Abstract
Human gait exhibits stable contralateral coupling, making healthy-side motion a viable predictor for affected-limb kinematics. Leveraging this property, this study develops FusionTCN–Attention, a causality-preserving temporal model designed to forecast contralateral hip and knee trajectories from unilateral IMU measurements. The model integrates dilated temporal convolutions with a lightweight attention mechanism to enhance feature representation while maintaining strict real-time causality. Evaluated on twenty-one subjects, the method achieves hip and knee RMSEs of 5.71 and 7.43 , correlation coefficients over 0.9, and a deterministic phase lag of 14.56 ms, consistently outperforming conventional sequence models including Seq2Seq and causal Transformers. These results demonstrate that unilateral IMU sensing supports low-latency, stable prediction, thereby establishing a control-oriented methodological basis for unilateral prediction as a necessary engineering prerequisite for future hemiparetic exoskeleton applications.