Crashworthiness Analysis of Bio-Inspired Multi-Cell Concave Tubes
Abstract
1. Introduction
2. Materials and Methods
2.1. Structural Design
2.2. Material Property
2.3. Crashworthiness Indexes
3. Digital Model
3.1. Finite Element Model Establishment
3.2. Mesh Test
3.3. Model Validation
4. Crashworthiness Analysis
4.1. Comparison of the Same Quality
4.2. Compared with Other Structures




5. Theoretical Analysis
5.1. Bending Deformation Energy
5.2. Film Deformation Energy
5.3. Average Crushing Force
6. Conclusions
- (1)
- Utilizing 3D printing technology, both the tensile material components and the models were fabricated. The disparity between the simulation and experimental results was merely 9.88%, thereby validating the reliability of the simulation experiment. Furthermore, it was demonstrated that wall thickness significantly influences the deformation mode of the BMCT.
- (2)
- Comparative experiments involving various hierarchical structures under identical mass conditions were designed to assess the impact of differing hierarchies on the crashworthiness of the structures. An increase in hierarchy resulted in a maximum increase in specific energy absorption (SEA) of 41.78% and a maximum increase in crush force efficiency (CFE) of 21.22%.
- (3)
- In comparison to traditional thin-walled tubes, the BMCT exhibits superior crashworthiness. The inner concave hierarchical design significantly enhances the crashworthiness of thin-walled tubes, with the maximum increase in CFE reaching 41.04%. However, unlike conventional multi-cell tubes, the impact resistance of the BMCT does not exhibit a monotonous increase with the number of cells; optimal wall thickness varies according to different structural deformations.
- (4)
- A theoretical model based on the simplified super folding element theory was developed to predict the MCF of the BMCT. The numerical results were found to align closely with theoretical predictions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, S.; Rong, W.; Wang, L.; Pei, Z.; Sun, L. Design, analysis and experimental performance of a bionic piezoelectric rotary actuator. J. Bionic Eng. 2017, 14, 348–355. [Google Scholar] [CrossRef]
- Mashrah, W.A.H.; Boufendassa, R.; Fu, X.; Al-Mansour, A.; Yu, Y.; Amer, M.; Mo, S. Comprehensive review of engineered bamboo in structural engineering: Comparative in-sights into laminated bamboo and bamboo scrimber. Structures 2025, 76, 108896. [Google Scholar] [CrossRef]
- Ha, N.S.; Lu, G. A review of recent research on bio-inspired structures and materials for energy absorption applications. Compos. Part B Eng. 2020, 181, 107496. [Google Scholar] [CrossRef]
- Ha, N.S.; Pham, T.M.; Chen, W.; Hao, H. Energy absorption characteristics of bio-inspired hierarchical multi-cell bi-tubular tubes. Int. J. Mech. Sci. 2023, 251, 108260. [Google Scholar] [CrossRef]
- Zou, M.; Xu, S.; Wei, C.; Wang, H.; Liu, Z. A bionic method for the crashworthiness design of thin-walled structures inspired by bamboo. Thin-Walled Struct. 2016, 101, 222–230. [Google Scholar] [CrossRef]
- Liu, B.; Xu, X. Experimental and numerical study on crashworthiness of bionic hedgehog spine thin-walled structures. Thin-Walled Struct. 2023, 189, 110892. [Google Scholar] [CrossRef]
- Xiao, Y.; Yin, H.; Fang, H.; Wen, G. Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading. Int. J. Mech. Mater. Des. 2016, 12, 563–576. [Google Scholar] [CrossRef]
