Alcohol Consumption and Cognitive Aging: Can It Be Beneficial?
Abstract
Introduction
Discussions
The process of aging
Brain aging and cognitive functions
The prevention and delay of cognitive aging through nutritional (food and drink) strategies
![]() |
Biological mechanisms of the potential protective effect of alcoholic beverages on cognitive aging and dementia
Highlights
- ✔
- Prospective population-based studies have revealed a J-shaped or a U-shaped curve in the link between alcohol consumption and the risk of cognitive dysfunction and dementia, which is considered evidence for the potential beneficial effects of moderate alcohol consumption.
- ✔
- The more common opinion is that red wine has a more pronounced protective effect than other alcoholic beverages.
- ✔
- The main ingredients of wine act against dementia and in favor of the cognitive functions because phenolic compounds and ethanol exhibit anti-inflammatory and antioxidant activity, and reduce insulin resistance, inhibit Aβ synthesis and lower the intracellular Aβ levels, tau-phosphorylation, and amyloid plaque deposition, thus counteracting the Aβ-induced synaptic damage.
Conclusions
Conflicts of Interest disclosure
Compliance with ethical standards
References
- Arora, B.P. Anti-aging medicine. Indian J Plast Surg 2008, 41, S130–S133. [Google Scholar] [CrossRef][Green Version]
- Lipsitz, L.A. Aging as a process of complexity loss. In Complex Systems Science in Biomedicine; Deisboeck, T.S., Kresh, J.Y., Eds.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 641–654. ISBN 978-0-387-33532-2. [Google Scholar]
- Libertini, G. Aging Definition. In Encyclopedia of Gerontology and Population Aging; Gu, D., Dupre, M.E., Eds.; Springer Nature: Cham, Switzerland, 2019. [Google Scholar] [CrossRef]
- Vauzour, D.; Camprubi-Robles, M.; Miquel-Kergoat, S.; Andres-Lacueva, C.; Bánáti, D.; Barberger-Gateau, P.; Bowman, G.L.; Caberlotto, L.; Clarke, R.; Hogervorst, E.; et al. Nutrition for the ageing brain: Towards evidence for an optimal diet. Ageing Res Rev 2017, 35, 222–240. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, Z.A. An attempt at a rational classification of theories of ageing. Biol Rev Camb Philos Soc. 1990, 65, 375–398. [Google Scholar] [CrossRef]
- Sergiev, P.V.; Dontsova, O.A.; Berezkin, G.V. Theories of aging: An ever-evolving field. Acta Naturae 2015, 7, 9–18. [Google Scholar] [CrossRef]
- Harman, D. The free radical theory of aging. Antioxid Redox Signal 2003, 5, 557–561. [Google Scholar] [CrossRef] [PubMed]
- Tosato, M.; Zamboni, V.; Ferrini, A.; Cesari, M. The aging process and potential interventions to extend life expectancy. Clin Interv Aging 2007, 2, 401–412. [Google Scholar] [PubMed]
- Jin, K. Modern biological theories of aging. Aging Dis. 2010, 1, 72–74. [Google Scholar]
- Cesari, M.; Kritchevsky, S.B.; Leeuwenburgh, C.; Pahor, M. Oxidative damage and platelet activation as new predictors of mobility disability and mortality in elders. Antioxid Redox Signal. 2006, 8, 609–619. [Google Scholar] [CrossRef]
- Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann NY Acad Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef]
- Franceschi, C.; Valensin, S.; Bonafe, M.; Paolisso, G.; Yashin, A.I.; Monti, D.; De Benedictis, G. The network and remodeling theories of aging: Historical background and new perspectives. Exp Gerontol. 2000, 35, 879–896. [Google Scholar] [CrossRef]
