Classifying Sex from MSCT-Derived 3D Mandibular Models Using an Adapted PointNet++ Deep Learning Approach in a Croatian Population
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Structure and Preparation
2.2. Dataset Splitting
2.3. Models’ Global Architecture
2.4. Unsupervised Analysis
2.5. Supervised Analysis
2.6. Visualizations and Interpretability Tools
2.7. Gradio Application Development
2.8. Implementation Details
3. Results
3.1. Unsupervised Analysis
3.2. Supervised Analysis
3.3. Supervised Analysis
3.4. Comparative Analysis of State-of-the-Art Methods
4. Discussion
Supplementary Materials
Author Contributions
Funding
Declaration of Generative AI and AI-Assisted Technologies in the Writing Process
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Full Term |
CNN | Computational Neural Network |
CT | Computed Tomography |
DFA | Discriminant Function Analysis |
DICOM | Digital Imaging and Communications in Medicine |
DP | Dorsal Pubis |
GSN | Greater Sciatic Notch |
LR | Logistic Regression |
MCC | Matthews Correlation Coefficient |
MONAI | Medical Open Network for Artificial Intelligence |
MSCT | Multislice Computed Tomography |
NPV | Negative Predictive Value |
PPV | Positive Predictive Value |
ROI | Region of Interest |
STL | Stereolithography |
t-SNE | t-distributed Stochastic Neighbor Embedding |
UHC | University Hospital of Split |
VP | Ventral Pubis |
References
- Krogman, W.M. The Human Skeleton in Forensic Medicine, 3rd ed.; Charles, C., Ed.; Thomas: Springfield, IL, USA, 2013; Volume 74. [Google Scholar]
- Wang, X.; Liu, G.; Wu, Q.; Zheng, Y.; Song, F.; Li, Y. Sex Estimation Techniques Based on Skulls in Forensic Anthropology: A Scoping Review. PLoS ONE 2024, 19, e0311762. [Google Scholar] [CrossRef]
- DiGangi, E.A.; Moore, M.K. Research Methods in Human Skeletal Biology, 1st ed.; Elsevier Science & Technology: Amsterdam, The Netherlands, 2013; ISBN 9780123851895. [Google Scholar]
- Hazari, P.; Hazari, R.S.; Mishra, S.; Agrawal, S.; Yadav, M. Is There Enough Evidence so That Mandible Can Be Used as a Tool for Sex Dimorphism? A Systematic Review. J. Forensic Dent. Sci. 2016, 8, 174. [Google Scholar] [CrossRef]
- Alves, N.; Ceballos, F.; Muñoz, L.; Figueiredo Deana, N. Sex Estimation by Metric Analysis of the Angle of Mandible and the Mandibular Ramus: A Systematic Review. Int. J. Morphol. 2022, 40, 883–894. [Google Scholar] [CrossRef]
- Toneva, D.; Nikolova, S.; Agre, G.; Zlatareva, D.; Fileva, N.; Lazarov, N. Sex Estimation Based on Mandibular Measurements. Anthropol. Anz. 2024, 81, 19–42. [Google Scholar] [CrossRef] [PubMed]
- Lewis, C.J.; Garvin, H.M. Reliability of the Walker Cranial Nonmetric Method and Implications for Sex Estimation. J. Forensic Sci. 2016, 61, 743–751. [Google Scholar] [CrossRef] [PubMed]
- Deana, N.F.; Alves, N. Nonmetrical Sexual Dimorphism in Mandibles of Brazilian Individuals. Biomed. Res. 2017, 28, 4233–4238. [Google Scholar]
- Loth, S.R.; Henneberg, M. Mandibular Ramus Flexure: A New Morphologic Indicator of Sexual Dimorphism in the Human Skeleton. Am. J. Phys. Anthropol. 1996, 99, 473–485. [Google Scholar] [CrossRef]
- Kemkes-Grottenthaler, A.; Löbig, F.; Stock, F. Mandibular Ramus Flexure and Gonial Eversion as Morphologic Indicators of Sex. HOMO 2002, 53, 97–111. [Google Scholar] [CrossRef]
- Hu, K.; Koh, K.; Han, S.; Shin, K.; Kim, H. Sex Determination Using Nonmetric Characteristics of the Mandible in Koreans. J. Forensic Sci. 2006, 51, 1376–1382. [Google Scholar] [CrossRef]
- Langley, N.R.; Jantz, L.M.; McNulty, S.; Maijanen, H.; Ousley, S.D.; Jantz, R.L. Data Collection Procedures for Forensic Skeletal Material 2.0, 3rd ed.; Forensic Anthropology Center, University of Tennessee & Lincoln Memorial University: Harrogate, TN, USA, 2016. [Google Scholar]
