Google Scholar] [CrossRef]
- Gau, M.; Konishi, K.; Takasawa, K.; Nakagawa, R.; Tsuji-Hosokawa, A.; Hashimoto, A.; Sutani, A.; Tajima, T.; Hasegawa, T.; Morio, T.; et al. The progression of salt wasting and the body weight change during the first two weeks of life in classical 21-hydroxylase deficiency patients. Clin. Endocrinol. 2020. [Google Scholar] [CrossRef]
- Gleeson, H.K.; Wiley, V.; Wilcken, B.; Elliott, E.; Cowell, C.; Thonsett, M.; Byrne, G.; Ambler, G. Two-year pilot study of newborn screening for congenital adrenal hyperplasia in New South Wales compared with nationwide case surveillance in Australia. J. Paediatr. Child Health 2008, 44, 554–559. [Google Scholar] [CrossRef]
- Kaye, C.I.; Committee on Genetics; Accurso, F.; La Franchi, S.; Lane, P.A.; Hope, N.; Sonya, P.; Schaefer, G.P.; Lloyd-Puryear, M.A. Newborn screening fact sheets. Pediatrics 2006, 118, e934–e963. [Google Scholar] [CrossRef] [Green Version]
- Kovacs, J.; Votava, F.; Heinze, G.; Solyom, J.; Lebl, J.; Pribilincova, Z.; Frisch, H.; Battelino, T.; Waldhauser, F.; Middle European Workshop on Paediatric Endocrinology-Congenital Adrenal Hyperplasia Study Group. Lessons from 30 years of clinical diagnosis and treatment of congenital adrenal hyperplasia in five middle European countries. J. Clin. Endocrinol. Metab. 2001, 86, 2958–2964. [Google Scholar] [CrossRef]
- Grosse, S.D.; Van Vliet, G. How many deaths can be prevented by newborn screening for congenital adrenal hyperplasia? Horm. Res. Paediatr. 2007, 67, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Van der Kamp, H.J.; Noordam, K.; Elvers, B.; Van Baarle, M.; Otten, B.J.; Verkerk, P.H. Newborn screening for congenital adrenal hyperplasia in the Netherlands. Pediatrics 2001, 108, 1320–1324. [Google Scholar] [CrossRef] [PubMed]
- Gidlof, S.; Wedell, A.; Guthenberg, C.; von Dobeln, U.; Nordenstrom, A. Nationwide neonatal screening for congenital adrenal hyperplasia in Sweden: A 26-year longitudinal prospective population-based study. JAMA Pediatr. 2014, 168, 567–574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coulm, B.; Coste, J.; Tardy, V.; Ecosse, E.; Roussey, M.; Morel, Y.; Carel, J.C.; Group, D.S. Efficiency of neonatal screening for congenital adrenal hyperplasia due to 21-hydroxylase deficiency in children born in mainland France between 1996 and 2003. Arch. Pediatr. Adolesc. Med. 2012, 166, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, E.; Fujieda, K.; Tachibana, K.; Inomata, H.; Kinoshita, E.; Kusuda, S.; Nishi, Y.; Okada, T.; Saisho, S.; Tajima, T. Mortality in patients with congenital 21-hydroxylase deficiency diagnosed after the introduction of a newborn screening program in Japan. Clin. Pediatr. Endocrinol. 2003, 12, 19–23. [Google Scholar] [CrossRef] [Green Version]
- Swerdlow, A.J.; Higgins, C.D.; Brook, C.G.; Dunger, D.B.; Hindmarsh, P.C.; Price, D.A.; Savage, M.O. Mortality in patients with congenital adrenal hyperplasia: A cohort study. J. Pediatr. 1998, 133, 516–520. [Google Scholar] [CrossRef]