- Anderson, L.W.; Krathwohl, D.R. A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives; Longman Publishing: New York, NY, USA, 2001. [Google Scholar]
- Dietrich, A. The cognitive neuroscience of creativity. Psychon Bull Rev. 2004, 11, 1011–1026. [Google Scholar] [CrossRef]
- Craft, S.; Cholerton, B.; Baker, L.D. Insulin and Alzheimer’s disease: Untangling the web. J Alzheimers Dis. 2013, 33 (Suppl. S1), S263–S275. [Google Scholar] [CrossRef]
- Calvo-Ochoa, E.; Arias, C. Cellular and metabolic alterations in the hippocampus caused by insulin signaling dysfunction and its association with cognitive impairment during aging and Alzheimer’s disease: Studies in animal models. Diabetes Metab Res Rev 2015, 31, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Williamson, R.; McNeilly, A.; Sutherland, C. Insulin resistance in the brain: Anold-age or new-age problem? Biochem Pharmacol 2012, 84, 737–745. [Google Scholar] [CrossRef] [PubMed]
- Kandimalla, R.; Thirumala, V.; Hemachandra, P. Is Alzheimer’s disease a Type 3 Diabetes? A critical appraisal. Biochim Biophys Acta Mol Basis Dis 2017, 1863, 1078–1089. [Google Scholar] [CrossRef] [PubMed]
- Gold, J.; Shoaib, A.; Gorthy, G.; Grossberg, G.T. The role of vitamin D in cognitive disorders in older adults. US Neurology 2018, 14, 41–46. [Google Scholar] [CrossRef]
- Rimmelzwaan, L.M.; van Schoor, N.M.; Lips, P.; Berendse, H.W.; Eekhoff, E.M. Systematic review of the relationship between vitamin D and Parkinson’s disease. J Parkinsons Dis 2016, 29, 29–37. [Google Scholar] [CrossRef]
- Shen, L.; Ji, H.F. Vitamin D deficiency is associated with increased risk of Alzheimer’s disease and dementia: Evidence from meta-analysis. Nutr J. 2015, 14, 76. [Google Scholar] [CrossRef]
- Baas, D.; Prüfer, K.; Ittel, M.E.; Kuchler-Bopp, S.; Labourdette, G.; Sarliève, L.L.; Brachet, P. Rat oligodendrocytes express the vitamin D(3) receptor and respond to 1,25-dihydroxyvitamin D(3). Glia. 2000, 59–68. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wu, J.N.; Cherng, T.L.; Hoffer, B.J.; Chen, H.H.; Borlongan, C.V.; Wang, Y. Vitamin D(3) attenuates 6-hydroxydopamine-induced neurotoxicity in rats. Brain Res 2001, 904, 67–75. [Google Scholar] [CrossRef]
- Gezen-Ak, D.; Dursun, E.; Yilmazer, S. The effects of vitamin D receptor silencing on the expression of LVSCC-A1C and LVSCC-A1D and the release of NGF in cortical neurons. PLoS ONE 2011, 6, e17553. [Google Scholar] [CrossRef] [PubMed]
- Brewer, L.D.; Thibault, V.; Chen, K.C.; Langub, M.C.; Landfield, P.W.; Porter, N.M. Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J Neurosci 2001, 21, 98–108. [Google Scholar] [CrossRef]
- Garcion, E.; Wion-Barbot, N.; Montero-Menei, C.N.; Berger, F.; Wion, D. New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab 2002, 13, 100–105. [Google Scholar] [CrossRef]
- Banerjee, A.; Khemka, V.K.; Ganguly, A.; Roy, D.; Ganguly, U.; Chakrabarti, S. Vitamin D and Alzheimer’s disease: Neurocognition to therapeutics. Int J Alzheimers Dis. 2015, 2015, 192747. [Google Scholar] [CrossRef] [PubMed]
- Annweiler, C.; Beauchet, O. Vitamin D-mentia: Randomized clinical trials should be the next step. Neuroepidemiology. 2011, 37, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Munshi, S.; Banerjee, K.; Thakurta, I.G.; Sinha, M.; Bagh, M.B. Mitochondrial dysfunction during brain aging: Role of oxidative stress and modulation by antioxidant supplementation. Aging Dis 2011, 2, 242–256. [Google Scholar]