- Zhou, Q.; Xu, Z.; Cui, Y.; Wang, K.; Wang, B.; Wang, B. Evaluations of three-point bending and energy absorption performances of novel auxetic honeycomb circular tubes under different impact loading. Constr. Build. Mater. 2025, 475, 141132. [Google Scholar] [CrossRef]
- Jin, K.; Liu, Z.; Zhang, T.; Lei, J.; Li, S. Mechanical performance enhancement of bionic sandwich circular tubes under axial compression. Thin-Walled Struct. 2025, 209, 112920. [Google Scholar] [CrossRef]
- Hu, D.; Wang, Y.; Song, B.; Dang, L.; Zhang, Z. Energy-absorption characteristics of a bionic honeycomb tubular nested structure inspired by bamboo under axial crushing. Compos. Part B Eng. 2019, 162, 21–32. [Google Scholar] [CrossRef]
- Wang, Y.; Lu, G.; Ha, N.S.; Wang, L. In-Plane crushing performance of bionic glass Sponge-Type honeycomb structures. Compos. Struct. 2024, 341, 118201. [Google Scholar] [CrossRef]
- Jie, D.; Bai, J.; Ran, M.; Yin, D.; Lin, S. Bending performance and crack propagation in biomimetic honeycomb structures for sustainable lightweight design. Eur. J. Mech. A/Solids 2025, 112, 105640. [Google Scholar] [CrossRef]
- Zhou, J.; Ng, B.F.; Han, N.; Xu, S.; Zou, M. Crashworthiness and optimization of bionic sandwich cores under out-of-plane compression. Int. J. Mech. Sci. 2023, 246, 108137. [Google Scholar] [CrossRef]
- Ha, N.S.; Lu, G.; Xiang, X. Energy absorption of a bio-inspired honeycomb sandwich panel. J. Mater. Sci. 2019, 54, 6286–6300. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, D.; Yan, Y.; Yin, X. Investigation of bionic composite laminates inspired by the natural impact-resistant helicoidal structure in the mandibles of trap-jaw ants. Bioinspir. Biomim. 2023, 18, 056005. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Liu, W.; Jin, L. On the crashworthiness analysis and design of a lateral corrugated tube with a sinusoidal cross-section. Int. J. Mech. Sci. 2018, 141, 330–340. [Google Scholar] [CrossRef]
- Deng, X.; Yang, F.; Cao, L.; Huang, J. Multi-objective optimization for a novel sandwich corrugated square tubes. Alex. Eng. J. 2023, 74, 611–626. [Google Scholar] [CrossRef]
- Deng, X.; Qin, S.; Huang, J. Energy absorption characteristics of axially varying thickness lateral corrugated tubes under axial impact loading. Thin-Walled Struct. 2021, 163, 107721. [Google Scholar] [CrossRef]
- Deng, X.; Qin, S.; Huang, J. Crashworthiness analysis of gradient hierarchical multicellular columns evolved from the spatial folding. Mater. Des. 2022, 215, 110435. [Google Scholar] [CrossRef]
- Gao, Z.; Xia, F.; Li, J.; Ruan, D. Axial compression of multi-cell hexagonal tubes with novel hierarchical architectures: Numerical and theoretical analyses. Compos. Struct. 2023, 318, 117079. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Wang, C.; Zeng, Y.; Chen, T. Crashworthiness of bionic fractal hierarchical structures. Mater. Des. 2018, 158, 147–159. [Google Scholar] [CrossRef]
- Zou, L.; Wang, X.; Wang, R.; Huang, X.; Li, M.; Li, S.; Jiang, Z.; Yin, W. Crashworthiness Performance and Multi-Objective Optimization of Bi-Directional Corrugated Tubes under Quasi-Static Axial Crushing. Materials 2024, 17, 3958. [Google Scholar] [CrossRef]
- Zou, F.; Yao, S. Multi-Objective Optimization of Crashworthiness of Shrink Tube Energy Absorption Structure. Appl. Sci. 2024, 14, 7347. [Google Scholar] [CrossRef]