- Strnadova, K.A.; Votava, F.; Lebl, J.; Muhl, A.; Item, C.; Bodamer, O.A.; Torresani, T.; Bouska, I.; Waldhauser, F.; Sperl, W. Prevalence of congenital adrenal hyperplasia among sudden infant death in the Czech Republic and Austria. Eur. J. Pediatr. 2007, 166, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Hird, B.E.; Tetlow, L.; Tobi, S.; Patel, L.; Clayton, P.E. No evidence of an increase in early infant mortality from congenital adrenal hyperplasia in the absence of screening. Arch. Dis. Child. 2014, 99, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Knowles, R.L.; Khalid, J.M.; Oerton, J.M.; Hindmarsh, P.C.; Kelnar, C.J.; Dezateux, C. Late clinical presentation of congenital adrenal hyperplasia in older children: Findings from national paediatric surveillance. Arch. Dis. Child. 2014, 99, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Reisch, N.; Arlt, W.; Krone, N. Health problems in congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Horm. Res. Paediatr. 2011, 76, 73–85. [Google Scholar] [CrossRef]
- Jaaskelainen, J.; Voutilainen, R. Long-term outcome of classical 21-hydroxylase deficiency: Diagnosis, complications and quality of life. Acta Paediatr. 2000, 89, 183–187. [Google Scholar] [CrossRef]
- Kuhnle, U.; Bullinger, M.; Schwarz, H.P. The quality of life in adult female patients with congenital adrenal hyperplasia: A comprehensive study of the impact of genital malformations and chronic disease on female patients life. Eur. J. Pediatr. 1995, 154, 708–716. [Google Scholar] [CrossRef]
- Reisch, N.; Hahner, S.; Bleicken, B.; Flade, L.; Pedrosa Gil, F.; Loeffler, M.; Ventz, M.; Hinz, A.; Beuschlein, F.; Allolio, B.; et al. Quality of life is less impaired in adults with congenital adrenal hyperplasia because of 21-hydroxylase deficiency than in patients with primary adrenal insufficiency. Clin. Endocrinol. 2011, 74, 166–173. [Google Scholar] [CrossRef]
- Arlt, W.; Willis, D.S.; Wild, S.H.; Krone, N.; Doherty, E.J.; Hahner, S.; Han, T.S.; Carroll, P.V.; Conway, G.S.; Rees, D.A.; et al. Health status of adults with congenital adrenal hyperplasia: A cohort study of 203 patients. J. Clin. Endocrinol. Metab. 2010, 95, 5110–5121. [Google Scholar] [CrossRef]
- Nermoen, I.; Husebye, E.S.; Svartberg, J.; Lovas, K. Subjective health status in men and women with congenital adrenal hyperplasia: A population-based survey in Norway. Eur. J. Endocrinol. 2010, 163, 453–459. [Google Scholar] [CrossRef]
- Engberg, H.; Butwicka, A.; Nordenstrom, A.; Hirschberg, A.L.; Falhammar, H.; Lichtenstein, P.; Nordenskjold, A.; Frisen, L.; Landen, M. Congenital adrenal hyperplasia and risk for psychiatric disorders in girls and women born between 1915 and 2010: A total population study. Psychoneuroendocrinology 2015, 60, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Falhammar, H.; Butwicka, A.; Landen, M.; Lichtenstein, P.; Nordenskjold, A.; Nordenstrom, A.; Frisen, L. Increased psychiatric morbidity in men with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J. Clin. Endocrinol. Metab. 2014, 99, E554–E560. [Google Scholar] [CrossRef] [PubMed]
- Messina, V.; Karlsson, L.; Hirvikoski, T.; Nordenstrom, A.; Lajic, S. Cognitive function of children and adolescents with congenital adrenal hyperplasia: Importance of early diagnosis. J. Clin. Endocrinol. Metab. 2020, 105, e683–e691. [Google Scholar] [CrossRef] [PubMed]