- Saini, V.; Srivastava, R.; Rai, R.K.; Shamal, S.N.; Singh, T.B.; Tripathi, S.K. Mandibular Ramus: An Indicator for Sex in Fragmentary Mandible. J. Forensic Sci. 2011, 56, S13–S16. [Google Scholar] [CrossRef]
- Marinescu, M.; Panaitescu, V.; Rosu, M. Sex Determination in Romanian Mandible Using Discriminant Function Analysis: Comparative Results of a Time-Efficient Method. Rom. J. Leg. Med. 2013, 21, 305–308. [Google Scholar] [CrossRef]
- Nikita, E.; Nikitas, P. On the Use of Machine Learning Algorithms in Forensic Anthropology. Leg. Med. 2020, 47, 101771. [Google Scholar] [CrossRef] [PubMed]
- Bu, W.-Q.; Guo, Y.-X.; Zhang, D.; Du, S.-Y.; Han, M.-Q.; Wu, Z.-X.; Tang, Y.; Chen, T.; Guo, Y.-C.; Meng, H.-T. Automatic Sex Estimation Using Deep Convolutional Neural Network Based on Orthopantomogram Images. Forensic Sci. Int. 2023, 348, 111704. [Google Scholar] [CrossRef] [PubMed]
- Baban, M.T.A.; Mohammad, D.N. A New Approach for Sex Prediction by Evaluating Mandibular Arch and Canine Dimensions with Machine-Learning Classifiers and Intraoral Scanners (a Retrospective Study). Sci. Rep. 2024, 14, 27974. [Google Scholar] [CrossRef]
- Thurzo, A.; Kosnáčová, H.S.; Kurilová, V.; Kosmeľ, S.; Beňuš, R.; Moravanský, N.; Kováč, P.; Kuracinová, K.M.; Palkovič, M.; Varga, I. Use of Advanced Artificial Intelligence in Forensic Medicine, Forensic Anthropology and Clinical Anatomy. Healthcare 2021, 9, 1545. [Google Scholar] [CrossRef]
- Dutta, S.; Keerthana, R.; Shekar, D.C.; Kumar, S.S. Biological Profile Estimation of the Human Skeleton Based Forensic Identification Using Deep Learning Image Classification. In Proceedings of the 5th International Conference on IoT Based Control Networks and Intelligent Systems, ICICNIS 2024, Bengaluru, India, 17–18 December 2024; pp. 1369–1375. [Google Scholar]
- Bewes, J.; Low, A.; Morphett, A.; Pate, F.D.; Henneberg, M. Artificial Intelligence for Sex Determination of Skeletal Remains: Application of a Deep Learning Artificial Neural Network to Human Skulls. J. Forensic Leg. Med. 2019, 62, 40–43. [Google Scholar] [CrossRef]
- Oner, Z.; Turan, M.K.; Oner, S.; Secgin, Y.; Sahin, B. Sex Estimation Using Sternum Part Lenghts by Means of Artificial Neural Networks. Forensic Sci. Int. 2019, 301, 6–11. [Google Scholar] [CrossRef]
- Cao, Y.; Ma, Y.; Vieira, D.N.; Guo, Y.; Wang, Y.; Deng, K.; Chen, Y.; Zhang, J.; Qin, Z.; Chen, F.; et al. A Potential Method for Sex Estimation of Human Skeletons Using Deep Learning and Three-Dimensional Surface Scanning. Int. J. Legal Med. 2021, 135, 2409–2421. [Google Scholar] [CrossRef]
- Kondou, H.; Morohashi, R.; Kimura, S.; Idota, N.; Matsunari, R.; Ichioka, H.; Bandou, R.; Kawamoto, M.; Ting, D.; Ikegaya, H. Artificial Intelligence-Based Forensic Sex Determination of East Asian Cadavers from Skull Morphology. Sci. Rep. 2023, 13, 21026. [Google Scholar] [CrossRef]
- Jerković, I.; Bašić, Ž.; Kružić, I. Deep Learning-Based Sex Estimation of 3D Hyoid Bone Models in a Croatian Population Using Adapted PointNet++ Network. Sci. Rep. 2025, 15, 22728. [Google Scholar] [CrossRef]
- Kuha, A.; Ackermann, J.; Junno, J.A.; Oettlé, A.; Oura, P. Deep Learning in Sex Estimation from Photographed Human Mandible Using the Human Osteological Research Collection. Leg. Med. 2024, 70, 102476. [Google Scholar] [CrossRef]
- Lye, R.; Min, H.; Dowling, J.; Obertová, Z.; Estai, M.; Bachtiar, N.A.; Franklin, D. Deep Learning versus Human Assessors: Forensic Sex Estimation from Three-Dimensional Computed Tomography Scans. Sci. Rep. 2024, 14, 30136. [Google Scholar] [CrossRef]
- Noel, L.; Fat, S.C.; Causey, J.L.; Dong, W.; Stubblefield, J.; Szymanski, K.; Chang, J.-H.; Wang, P.Z.; Moore, J.H.; Ray, E. Sex Classification of 3D Skull Images Using Deep Neural Networks. Sci. Rep. 2024, 14, 13707. [Google Scholar] [CrossRef]