- Fu, Q.; Deng, X.; Xu, S.; Guang, X. Novel bionic crashworthiness structures that simultaneously achieves high specific energy absorption and high crushing force efficiency. Mech. Adv. Mater. Struct. 2025, 1–20. [Google Scholar] [CrossRef]
- Fu, Q.; Deng, X.; Xu, S. Theoretical and numerical study of crashworthiness of asymmetric gradient-hierarchical bi-hexagonal tubes. Compos. Struct. 2025, 360, 119033. [Google Scholar] [CrossRef]
- Huang, J.J.; Liu, H.Q.; Deng, X.L.; Chen, Y.W. Crashworthiness numerical analysis of square hierarchical structure axially varying thickness inspired by origami. Mech. Adv. Mater. Struct. 2024, 31, 11609–11626. [Google Scholar] [CrossRef]
- Gong, C.; Bai, Z.; Lv, J.; Zhang, L. Crashworthiness analysis of bionic thin-walled tubes inspired by the evolution laws of plant stems. Thin-Walled Struct. 2020, 157, 107081. [Google Scholar] [CrossRef]
- Fu, J.; Liu, Q.; Liu, X.; Zhang, Y. Crashworthiness design of concave polygonal CFRP tubes for eVTOL applications under multi-angle compression loading. Def. Technol. 2025, 52, 100–115. [Google Scholar] [CrossRef]
- Chen, J.; Li, E.; Li, Q.; Hou, S.; Han, X. Crashworthiness and optimization of novel concave thin-walled tubes. Compos. Struct. 2022, 283, 115109. [Google Scholar] [CrossRef]
- Fu, Q.; Deng, X.; Yang, F.; Cai, Z. Energy absorption characteristics of asymmetric tree-like fractal gradient hierarchical structures. Mech. Adv. Mater. Struct. 2024, 31, 13036–13052. [Google Scholar] [CrossRef]
- Deng, X.L.; Chen, Y.W.; Huang, J.L. Crashworthiness analysis of hexagonal hierarchical gradient tubes with axial variable thickness inspired by tree fractal structure. Mech. Adv. Mater. Struct. 2023, 30, 2215778. [Google Scholar] [CrossRef]
- Chen, Y.; Deng, X.; Huang, H.; Ran, H.; Wang, C. Crashworthiness of bionic tree-shaped hexagonal hierarchical gradient structures under oblique crushing conditions. Mech. Adv. Mater. Struct. 2023, 30, 1–21. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, H.; Zhang, Q.; Ma, J.; Yang, X.; Yang, J. Energy absorption characteristics of a super hexagonal honeycomb under out-of-plane crushing. Thin-Walled Struct. 2023, 189, 110914. [Google Scholar] [CrossRef]
- Guo, Z.; Han, N.; Zou, M.; Fan, W.; Liu, Y. Energy absorption and deformation behavior of self-similar helical-inspired thin-walled tubes under axial crushing. Mater. Today Commun. 2025, 49, 114198. [Google Scholar] [CrossRef]
- Huang, J.; Deng, X. Crashworthiness Analysis of the Gradient Fractal Double Square Tube. Phys. Status Solidi (b) 2025, 262, 2400626. [Google Scholar] [CrossRef]
- Guo, C.; Cheng, X.; Lu, L.; Pan, L.; Wang, J. Energy absorption of central self-similar honeycombs under quasi-static axial load. Int. J. Mech. Sci. 2024, 274, 109264. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H. Energy absorption limit of plates in thin-walled structures under compression. Int. J. Impact Eng. 2013, 57, 81–98. [Google Scholar] [CrossRef]
- Chen, Y.W.; Huang, H.L.; Deng, X.L.; Qin, S.A. Energy absorption characteristics analysis of multicellular columns based on the origami centripetal folding method. Mech. Adv. Mater. Struct. 2023, 30, 2204089. [Google Scholar] [CrossRef]
- Deng, X.; Liu, W.; Lin, Z. Experimental and theoretical study on crashworthiness of star-shaped tubes under axial compression. Thin-Walled Struct. 2018, 130, 321–331. [Google Scholar] [CrossRef]