- Hummel, S.R.; Sadler, S.; Whitaker, M.J.; Ara, R.M.; Dixon, S.; Ross, R.J. A model for measuring the health burden of classic congenital adrenal hyperplasia in adults. Clin. Endocrinol. 2016, 85, 361–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, D.E.; van Staa, T.P.; Dennison, E.M.; Cooper, C.; Dixon, W.G. The limitations of using simple definitions of glucocorticoid exposure to predict fracture risk: A cohort study. Bone 2018, 117, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Odenwald, B.; Nennstiel-Ratzel, U.; Dorr, H.G.; Schmidt, H.; Wildner, M.; Bonfig, W. Children with classic congenital adrenal hyperplasia experience salt loss and hypoglycemia: Evaluation of adrenal crises during the first 6 years of life. Eur. J. Endocrinol. 2016, 174, 177–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donaldson, M.D.; Thomas, P.H.; Love, J.G.; Murray, G.D.; McNinch, A.W.; Savage, D.C. Presentation, acute illness, and learning difficulties in salt wasting 21-hydroxylase deficiency. Arch. Dis. Child. 1994, 70, 214–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinforiani, E.; Livieri, C.; Mauri, M.; Bisio, P.; Sibilla, L.; Chiesa, L.; Martelli, A. Cognitive and neuroradiological findings in congenital adrenal hyperplasia. Psychoneuroendocrinology 1994, 19, 55–64. [Google Scholar] [CrossRef]
- Brosnan, P.G.; Brosnan, C.A.; Kemp, S.F.; Domek, D.B.; Jelley, D.H.; Blackett, P.R.; Riley, W.J. Effect of newborn screening for congenital adrenal hyperplasia. Arch. Pediatr. Adolesc. Med. 1999, 153, 1272–1278. [Google Scholar] [CrossRef] [Green Version]
- Nass, R.; Baker, S. Learning disabilities in children with congenital adrenal hyperplasia. J. Child Neurol. 1991, 6, 306–312. [Google Scholar] [CrossRef]
- Plante, E.; Boliek, C.; Binkiewicz, A.; Erly, W.K. Elevated androgen, brain development and language/learning disabilities in children with congenital adrenal hyperplasia. Dev. Med. Child Neurol. 1996, 38, 423–437. [Google Scholar] [CrossRef]
- Perry, R.; Kecha, O.; Paquette, J.; Huot, C.; Van Vliet, G.; Deal, C. Primary adrenal insufficiency in children: Twenty years experience at the Sainte-Justine Hospital, Montreal. J. Clin. Endocrinol. Metab. 2005, 90, 3243–3250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strandqvist, A.; Falhammar, H.; Lichtenstein, P.; Hirschberg, A.L.; Wedell, A.; Norrby, C.; Nordenskjold, A.; Frisen, L.; Nordenstrom, A. Suboptimal psychosocial outcomes in patients with congenital adrenal hyperplasia: Epidemiological studies in a nonbiased national cohort in Sweden. J. Clin. Endocrinol. Metab. 2014, 99, 1425–1432. [Google Scholar] [CrossRef] [Green Version]
- Ungar, W.J. Challenges in health state valuation in paediatric economic evaluation: Are QALYs contraindicated? Pharmacoeconomics 2011, 29, 641–652. [Google Scholar] [CrossRef] [PubMed]
- Chan, K.; Davis, J.; Pai, S.Y.; Bonilla, F.A.; Puck, J.M.; Apkon, M. A Markov model to analyze cost-effectiveness of screening for severe combined immunodeficiency (SCID). Mol. Genet. Metab. 2011, 104, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Grosse, S.D.; Prosser, L.A.; Asakawa, K.; Feeny, D. QALY weights for neurosensory impairments in pediatric economic evaluations: Case studies and a critique. Expert Rev. Pharm. Outcomes Res. 2010, 10, 293–308. [Google Scholar] [CrossRef]
