Abstract
Radar image extrapolation serves as a fundamental methodology in meteorological forecasting, facilitating precise short-term weather prediction through spatiotemporal sequence analysis. Conventional approaches remain constrained by progressive image degradation and artifacts, substantially limiting operational forecasting reliability. This research introduces E-HEOA—an enhanced deep learning architecture with integrated hyperparameter optimization. Our framework incorporates two fundamental innovations: (a) a hybrid metaheuristic optimizer merging a Gaussian-mutated ESOA and Cauchy-mutated HEOA for autonomous learning rate and dropout optimization and (b) embedded ConvLSTM2D modules for enhanced spatiotemporal feature preservation. Experimental validation on 170,000 radar echo samples demonstrates superior performance, demonstrating considerable enhancement in almost all aspects relative to the baseline model while establishing new state-of-the-art benchmarks in prediction fidelity, convergence efficiency, and structural similarity metrics.