- Wang, X.; Wang, W.; Li, L.; Perry, G.; Lee, H.G.; Zhu, X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 2014, 1842, 1240–1247. [Google Scholar] [CrossRef]
- Perry, V.H.; Holmes, C. Microglial priming in neurodegenerative disease. Nat Rev Neurol 2014, 10, 217–224. [Google Scholar] [CrossRef]
- Perry, V.H. The influence of systemic inflammation on inflammation in the brain: Implications for chronic neurodegenerative disease. Brain Behav Immun 2004, 18, 407–413. [Google Scholar] [CrossRef]
- Perry, V.H.; Cunningham, C.; Holmes, C. Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 2007, 7, 161–167. [Google Scholar] [CrossRef]
- Giaccone, G.; Arzberger, T.; Alafuzoff, I.; Al-Sarraj, S.; Budka, H.; Duyckaerts, C.; Falkai, P.; Ferrer, I.; Ironside, J.W.; Kovacs, G.G.; et al. New lexicon and criteria for the diagnosis of Alzheimer’s disease. Lancet Neurol 2011, 10, 298–299. [Google Scholar] [CrossRef] [PubMed]
- Jack Jr, C.R.; Albert, M.S.; Knopman, D.S.; McKhann, G.M.; Sperling, R.A.; Carrillo, M.C.; Thies, B.; Phelps, C.H. Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011, 7, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Blennow, K.; Hampel, H.; Weiner, M.; Zetterberg, H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 2010, 6, 131–144. [Google Scholar] [CrossRef]
- Perneczky, R.; Alexopoulos, P.; Kurz, A. Soluble amyloid precursor proteins and secretases as Alzheimer’s disease biomarkers. Trends Mol Med 2014, 20, 8–15. [Google Scholar] [CrossRef]
- Reale, M.; Costantini, E.; Jagarlapoodi, S.; Khan, H.; Belwal, T.; Cichelli, A. Relationship of wine consumption with Alzheimer’s disease. Nutrients 2020, 12, 206. [Google Scholar] [CrossRef] [PubMed]
- Ferri, C.P.; Prince, M.; Brayne, C.; Brodaty, H.; Fratiglioni, L.; Ganguli, M.; Hall, K.; Hasegawa, K.; Hendrie, H.; Huang, Y.; et al. Global prevalence of dementia: A Delphi consensus study. Lancet 2005, 366, 2112–2117. [Google Scholar] [CrossRef]
- Butler, R.N.; Fossel, M.; Harman, M.; Heward, C.B.; Olshansky, S.J.; Perls, T.T.; Rothman, D.J.; Rothman, S.M.; Warner, H.R.; West, M.D.; et al. Is there an Antiaging Medicine? J Gerontol A Biol Sci Med Sci 2002, 57, B333–B338. [Google Scholar] [CrossRef][Green Version]
- Stockley, C.S. Wine consumption, cognitive function and dementias—A relationship? Nutr Aging 2015, 3, 125–137. [Google Scholar] [CrossRef]
- Cao, L.; Tan, L.; Wang, H.F.; Jiang, T.; Zhu, X.C.; Lu, H.; Tan, M.S.; Yu, J.T. Dietary patterns and risk of dementia: A systematic review and meta-analysis of cohort studies. Mol Neurobiol 2016, 53, 6144–6154. [Google Scholar] [CrossRef]
- McEvoy, C.T.; Hoang, T.; Sidney, S.; Steffen, L.M.; Jacobs DRJr Shikany, J.M.; Wilkins, J.T.; Yaffe, K. Dietary patterns during adulthood and cognitive performance in midlife: The CARDIA study. Neurology 2019, 92, e1589–e1599. [Google Scholar] [CrossRef]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean diet pyramid today. Science and cultural updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef] [PubMed]
- Robinson, J. (Ed.) The Oxford Companion to Wine, 3rd ed.; Oxford University Press: Oxford, UK, 2006; p. 433. [Google Scholar]
