Instability of Acylcarnitines in Stored Dried Blood Spots: The Impact on Retrospective Analysis of Biomarkers for Inborn Errors of Metabolism
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DBS | Dried blood spot |
IEM | Inborn errors of metabolism |
MS/MS | Tandem mass spectrometry |
NBS | Newborn bloodspot screening |
References
- Millington, D.S.; Kodo, N.; Norwood, D.L.; Roe, C.R. Tandem mass spectrometry: A new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J. Inherit. Metab. Dis. 1990, 13, 321–324. [Google Scholar] [CrossRef]
- Chace, D.H.; Kalas, T.A.; Naylor, E.W. Use of Tandem Mass Spectrometry for Multianalyte Screening of Dried Blood Specimens from Newborns. Clin. Chem. 2003, 49, 1797–1817. [Google Scholar] [CrossRef] [Green Version]
- McHugh, D.M.; Cameron, C.A.; Abdenur, J.E.; Abdulrahman, M.; Adair, O.; Al Nuaimi, S.A.; Åhlman, H.; Allen, J.J.; Antonozzi, I.; Archer, S.; et al. Clinical validation of cutoff target ranges in newborn screening of metabolic disorders by tandem mass spectrometry: A worldwide collaborative project. Genet. Med. 2011, 13, 230–254. [Google Scholar] [CrossRef]
- Therrell, B.L.; Padilla, C.D.; Loeber, J.G.; Kneisser, I.; Saadallah, A.; Borrajo, G.J.; Adams, J. Current status of newborn screening worldwide: 2015. Semin. Perinatol. 2015, 39, 171–187. [Google Scholar] [CrossRef] [Green Version]
- Rothwell, E.; Johnson, E.P.; Riches, N.; Botkin, J.R. Secondary research uses of residual newborn screening dried bloodspots: A scoping review. Genet. Med. 2018, 21, 1469–1475. [Google Scholar] [CrossRef] [Green Version]
- Programmacommissie Neonatale Hielprikscreening. Draaiboek Hielprikscreening. Available online: https://draaiboekhielprikscreening.rivm.nl (accessed on 18 May 2020).
- Van Rijt, W.J.; Koolhaas, G.D.; Bekhof, J.; Fokkema, M.R.H.; De Koning, T.J.; Visser, G.; Schielen, P.C.J.I.; Van Spronsen, F.J.; Derks, T.G.J. Inborn Errors of Metabolism That Cause Sudden Infant Death: A Systematic Review with Implications for Population Neonatal Screening Programmes. Neonatology 2016, 109, 297–302. [Google Scholar] [CrossRef]
- Boles, R.G.; Buck, E.A.; Blitzer, M.G.; Platt, M.S.; Cowan, T.M.; Martin, S.K.; Yoon, H.-R.; Madsen, J.A.; Reyes-Mugica, M.; Rinaldo, P. Retrospective biochemical screening of fatty acid oxidation disorders in postmortem livers of 418 cases of sudden death in the first year of life. J. Pediatr. 1998, 132, 924–933. [Google Scholar] [CrossRef]
- Chace, D.H.; DiPerna, J.C.; Mitchell, B.L.; Sgroi, B.; Hofman, L.F.; Naylor, E.W. Electrospray Tandem Mass Spectrometry for Analysis of Acylcarnitines in Dried Postmortem Blood Specimens Collected at Autopsy from Infants with Unexplained Cause of Death. Clin. Chem. 2001, 47, 1166–1182. [Google Scholar] [CrossRef] [Green Version]
- Green, A.; Preece, M.A.; Hardy, D. More on the Metabolic Autopsy. Clin. Chem. 2002, 48, 964–965. [Google Scholar] [CrossRef] [Green Version]
- Barendsen, R.W.; Dijkstra, I.M.E.; Visser, W.F.; Alders, M.; Bliek, J.; Boelen, A.; Bouva, M.J.; Van Der Crabben, S.N.; Elsinghorst, E.; Van Gorp, A.G.M.; et al. Adrenoleukodystrophy Newborn Screening in the Netherlands (SCAN Study): The X-Factor. Front. Cell Dev. Biol. 2020, 8. [Google Scholar] [CrossRef]
- Johnson, D.W.; Trinh, M.-U. Stability of malonylcarnitine and glutarylcarnitine in stored blood spots. J. Inherit. Metab. Dis. 2004, 27, 789–790. [Google Scholar] [CrossRef]
- Fingerhut, R.; Ensenauer, R.; Röschinger, W.; Arnecke, R.; Olgemöller, B.; Roscher, A.A. Stability of Acylcarnitines and Free Carnitine in Dried Blood Samples: Implications for Retrospective Diagnosis of Inborn Errors of Metabolism and Neonatal Screening for Carnitine Transporter Deficiency. Anal. Chem. 2009, 81, 3571–3575. [Google Scholar] [CrossRef]