- Ming, S.; Song, Z.; Li, T.; Du, K.; Zhou, C.; Wang, B. The energy absorption of thin-walled tubes designed by origami approach applied to the ends. Mater. Des. 2020, 192, 108725. [Google Scholar] [CrossRef]
- Chen, W.; Wierzbicki, T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption. Thin-Walled Struct. 2001, 39, 287–306. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H. The crush resistance of four-panel angle elements. Int. J. Impact Eng. 2015, 78, 81–97. [Google Scholar] [CrossRef]
- Qiu, N.; Gao, Y.K.; Fang, J.G.; Feng, Z.X.; Sun, G.Y.; Li, Q. Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases. Finite Elem. Anal. Des. 2015, 104, 89–101. [Google Scholar] [CrossRef]
- Koloushani, M.; Forouzan, M.R.; Niroomand, M.R. On the crashworthiness performance of thin-walled circular tubes: Effect of diameter and thickness. Mech. Adv. Mater. Struct. 2023, 31, 4805–4817. [Google Scholar] [CrossRef]
- Luo, Y.H.; Fan, H.L. Energy absorbing ability of rectangular self-similar multi-cell sandwich-walled tubular structures. Thin-Walled Struct. 2018, 124, 88–97. [Google Scholar] [CrossRef]
- Gao, Z.P.; Zhang, H.; Zhao, J.; Ruan, D. The axial crushing performance of bio-inspired hierarchical multi-cell hexagonal tubes. Int. J. Mech. Sci. 2023, 239, 13. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H. Numerical and theoretical studies on energy absorption of three-panel angle elements. Int. J. Impact Eng. 2012, 46, 23–40. [Google Scholar] [CrossRef]
- Liang, H.; Wang, Q.; Pu, Y.; Zhao, Y.; Ma, F. In-plane compressive behavior of a novel self-similar hierarchical honeycomb with design-oriented crashworthiness. Int. J. Mech. Sci. 2021, 209, 106723. [Google Scholar] [CrossRef]













| Indicator | Definition | Displayed Formulae |
|---|---|---|
| EA | The total energy absorbed by a thin-walled structure during effective compression | |
| SEA | The energy absorbed per unit mass | |
| MCF | The ratio of the total energy absorbed to the impact distance | |
| CFE | The ratio of MCF to IPCF |
| Mesh Size (mm) | EA (J) | Diff (%) | IPCF (kN) | Diff (%) |
|---|---|---|---|---|
| 0.8 | 3613.04 | - | 74.56 | - |
| 1.0 | 3819.58 | 5.72 | 74.85 | 0.89 |
| 1.2 | 3689.56 | 2.12 | 75.14 | 1.28 |
| 1.5 | 3827.88 | 5.95 | 75.61 | 1.67 |
| 1.8 | 4001.13 | 10.74 | 75.87 | 2.31 |
| 2.0 | 4281.93 | 18.51 | 75.93 | 2.65 |
| t (mm) | m(g) | MCF (kN) | IPCF (kN) | SEA (J/g) | CFE (%) | |
|---|---|---|---|---|---|---|
| SMCT | 0.84 | 129.40 | 31.76 | 50.79 | 19.63 | 62.53 |
| PMCT | 0.84 | 129.40 | 34.28 | 52.73 | 21.20 | 65.01 |
| HMCT | 0.80 | 129.40 | 33.11 | 54.68 | 20.47 | 60.55 |
| OMCT | 0.71 | 129.40 | 44.69 | 58.96 | 27.63 | 75.80 |
| SMCT | 1.05 | 161.75 | 43.05 | 66.47 | 21.29 | 64.76 |
| PMCT | 1.05 | 161.75 | 46.09 | 69.55 | 22.80 | 66.27 |
| HMCT | 1.00 | 161.75 | 46.12 | 75.14 | 22.81 | 61.38 |
| OMCT | 0.89 | 161.75 | 61.03 | 78.22 | 30.19 | 78.03 |
| SMCT | 1.26 | 194.11 | 58.17 | 82.83 | 23.97 | 70.22 |
| PMCT | 1.25 | 194.11 | 60.51 | 87.18 | 24.94 | 69.41 |
| HMCT | 1.20 | 194.11 | 61.79 | 92.08 | 25.47 | 67.11 |
| OMCT | 1.06 | 194.11 | 73.77 | 97.81 | 30.41 | 75.42 |
| t (mm) | m(g) | MCF (kN) | IPCF (kN) | SEA (J/g) | CFE (%) | |
|---|---|---|---|---|---|---|
| SMCT | 1.05 | 161.75 | 43.05 | 66.47 | 21.29 | 64.76 |
| SMT | 1.02 | 161.75 | 29.45 | 64.14 | 14.57 | 45.92 |
| PMCT | 1.05 | 161.75 | 46.09 | 69.55 | 22.80 | 66.27 |
| PMT | 1.07 | 161.75 | 32.66 | 64.18 | 16.15 | 50.89 |