- Liappas, J.A.; Lascaratos, J.; Fafouti, S.; Christodoulou, G.N. Alexander the Great’s relationship with alcohol. Addiction 2003, 98, 561–567. [Google Scholar] [CrossRef] [PubMed]
- Karbowiak, T.; Crouvisier-Urion, K.; Lagorce, A.; Ballester, J.; Geoffroy, A.; Roullier-Gall, C.; Chanut, J.; Gougeon, R.D.; Schmitt-Kopplin, P.; Bellat, J.P. Wine aging: A bottleneck story. NPJ Sci Food. 2019, 3, 14. [Google Scholar] [CrossRef]
- Peters, R.; Peters, J.; Warner, J.; Beckett, N.; Bulpitt, C. Alcohol, dementia and cognitive decline in the elderly: A systematic review. Age Ageing 2008, 37, 505–512. [Google Scholar] [CrossRef]
- Anstey, K.J.; Mack, H.A.; Cherbuin, N. Alcohol consumption as a risk factor for dementia and cognitive decline: Meta-analysis of prospective studies. Am J Geriatr Psychiatry 2009, 17, 542–555. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzi, V.; D’Introno, A.; Colacicco, A.M.; Capurso, C.; Gagliardi, G.; Santamato, A.; Baldassarre, G.; Capurso, A.; Panza, F. Lifestyle-related factors, alcohol consumption, and mild cognitive impairment. J Am Geriatric Soc 2007, 55, 1679–1681. [Google Scholar] [CrossRef]
- Zhang, R.; Shen, L.; Miles, T.; Shen, Y.; Cordero, J.; Qi, Y.; Liang, L.; Li, C. Association of low to moderate alcohol drinking with cognitive functions from middle to older age among US adults. JAMA Netw Open 2020, 3, e207922. [Google Scholar] [CrossRef]
- Richard, E.L.; Kritz-Silverstein, D.; Laughlin, G.A.; Fung, T.T.; Barrett-Connor, E.; McEvoy, L.K. Alcohol intake and cognitively healthy longevity in community-dwelling adults: The Rancho Bernardo Study. J Alzheimers Dis 2017, 59, 803–814. [Google Scholar] [CrossRef]
- Moussa, M.N.; Simpson, S.L.; Mayhugh, R.E.; Grata, M.E.; Burdette, J.H.; Porrino, L.J.; Laurienti, P.J. Long-term moderate alcohol consumption does not exacerbate age-related cognitive decline in healthy, community-dwelling older adults. Front Aging Neuroscience. 2015, 6, 341. [Google Scholar] [CrossRef]
- Huang, W.; Qiu, C.; Winblad, B.; Fratiglioni, L. Alcohol consumption and incidence of dementia in a community sample aged 75 years and older. J Clin Epidemiol 2002, 55, 959–964. [Google Scholar] [CrossRef]
- Neafsey, E.J.; Collins, M.A. Moderate alcohol consumption and cognitive risk. Neuropsychiatr Dis Treat. 2011, 7, 465–484. [Google Scholar] [CrossRef] [PubMed]
- Nooyens, A.C.J.; Bueno-de-Mesquita, H.B.; van Gelder, B.M.; van Boxtel, M.P.J.; Verschuren, W.M.M. Consumption of alcoholic beverages and cognitive decline at middle age: The Doetinchem Cohort Study. Br J Nutr 2014, 111, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Luchsinger, J.A.; Tang, M.X.; Siddiqui, M.; Shea, S.; Mayeux, R. Alcohol intake and risk of dementia. J Am Geriatric Soc 2004, 52, 540–546. [Google Scholar] [CrossRef]
- Zuccala, G.; Onder, G.; Pedone, C.; Cesari, M.; Landi, F.; Bernabei, R.; Cocchi, A. Dose-related impact of alcohol consumption on cognitive function in advanced age: Results of a multicenter survey. Alcohol Clin Exp Res 2001, 25, 1743–1748. [Google Scholar] [CrossRef]
- Bao, Q.; Zhao, H.; Han, S.; Zhang, C.; Hasi, W. Surface-enhanced Raman spectroscopy for rapid identification and quantification of Flibanserin in different kinds of wine. Anal Methods 2020, 12, 3025–3031. [Google Scholar] [CrossRef] [PubMed]
- Cassino, C.; Gianotti, V.; Bonello, F.; Tsolakis, C.; Cravero, M.; Osella, D. Antioxidant composition of a selection of Italian red wines and their corresponding free-radical scavenging ability. J Chem. 2016, 3, 1–8. [Google Scholar] [CrossRef]