- Sanders, G.D.; Neumann, P.J.; Basu, A.; Brock, D.W.; Feeny, D.; Krahn, M.; Kuntz, K.M.; Meltzer, D.O.; Owens, D.K.; Prosser, L.A.; et al. Recommendations for conduct, methodological practices, and reporting of cost-effectiveness analyses: Second Panel on Cost-Effectiveness in Health and Medicine. JAMA 2016, 316, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Neumann, P.J.; Cohen, J.T.; Weinstein, M.C. Updating cost-effectiveness--the curious resilience of the $50,000-per-QALY threshold. N. Engl. J. Med. 2014, 371, 796–797. [Google Scholar] [CrossRef] [Green Version]
- Grosse, S.D. Assessing cost-effectiveness in healthcare: History of the $50,000 per QALY threshold. Expert Rev. Pharmacoecon Outcomes Res. 2008, 8, 165–178. [Google Scholar] [CrossRef]
- Marseille, E.; Larson, B.; Kazi, D.S.; Kahn, J.G.; Rosen, S. Thresholds for the cost-effectiveness of interventions: Alternative approaches. Bull. World Health Organ. 2015, 93, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Grosse, S.D.; Peterson, C.; Abouk, R.; Glidewell, J.; Oster, M.E. Cost and cost-effectiveness assessments of newborn screening for critical congenital heart disease using pulse oximetry: A review. Int. J. Neonatal Screen. 2017, 3, 34. [Google Scholar] [CrossRef] [Green Version]
- Brosnan, C.A.; Brosnan, P.; Therrell, B.L.; Slater, C.H.; Swint, J.M.; Annegers, J.F.; Riley, W.J. A comparative cost analysis of newborn screening for classic congenital adrenal hyperplasia in Texas. Public Health Rep. 1998, 113, 170–178. [Google Scholar] [PubMed]
- Carroll, A.E.; Downs, S.M. Comprehensive cost-utility analysis of newborn screening strategies. Pediatrics 2006, 117, S287–S295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, B.K.; Grosse, S.D. The cost effectiveness of screening newborns for congenital adrenal hyperplasia. Public Health Genom. 2009, 12, 67–72, Erratum in 2018, 21, 100. [Google Scholar] [CrossRef]
- Australian Government Department of Health. Standing Committee on Screening. Newborn Bloodspot Screening Condition Assessment Summary. Congenital adrenal hyperplasia. 2019. Available online: https://www.health.gov.au/resources/publications/newborn-bloodspot-screening-condition-assessment-summary-congenital-adrenal-hyperplasia (accessed on 8 August 2020).
- American College of Medical Genetics Newborn Screening Expert Group. Newborn screening: Toward a uniform screening panel and system–executive summary. Pediatrics 2006, 117, S296–S307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thilen, A.; Nordenstrom, A.; Hagenfeldt, L.; von Dobeln, U.; Guthenberg, C.; Larsson, A. Benefits of neonatal screening for congenital adrenal hyperplasia (21-hydroxylase deficiency) in Sweden. Pediatrics 1998, 101, E11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. Economic costs associated with mental retardation, cerebral palsy, hearing loss, and vision impairment—United States, 2003. MMWR Morb. Mortal. Wkly. Rep. 2004, 53, 57–59. [Google Scholar]
- Wrightson, T.; Adis, Springer Healthcare, Auckland, New Zealand. Personal communication, 2020.
- Ollendorf, D.A.; Chapman, R.H.; Pearson, S.D. Evaluating and valuing drugs for rare conditions: No easy answers. Value Health 2018, 21, 547–552. [Google Scholar] [CrossRef]
- Institute for Clinical and Economic Review. Spinraza® and Zolgensma® for spinal muscular atrophy: Effectiveness and value: Final evidence report. 2019. Available online: https://icer-review.org/material/sma-final-evidence-report/ (accessed on 15 October 2020).