| HMCT | 1.00 | 161.75 | 46.12 | 75.14 | 22.81 | 61.38 |
| HMT | 1.07 | 161.75 | 34.62 | 64.21 | 17.12 | 53.92 |
| OMCT | 0.89 | 161.75 | 61.03 | 78.22 | 30.19 | 78.03 |
| OMT | 1.02 | 161.75 | 39.70 | 64.80 | 19.64 | 61.27 |
| 1 | 2 | 3 | 4 | 5 | 6 | ||
|---|---|---|---|---|---|---|---|
| SMCT | type | Y1-shape | Y2-shape | V1-shape | V2-shape | V3-shape | V4-shape |
| angle/° | 60/60/240 | 105/105/150 | 120.35 | 120 | 90 | 105 | |
| numbers | 4 | 4 | 8 | 16 | 24 | 8 | |
| PMCT | type | Y3-shape | Y4-shape | V5-shape | V2-shape | V3-shape | V6-shape |
| angle/° | 78/78/204 | 96/96/168 | 120.04 | 120 | 90 | 96 | |
| numbers | 5 | 5 | 10 | 20 | 30 | 10 | |
| HMCT | type | T-shape | V2-shape | V3-shape | - | - | - |
| angle/° | 90/90/180 | 120 | 90 | - | - | - | |
| numbers | 12 | 36 | 48 | - | - | ||
| OMCT | type | Y2-shape | Y5-shape | V7-shape | V2-shape | V3-shape | V8-shape |
| angle/° | 105/105/150 | 82.5/82.5/195 | 120.3 | 120 | 90 | 82.5 | |
| numbers | 8 | 8 | 16 | 32 | 48 | 16 | |
| 1 | 2 | 3 | 4 | 5 | 6 | ||
|---|---|---|---|---|---|---|---|
| SMCT | Type (-shape) | 4Y1 | 4Y2 | 8V1 | 16V2 | 24V3 | 8V4 |
| Proportion (%) | 11.20 | 15.48 | 10.38 | 20.76 | 31.65 | 10.53 | |
| PMCT | Type (-shape) | 5Y3 | 5Y4 | 10V5 | 20V2 | 30V3 | 10V6 |
| Proportion (%) | 13.22 | 14.72 | 10.20 | 20.40 | 31.10 | 10.37 | |
| HMCT | Type (-shape) | 12T | 36V2 | 48V3 | - | - | - |
| Proportion (%) | 28.84 | 30.22 | 40.94 | - | - | ||
| OMCT | Type (-shape) | 8Y2 | 8Y5 | 16V7 | 32V2 | 48V3 | 16V8 |
| Proportion (%) | 16.46 | 5.52 | 11.04 | 22.09 | 33.66 | 11.22 | |
| Tubes | t (mm) | λ | Lc (mm) | Theo. (kN) | FE. (kN) | Diff. (%) | Mean Diff. (%) |
|---|---|---|---|---|---|---|---|
| SMCT | 0.8 | 1.215 | 572.12 | 29.69 | 31.05 | −4.38 | 3.44 |
| SMCT | 1.2 | 1.215 | 572.12 | 54.54 | 55.26 | −1.30 | |
| SMCT | 1.6 | 1.215 | 572.12 | 83.97 | 80.04 | 4.91 | |
| SMCT | 2.0 | 1.215 | 572.12 | 117.35 | 113.74 | 3.17 | |
| PMCT | 0.8 | 1.175 | 572.90 | 30.65 | 33.47 | −8.43 | 4.54 |
| PMCT | 1.2 | 1.175 | 572.90 | 59.54 | 56.82 | 4.79 | |
| PMCT | 1.6 | 1.175 | 572.90 | 91.66 | 88.83 | 3.19 | |
| PMCT | 2.0 | 1.175 | 572.90 | 128.1 | 125.88 | 1.76 | |
| HMCT | 0.8 | 1.133 | 599.10 | 35.23 | 33.11 | 6.40 | 5.28 |
| HMCT | 1.2 | 1.133 | 599.10 | 64.72 | 61.79 | 4.74 | |
| HMCT | 1.6 | 1.133 | 599.10 | 99.65 | 106.36 | −6.31 | |
| HMCT | 2.0 | 1.133 | 599.10 | 139.25 | 144.57 | −3.68 | |
| OMCT | 0.8 | 1.253 | 676.48 | 47.69 | 52.74 | −9.58 | 8.15 |
| OMCT | 1.2 | 1.253 | 676.48 | 87.62 | 92.20 | −4.97 | |
| OMCT | 1.6 | 1.253 | 676.48 | 134.89 | 132.93 | 1.47 | |
| OMCT | 2.0 | 1.253 | 676.48 | 188.52 | 161.69 | 16.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Deng, X.; Huang, J.; Xie, J. Crashworthiness Analysis of Bio-Inspired Multi-Cell Concave Tubes. Biomimetics 2026, 11, 120. https://doi.org/10.3390/biomimetics11020120
Deng X, Huang J, Xie J. Crashworthiness Analysis of Bio-Inspired Multi-Cell Concave Tubes. Biomimetics. 2026; 11(2):120. https://doi.org/10.3390/biomimetics11020120
Chicago/Turabian StyleDeng, Xiaolin, Jinjin Huang, and Jialiang Xie. 2026. "Crashworthiness Analysis of Bio-Inspired Multi-Cell Concave Tubes" Biomimetics 11, no. 2: 120. https://doi.org/10.3390/biomimetics11020120
APA StyleDeng, X., Huang, J., & Xie, J. (2026). Crashworthiness Analysis of Bio-Inspired Multi-Cell Concave Tubes. Biomimetics, 11(2), 120. https://doi.org/10.3390/biomimetics11020120