- Barril, C.; Clark, A.C.; Scollary, G.R. Chemistry of ascorbic acid and sulfur dioxide as an antioxidant system relevant to white wine. Anal Chim Acta. 2012, 732, 186–193. [Google Scholar] [CrossRef]
- Coetzee, C.; Lisjak, K.; Nicolau, L.; Kilmartin, P.; du Toit, W.J. Oxygen and sulfur dioxide additions to Sauvignon blanc must: Effect on must and wine composition. Flavour Fragr J 2013, 28, 155–167. [Google Scholar] [CrossRef]
- Porro, C.; Cianciulli, A.; Calvello, R.; Panaro, M.A. Reviewing the role of resveratrol as a natural modulator of microglial activities. Curr Pharm Des 2015, 21, 5277–5291. [Google Scholar] [CrossRef]
- Todorova, M.N.; Pasheva, M.G.; Kiselova-Kaneva, Y.D.; Ivanova, D.G.; Galunska, B.T. Phenolics content and antioxidant activity of beverages on the Bulgarian market—Wines, juices and compotes. Bulg Chem Commun. 2018, 50, 164–168. [Google Scholar]
- Weiskirchen, S.; Weiskirchen, R. Resveratrol: How much wine do you have to drink to stay healthy? Adv Nutr 2016, 7, 706–718. [Google Scholar] [CrossRef]
- Wiegmann, C.; Mick, I.; Brandl, E.J.; Heinz, A.; Gutwinski, S. Alcohol and dementia—What is the link? A systematic review. Neuropsychiatr Dis Treat. 2020, 16, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Tabengwa, E.M.; Grenett, H.E.; Benza, R.L.; Abou-Agag, L.H.; Tresnak, J.K.; Wheeler, C.G.; Booyse, F.M. Ethanol-induced up-regulation of the urokinase receptor in cultured human endothelial cells. Alcohol Clin Exp Res 2001, 25, 163–170. [Google Scholar]
- Lee, K.W.; Lip, G.Y.H. Effects of lifestyle on hemostasis, fibrinolysis, and platelet reactivity: A systematic review. Arch Intern Med 2003, 163, 2368–2392. [Google Scholar] [CrossRef]
- Kim, J.W.; Byun, M.S.; Yi, D.; Lee, J.H.; Ko, K.; Jeon, S.Y.; Sohn, B.K.; Lee, J.Y.; Kim, Y.K.; Shin, S.A.; et al. Association of moderate alcohol intake with in vivo amyloid-beta deposition in human brain: A cross-sectional study. PLoS Med 2020, 17, e1003022. [Google Scholar] [CrossRef] [PubMed]
- Gerszon, J.; Rodacka, A.; Puchała, M. Antioxidant properties of resveratrol and its protective effects in neurodegenerative diseases. Adv Cell Biol. 2014, 4, 97–117. [Google Scholar] [CrossRef]
- Desquiret-Dumas, V.; Gueguen, N.; Leman, G.; Baron, S.; Nivet-Antoine, V.; Chupin, S.; Chevrollier, A.; Vessières, E.; Ayer, A.; Ferré, M. Resveratrol induces a mitochondrial complex I-dependent increase in NADH oxidation responsible for sirtuin activation in liver cells. J Biol Chem 2013, 288, 36662–36675. [Google Scholar] [CrossRef]
- Gledhill, J.R.; Montgomery, M.G.; Leslie, A.G.; Walker, J.E. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc Natl Acad Sci USA 2007, 104, 13632–13637. [Google Scholar] [CrossRef]
- Howitz, K.T.; Bitterman, K.J.; Cohen, H.Y.; Lamming, D.W.; Lavu, S.; Wood, J.G.; Zipkin, R.E.; Chung, P.; Kisielewski, A.; Zhang, L.L.; et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003, 425, 191–196. [Google Scholar] [CrossRef]
- Davies, D.R.; Mamat, B.; Magnusson, O.T.; Christensen, J.; Haraldsson, M.H.; Mishra, R.; Pease, B.; Hansen, E.; Singh, J.; Zembower, D.; et al. Discovery of leukotriene A4 hydrolase inhibitors using metabolomics biased fragment crystallography. J Med Chem 2009, 52, 4694–4715. [Google Scholar] [CrossRef]