- Richardson, J.S.; Kemper, A.R.; Grosse, S.D.; Lam, W.K.; Rose, A.M.; Ahmad, A.; Gebremariam, A.; Prosser, L.A. Health and economic outcomes of newborn screening for infantile-onset Pompe disease. medRxiv 2020. [Google Scholar] [CrossRef]
- Jalali, A.; Rothwell, E.; Botkin, J.R.; Anderson, R.A.; Butterfield, R.J.; Nelson, R.E. Cost-effectiveness of nusinersen and universal newborn screening for spinal muscular atrophy. J. Pediatr. 2020. [Google Scholar] [CrossRef]
- Cutfield, W.S.; Webster, D. Newborn screening for congenital adrenal hyperplasia in New Zealand. J. Pediatr. 1995, 126, 118–121. [Google Scholar] [CrossRef]
- Heather, N.L.; Seneviratne, S.N.; Webster, D.; Derraik, J.G.; Jefferies, C.; Carll, J.; Jiang, Y.; Cutfield, W.S.; Hofman, P.L. Newborn screening for congenital adrenal hyperplasia in New Zealand, 1994–2013. J. Clin. Endocrinol. Metab. 2015, 100, 1002–1008. [Google Scholar] [CrossRef] [PubMed]
- Hamers, F.F.; Rumeau-Pichon, C. Cost-effectiveness analysis of universal newborn screening for medium chain acyl-CoA dehydrogenase deficiency in France. BMC Pediatr. 2012, 12, 60. [Google Scholar] [CrossRef] [Green Version]
- Norman, R.; Haas, M.; Chaplin, M.; Joy, P.; Wilcken, B. Economic evaluation of tandem mass spectrometry newborn screening in Australia. Pediatrics 2009, 123, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Wilcken, B.; Haas, M.; Joy, P.; Wiley, V.; Bowling, F.; Carpenter, K.; Christodoulou, J.; Cowley, D.; Ellaway, C.; Fletcher, J.; et al. Expanded newborn screening: Outcome in screened and unscreened patients at age 6 years. Pediatrics 2009, 124, e241–e248. [Google Scholar] [CrossRef] [PubMed]
- Wilcken, B.; Haas, M.; Joy, P.; Wiley, V.; Chaplin, M.; Black, C.; Fletcher, J.; McGill, J.; Boneh, A. Outcome of neonatal screening for medium-chain acyl-CoA dehydrogenase deficiency in Australia: A cohort study. Lancet 2007, 369, 37–42. [Google Scholar] [CrossRef]
- Minutti, C.Z.; Lacey, J.M.; Magera, M.J.; Hahn, S.H.; McCann, M.; Schulze, A.; Cheillan, D.; Dorche, C.; Chace, D.H.; Lymp, J.F.; et al. Steroid profiling by tandem mass spectrometry improves the positive predictive value of newborn screening for congenital adrenal hyperplasia. J. Clin. Endocrinol. Metab. 2004, 89, 3687–3693. [Google Scholar] [CrossRef] [Green Version]
- van der Ploeg, C.P.; van den Akker-van Marle, M.E.; Vernooij-van Langen, A.M.; Elvers, L.H.; Gille, J.J.; Verkerk, P.H.; Dankert-Roelse, J.E.; CHOPIN Study Group. Cost-effectiveness of newborn screening for cystic fibrosis determined with real-life data. J. Cyst. Fibros. 2015, 14, 194–202. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Werbrouck, A.; Verhaeghe, N.; De Wachter, E.; Simoens, S.; Annemans, L.; Putman, K. A model-based economic evaluation of four newborn screening strategies for cystic fibrosis in Flanders, Belgium. Acta Clin. Belg. 2020, 75, 212–220. [Google Scholar] [CrossRef]
- Pourfarzam, M.; Morris, A.; Appleton, M.; Craft, A.; Bartlett, K. Neonatal screening for medium-chain acyl-CoA dehydrogenase deficiency. Lancet 2001, 358, 1063–1064. [Google Scholar] [CrossRef]
- Grosse, S.D.; Khoury, M.J.; Greene, C.L.; Crider, K.S.; Pollitt, R.J. The epidemiology of medium chain acyl-CoA dehydrogenase deficiency: An update. Genet. Med. 2006, 8, 205–212. [Google Scholar] [CrossRef] [Green Version]