- Santer, R.; Fingerhut, R.; Lässker, U.; Wightman, P.J.; Fitzpatrick, D.R.; Olgemöller, B.; Roscher, A.A. Tandem Mass Spectrometric Determination of Malonylcarnitine: Diagnosis and Neonatal Screening of Malonyl-CoA Decarboxylase Deficiency. Clin. Chem. 2003, 49, 660–662. [Google Scholar] [CrossRef] [Green Version]
- Strnadová, K.A.; Holub, M.; Mühl, A.; Heinze, G.; Ratschmann, R.; Mascher, H.; Stöckler-Ipsiroglu, S.; Waldhauser, F.; Votava, F.; Lebl, J.; et al. Long-Term Stability of Amino Acids and Acylcarnitines in Dried Blood Spots. Clin. Chem. 2007, 53, 717–722. [Google Scholar] [CrossRef] [Green Version]
- Prentice, P.; Turner, C.; Wong, M.C.; Dalton, R.N. Stability of metabolites in dried blood spots stored at different temperatures over a 2-year period. Bioanalysis 2013, 5, 1507–1514. [Google Scholar] [CrossRef]
- Reed, A.H.; Henry, R.J.; Mason, W.B. Influence of Statistical Method Used on the Resulting Estimate of Normal Range. Clin. Chem. 1971, 17, 275–284. [Google Scholar] [CrossRef]
- Wayne, P.A. CLSI Defining, Establishing, and Verifying Reference Intervals in the Clinical Laboratory; CLSI Document EP28-A3C. In Approved Guideline, 3rd ed.; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2010; p. 72. [Google Scholar]
- Derks, T.G.J.; Boer, T.S.; Van Assen, A.; Bos, T.; Ruiter, J.H.; Waterham, H.R.; Niezen-Koning, K.E.; Wanders, R.J.A.; Rondeel, J.M.M.; Loeber, J.G.; et al. Neonatal screening for medium-chain acyl-CoA dehydrogenase (MCAD) deficiency in The Netherlands: The importance of enzyme analysis to ascertain true MCAD deficiency. J. Inherit. Metab. Dis. 2008, 31, 88–96. [Google Scholar] [CrossRef]
- Adam, B.W.; Hall, E.; Sternberg, M.; Lim, T.; Flores, S.; O’Brien, S.; Simms, D.; Li, L.; De Jesus, V.; Hannon, W. The stability of markers in dried-blood spots for recommended newborn screening disorders in the United States. Clin. Biochem. 2011, 44, 1445–1450. [Google Scholar] [CrossRef] [Green Version]
- Golbahar, J.; Altayab, D.D.; Carreon, E. Short-Term Stability of Amino acids and Acylcarnitines in the Dried Blood Spots Used to Screen Newborns for Metabolic Disorders. J. Med. Screen. 2014, 21, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Higgins, R.; Lim, M.D.; Lin, K.; Yang, J.; Borchers, C.H. Short-Term Stabilities of 21 Amino Acids in Dried Blood Spots. Clin. Chem. 2018, 64, 400–402. [Google Scholar] [CrossRef] [Green Version]
- Michopoulos, F.; Theodoridis, G.; Smith, C.J.; Wilson, I.D. Metabolite profiles from dried blood spots for metabonomic studies using UPLC combined with orthogonal acceleration ToF-MS: Effects of different papers and sample storage stability. Bioanalysis 2011, 3, 2757–2767. [Google Scholar] [CrossRef]
- Van Rijt, W.J.; Van Der Ende, R.M.; Volker-Touw, C.M.; Van Spronsen, F.; Derks, T.G.; Heiner-Fokkema, M.R. Changes in pediatric plasma acylcarnitines upon fasting for refined interpretation of metabolic stress. Mol. Genet. Metab. 2019, 127, 327–335. [Google Scholar] [CrossRef]
- George, R.S.; Moat, S.J. Effect of Dried Blood Spot Quality on Newborn Screening Analyte Concentrations and Recommendations for Minimum Acceptance Criteria for Sample Analysis. Clin. Chem. 2016, 62, 466–475. [Google Scholar] [CrossRef] [Green Version]
Parameter | Disorder | Retrospective Analysis of IEMs | Validation Studies for NBS Programs |
---|---|---|---|
Risk Category | Potential Effect on Cutoff Target | ||
C0 (low) | CUD | False-negative | Too high |
C0 (high) | CPT-I | False-positive | Too high |
C2 (low) | CUD, CPT-II | False-positive | Too low |
C3 (low) | CUD | False-positive | Too low |
C3 (high) | PROP, MUT, Cbl A-D | False-negative | Too low |
C4 | SCAD, EE, IBG, FIGLU a, MADD | False-negative | Too low |
C5 | IVA, MADD, 2MBG, EE | False-negative | Too low |
C6 | MCAD, MADD | False-negative | Too low |
C8 | MCAD, MADD | False-negative | Too low |
C10:1 | MCAD | False-negative | Too low |
C10 | MADD, MCAD | False-negative | Too low |
C12:1 | MADD, VLCAD | False-negative | Too low |