- Milne, J.C.; Lambert, P.D.; Schenk, S.; Carney, D.P.; Smith, J.J.; Gagne, D.J.; Jin, L.; Boss, O.; Perni, R.B.; Vu, C.B. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007, 450, 712–716. [Google Scholar] [CrossRef]
- Ge, L.; Liu, L.; Liu, H.; Liu, S.; Xue, H.; Wang, X.; Yuan, L.; Wang, Z.; Liu, D. Resveratrol abrogates lipopolysaccharide-induced depressive-like behavior, neuroinflammatory response, and CREB/BDNF signaling in mice. Eur J Pharmacol. 2015, 768, 49–57. [Google Scholar] [CrossRef]
- Ge, J.F.; Xu, Y.Y.; Li, N.; Zhang, Y.; Qiu, G.L.; Chu, C.H.; Wang, C.Y.; Qin, G.; Chen, F.H. Resveratrol improved the spatial learning and memory in subclinical hypothyroidism rat induced by hemi-thyroid electrocauterization. Endocr J 2015, 62, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Chervenkov, T.; Gerova, D.; Galunska, B.; Enchev, V. Theoretical and experimental evaluation of antioxidant potential of natural bioflavonoids rutin and quercetin: PP8C-9. FEBS J 2008, 275, 377. [Google Scholar]
- Salehi, B.; Mishra, A.P.; Nigam, M.; Sener, B.; Kilic, M.; Sharifi-Rad, M.; Fokou, P.V.T.; Martins, N.; Sharifi-Rad, J. Resveratrol: A double-edged sword in health benefits. Biomedicines 2018, 6, 91. [Google Scholar] [CrossRef] [PubMed]
- Bahijri, S.M.; Ajabnoor, G.; Hegazy GAAlsheikh, L.; Moumena, M.Z.; Bashanfar, B.M.; Alzahrani, A.H. Supplementation with oligonol, prevents weight gain and improves lipid profile in overweight and obese saudi females. Curr Nutr Food Sci 2018, 14, 164–170. [Google Scholar] [CrossRef]
- Wang, J.; Ho, L.; Zhao, Z.; Seror, I.; Humala, N.; Dickstein, D.L.; Thiyagarajan, M.; Percival, S.S.; Talcott, S.T.; Pasinetti, G.M. Moderate consumption of Cabernet Sauvignon attenuates A beta neuropathology in a mouse model of Alzheimer’s disease. FASEB J 2006, 20, 2313–2320. [Google Scholar] [CrossRef]
- Marambaud, P.; Zhao, H.; Davies, P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-β peptides. J Biol Chem 2005, 280, 37377–37382. [Google Scholar] [CrossRef]
- Wang, J.; Ho, L.; Zhao, W.; Ono, K.; Rosensweig, C.; Chen, L.H.; Humala, N.; Teplow, D.B.; Pasinetti, G.M. Grape-derived polyphenolics prevent Abeta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer’s disease. J Neurosci 2008, 28, 6388–6392. [Google Scholar] [CrossRef]
- Sweatt, J.D. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 2004, 14, 311–317. [Google Scholar] [CrossRef]
- Kim, T.; Hinton, D.J.; Choi, D.S. Protein kinase C-regulated aβ production and clearance. Int J Alzheimers Dis. 2011, 2011, 857368. [Google Scholar] [CrossRef] [PubMed]
- Mega, M.S. The cholinergic deficit in Alzheimer’s disease: Impact on cognition, behaviour and function. Int J Neuropsychopharmacol 2000, 3, 3–12. [Google Scholar] [CrossRef]
- Fadda, F.; Rossetti, Z.L. Chronic ethanol consumption: From neuroadaptation to neurodegeneration. Progress Neurobiol 1998, 56, 385–431. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.A.; Mandal, A.K.A.; Khan, Z.A. Potential neuroprotective properties of epigallocatechin-3-gallate (EGCG). Nutr J 2015, 15, 60. [Google Scholar] [CrossRef] [PubMed]
- Munoz, F.J.; Aldunate, R.; Inestrosa, N.C. Peripheral binding site is involved in the neurotrophic activity of acetylcholinesterase. Neuroreport 1999, 10, 3621–3625. [Google Scholar] [CrossRef]