- McGhee, S.A.; Stiehm, E.R.; McCabe, E.R. Potential costs and benefits of newborn screening for severe combined immunodeficiency. J. Pediatr. 2005, 147, 603–608. [Google Scholar] [CrossRef]
- Autti-Ramo, I.; Makela, M.; Sintonen, H.; Koskinen, H.; Laajalahti, L.; Halila, R.; Kaariainen, H.; Lapatto, R.; Nanto-Salonen, K.; Pulkki, K.; et al. Expanding screening for rare metabolic disease in the newborn: An analysis of costs, effect and ethical consequences for decision-making in Finland. Acta Paediatr. 2005, 94, 1126–1136. [Google Scholar] [CrossRef] [PubMed]
- Brosco, J.P.; Paul, D.B. The political history of PKU: Reflections on 50 years of newborn screening. Pediatrics 2013, 132, 987–989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baily, M.A.; Murray, T.H. Ethics, evidence, and cost in newborn screening. Hastings Cent. Rep. 2008, 38, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Grosse, S.D.; Olney, R.S.; Baily, M.A. The cost effectiveness of universal versus selective newborn screening for sickle cell disease in the US and the UK: A critique. Appl. Health Econ. Health Policy 2005, 4, 239–247. [Google Scholar] [CrossRef] [PubMed]
Study and Perspective | Cost-Effectiveness Ratio | Cost of Initial Screening and Confirmatory Testing per Infant Screened | Birth Prevalence of CAH (% with SW-CAH) | SW-CAH Mortality | Excess Hospital Cost for Infants with CAH in Absence of NBS | Other Costs |
---|---|---|---|---|---|---|
Carroll and Downs 2006 [77] “Societal” 1 | USD 20,357 per QALY 2 (2004 USD) | USD 3.63 for 17-OHP testing, USS 2.40 for confirmatory testing 3 (2004 USD) | 1 in 20,400 (SW-CAH share not reported) | 13.3% 4 without NBS, 2.7% with NBS (80% reduction) | USD 2966 per infant with SW-CAH 5 (2004 USD) | USD US10,000 Cost of caring for disease (expert opinion) (2004 USD) |
Yoo and Grosse 2009, corrected [78] Healthcare sector | USD 128,000 per LY 6 (2005 USD) | USD 4.15 for 17-OHP testing, USD 2.16 for confirmatory testing 7 (2005 USD) | 1 in 17,800 (75% SW-CAH) | 4.2% 8 without NBS, 0.8% with NBS (80% reduction) | USD 3000 per infants with SW-CAH 9 (2005 USD) | |
Fox et al. 2020 [17] Public payer | CAD 4746 per hospital-day avoided 10 (2018 CAD) | CAD 3.78 11 CAD 2.70 for 17-OHP testing, CAD 0.99 for second tier screening 12 (2018 CAD) | 1 in 19,510 | No deaths | CAD 16,044 per infant with CAH 13 (2018 CAD) | CAD 319 for endocrinology consult per confirmed case |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grosse, S.D.; Van Vliet, G. Challenges in Assessing the Cost-Effectiveness of Newborn Screening: The Example of Congenital Adrenal Hyperplasia. Int. J. Neonatal Screen. 2020, 6, 82. https://doi.org/10.3390/ijns6040082
Grosse SD, Van Vliet G. Challenges in Assessing the Cost-Effectiveness of Newborn Screening: The Example of Congenital Adrenal Hyperplasia. International Journal of Neonatal Screening. 2020; 6(4):82. https://doi.org/10.3390/ijns6040082
Chicago/Turabian StyleGrosse, Scott D., and Guy Van Vliet. 2020. "Challenges in Assessing the Cost-Effectiveness of Newborn Screening: The Example of Congenital Adrenal Hyperplasia" International Journal of Neonatal Screening 6, no. 4: 82. https://doi.org/10.3390/ijns6040082
APA StyleGrosse, S. D., & Van Vliet, G. (2020). Challenges in Assessing the Cost-Effectiveness of Newborn Screening: The Example of Congenital Adrenal Hyperplasia. International Journal of Neonatal Screening, 6(4), 82. https://doi.org/10.3390/ijns6040082