C12 | MADD, CPT-II, CACT, VLCAD | False-negative | Too low |
C14:1 | VLCAD, MADD, LCHAD/TFP | False-negative | Too low |
C14 | MADD, CPT-II, VLCAD, CACT, LCHAD/TFP | False-negative | Too low |
C16:1 | VLCAD, LCHAD/TFP, CACT, CPT-II | False-negative | Too low |
C16 (low) | CPT-I, CUD | False-positive | Too low |
C16 (high) | CACT, CPT-II | False-negative | Too low |
C18:2 (low) | CPT-I | False-positive | Too low |
C18:2 (high) | CPT-II, CACT | False-negative | Too low |
C18:1 (low) | CPT-I, CUD | False-positive | Too low |
C18:1 (high) | CPT-II, CACT | False-negative | Too low |
C18 (low) | CPT-I, CUD | False-positive | Too low |
C18 (high) | CPT-II, CACT | False-negative | Too low |
C5OH + C4DC | 3MCC, HMG, MCD, 3MGA, BTD, BKT, 2M3HBA | False-negative | Too low |
C18:1OH | LCHAD/TFP | False-negative | Too low |
C16DC | PBD | False-negative | Too low |
Molar Ratio | Disorder a | Retrospective Analysis of IEMs | Validation Studies for NBS Programs |
---|---|---|---|
Risk Category | Potential Effect on Cutoff Target | ||
C0/(C16 + C18) (low) | CPT-II, CACT | False-negative | Too high |
C0/(C16 + C18) (high) | CPT-I | False-positive | Too high |
C3/C2 | PROP, MUT, Cbl A-D, MCD | False-positive | Too high |
C3/C16 | PROP, MUT, Cbl A-D, CPT-I, MCD | False-negative | Too low |
C4/C2 | SCAD, MADD, IBG, EE, FIGLU b | False-positive | Too high |
C4/C3 (low) | MCD, Cbl A-D, PROP | False-negative | Too high |
C4/C3 (high) | EE, IBG, FIGLU b, MADD, SCAD | False-positive | Too high |
C4/C8 | IBG, SCAD, EE, FIGLU b | None, similar percent decay of the involved acylcarnitine species | |
C5/C2 | IVA, MADD, 2MBG, EE | False-positive | Too high |
C5/C3 (low) | MCD, MUT, Cbl A-B, PROP | False-negative | Too high |
C5/C3 (high) | IVA, MADD, EE, 2MBG | False-positive | Too high |
C8/C2 | MCAD, MADD | False-positive | Too high |
C8/C10 | MCAD | None, similar percent decay of the involved acylcarnitine species | |
C14:1/C2 | VLCAD, MADD, LCHAD/TFP | False-positive | Too high |
C14:1/C10 | VLCAD | Appears negligible, negative statistical trend, but no visual trend and similar percent decay of the involved acylcarnitine species | |
C14:1/C16 | VLCAD, MADD, LCHAD/TFP | None, similar percent decay of the involved acylcarnitine species | |
(C16 + C18:1)/C2 (low) | CPT-I | False-negative | Too high |
(C16 + C18:1)/C2 (high) | CPT-II, CACT | False-positive | Too high |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Rijt, W.J.; Schielen, P.C.J.I.; Özer, Y.; Bijsterveld, K.; van der Sluijs, F.H.; Derks, T.G.J.; Heiner-Fokkema, M.R. Instability of Acylcarnitines in Stored Dried Blood Spots: The Impact on Retrospective Analysis of Biomarkers for Inborn Errors of Metabolism. Int. J. Neonatal Screen. 2020, 6, 83. https://doi.org/10.3390/ijns6040083
van Rijt WJ, Schielen PCJI, Özer Y, Bijsterveld K, van der Sluijs FH, Derks TGJ, Heiner-Fokkema MR. Instability of Acylcarnitines in Stored Dried Blood Spots: The Impact on Retrospective Analysis of Biomarkers for Inborn Errors of Metabolism. International Journal of Neonatal Screening. 2020; 6(4):83. https://doi.org/10.3390/ijns6040083
Chicago/Turabian Stylevan Rijt, Willemijn J., Peter C. J. I. Schielen, Yasemin Özer, Klaas Bijsterveld, Fjodor H. van der Sluijs, Terry G. J. Derks, and M. Rebecca Heiner-Fokkema. 2020. "Instability of Acylcarnitines in Stored Dried Blood Spots: The Impact on Retrospective Analysis of Biomarkers for Inborn Errors of Metabolism" International Journal of Neonatal Screening 6, no. 4: 83. https://doi.org/10.3390/ijns6040083
APA Stylevan Rijt, W. J., Schielen, P. C. J. I., Özer, Y., Bijsterveld, K., van der Sluijs, F. H., Derks, T. G. J., & Heiner-Fokkema, M. R. (2020). Instability of Acylcarnitines in Stored Dried Blood Spots: The Impact on Retrospective Analysis of Biomarkers for Inborn Errors of Metabolism. International Journal of Neonatal Screening, 6(4), 83. https://doi.org/10.3390/ijns6040083