- Heymann, D.; Stern, Y.; Cosentino, S.; Tatarina-Nulman, O.; Dorrejo, J.N.; Gu, Y. The association between alcohol use and the progression of Alzheimer’s disease. Curr Alzheimer Res 2016, 13, 1356–1362. [Google Scholar] [CrossRef]
- Bate, C.; Williams, A. Ethanol protects cultured neurons against amyloid-β and α-synuclein-induced synapse damage. Neuropharmacology 2011, 61, 1406–1412. [Google Scholar] [CrossRef]
- Habtemariam, S. The brain-derived neurotrophic factor in neuronal plasticity and neuroregeneration: New pharmacological concepts for old and new drugs. Neural Regen Res 2018, 13, 983–984. [Google Scholar] [CrossRef]
- Logrip, M.L.; Barak, S.; Warnault, V.; Ron, D. Corticostriatal BDNF and alcohol addiction. Brain Res. 2015, 1628 Pt A, 60–67. [Google Scholar] [CrossRef]
- van Grootheest, G.; Milaneschi, Y.; Lips, P.T.A.M.; Heijboer, A.C.; Smit, J.H.; Penninx, B.W.J.H. Determinants of plasma 25-hydroxyvitamin D levels in healthy adults in the Netherlands. Neth J Med 2014, 72, 533–540. [Google Scholar]
- Gorter, E.A.; Krijnen, P.; Schipper, I.B. Vitamin D deficiency in adult fracture patients: Prevalence and risk factors. Eur J Trauma Emerg Surg 2016, 42, 369–378. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Tardelli, V.S.; Lago, M.P.P.D.; Silveira, D.X.D.; Fidalgo, T.M. Vitamin D and alcohol: A review of the current literature. Psychiatry Res. 2017, 248, 83–86. [Google Scholar] [CrossRef] [PubMed]
- Siddiquee, A.T.; Kadota, A.; Fujiyoshi, A.; Miyagawa, N.; Saito, Y.; Suzuki, H.; Kondo, K.; Yamauchi, H.; Ito, T.; Segawa, H.; et al. Alcohol consumption and cognitive function in elderly Japanese men. Alcohol. 2020, 85, 145–152. [Google Scholar] [CrossRef]
- Velikova, M.; Stoyanov, Z. Alcohol and the cognitive functions of the aging brain. Journal of the Union of Scientists—Varna. Medicine and Ecology Series 2019, 24, 61–65. [Google Scholar] [CrossRef]
- Topiwala, A.; Allan, C.L.; Valkanova, V.; Zsoldos, E.; Filippini, N.; Sexton, C.; Mahmood, A.; Fooks, P.; Singh-Manoux, A.; Mackay, C.E.; et al. Moderate alcohol consumption as risk factor for adverse brain outcomes and cognitive decline: Longitudinal cohort study. BMJ. 2017, 357, j2353. [Google Scholar] [CrossRef]
- Albu, C.V.; Pădureanu, V.; Boldeanu, M.V.; Bumbea, A.M.; Enescu, A.Ş.; Albulescu, D.M.; Siloși, C.A.; Enescu, A. Vascular neurocognitive disorders and the vascular risk factors. J Mind Med Sci 2018, 5, 7–5. [Google Scholar] [CrossRef]
© 2021 by the author. 2021 Margarita Velikova, Bistra Galunska, Raya Dimitrova, Zlatislav Stoyanov
Share and Cite
Velikova, M.; Galunska, B.; Dimitrova, R.; Stoyanov, Z. Alcohol Consumption and Cognitive Aging: Can It Be Beneficial? J. Mind Med. Sci. 2021, 8, 5-16. https://doi.org/10.22543/7674.81.P516
Velikova M, Galunska B, Dimitrova R, Stoyanov Z. Alcohol Consumption and Cognitive Aging: Can It Be Beneficial? Journal of Mind and Medical Sciences. 2021; 8(1):5-16. https://doi.org/10.22543/7674.81.P516
Chicago/Turabian StyleVelikova, Margarita, Bistra Galunska, Raya Dimitrova, and Zlatislav Stoyanov. 2021. "Alcohol Consumption and Cognitive Aging: Can It Be Beneficial?" Journal of Mind and Medical Sciences 8, no. 1: 5-16. https://doi.org/10.22543/7674.81.P516
APA StyleVelikova, M., Galunska, B., Dimitrova, R., & Stoyanov, Z. (2021). Alcohol Consumption and Cognitive Aging: Can It Be Beneficial? Journal of Mind and Medical Sciences, 8(1), 5-16. https://doi.org/10.22543/7674.81.P516