- Venema, J.; Peula, D.; Irurita, J.; Mesejo, P. Employing Deep Learning for Sex Estimation of Adult Individuals Using 2D Images of the Humerus. Neural Comput. Appl. 2023, 35, 5987–5998. [Google Scholar] [CrossRef]
- Pichetpan, K.; Singsuwan, P.; Intasuwan, P.; Sinthubua, A.; Palee, P.; Mahakkanukrauh, P. Sex Determination Using the Clavicle by Deep Learning in a Thai Population. Med. Sci. Law 2024, 64, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Krogman, W.M.; İşcan, M.Y. The Human Skeleton in Forensic Medicine; Charles, C., Ed.; Thomas: Springfield, IL, USA, 1986; ISBN 0398052247. [Google Scholar]
- White, T.D.; Folkens, P.A. The Human Bone Manual; Academic Press: San Diego, CA, USA, 2005; ISBN 9780120884674. [Google Scholar]
- Spradley, M.K.; Jantz, R.L. Sex Estimation in Forensic Anthropology: Skull versus Postcranial Elements. J. Forensic Sci. 2011, 56, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Ramphaleng, T.; Billings, B.; Hemingway, J. The Effect of Tooth Loss on Sexual Dimorphism of South African Mandible Using Geometric Morphometrics. Forensic Sci. Int. Rep. 2025, 11, 100421. [Google Scholar] [CrossRef]
Split | Total | Males | Females | Age Mean | Age Median | Age Min | Age Max | Age Std |
---|---|---|---|---|---|---|---|---|
Overall | 254 | 127 | 127 | 58.59 | 62.50 | 18.00 | 93.00 | 16.35 |
Training | 154 | 77 | 77 | 58.42 | 62.00 | 18.00 | 93.00 | 16.66 |
Validation | 50 | 25 | 25 | 58.60 | 62.00 | 20.00 | 84.00 | 15.93 |
Test | 50 | 25 | 25 | 59.14 | 63.00 | 21.00 | 85.00 | 15.81 |
Metric | Cross-Validation (Avg) | Test Set |
---|---|---|
Accuracy | 0.93 | 0.92 |
Sensitivity | 0.93 | 0.92 |
Specificity | 0.94 | 0.92 |
PPV | 0.93 | 0.92 |
NPV | 0.94 | 0.92 |
MCC | 0.87 | 0.84 |
Study (Year) | Skeletal Element | Dataset/Population | Method | Reported Performances |
---|---|---|---|---|
This study (2025) | Mandible (3D MSCT, Croatian sample) | 254 mandibles | Adapted PointNet++ (point clouds + LR) | 93% (CV)/92% (test) |
Kuha et al. (2024) [25] | Mandible (2D photographs, South African sample) | 193 mandibles | CNN variants (best: LeNet5_bn_do_skipcon) | Acc: 84% (val)/88% (test) |
Bewes et al. (2019) [20] | Skull (2D lateral CT reconstructions) | 1000 skulls (Adelaide, Australia) | GoogLeNet CNN (transfer learning) | Acc: 95% (test) |
Kondou et al. (2023) [23] | Skull (3D PMCT, East Asian cadavers) | 1234 skulls (Japan) | DenseNet121 with gated MIL | Acc: 93% (test) |
Lye et al. (2024) [26] | Skull (3D CT, Indonesian sample) | 200 skulls (Indonesia) | Multi-task CNN (sex + Walker traits) | Acc: 97% (test) |
Noel et al. (2024) [27] | Skull (3D CT, Cedars-Sinai, USA) | 98 skulls (50M, 48F; multi-ethnic) | ResNet3D, PointNet++, MeshNet (DL comparison) | All AUC > 0.9; PointNet++ highest |
Cao et al. (2021) [22] | Pelvis (VP, DP, GSN regions, 3D CT + surface scans) | 1000 CT pelvises + 105 scanned | GoogLeNet Inception V4 CNN | Acc (test): 94–98% (CT)/97.1% (scans) |
Jerković et al. (2025) [24] | Hyoid (3D MSCT, Croatian sample) | 202 hyoids | Adapted PointNet++ (point clouds + SVM) | Acc: 88.3% (CV)/88.7% (test) |
Venema et al. (2023) [28] | Humerus (distal epiphysis, Mediterranean sample) | 417 humeri | ResNet50 (transfer learning + Grad-CAM) | |
Acc: 87.8 (val)/91.0% (test) | ||||
Pichetpan et al. (2023) [29] | Clavicle (photographs, Thai sample) | 200 clavicles | GoogLeNet CNN (multi-view) | Acc: 88.3–95% (validation) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shimkus, E.; Kružić, I.; Mladenović, S.; Perić, I.; Gunjača, M.J.; Tadić, T.; Dolić, K.; Anđelinović, Š.; Bašić, Ž.; Jerković, I. Classifying Sex from MSCT-Derived 3D Mandibular Models Using an Adapted PointNet++ Deep Learning Approach in a Croatian Population. J. Imaging 2025, 11, 328. https://doi.org/10.3390/jimaging11100328
Shimkus E, Kružić I, Mladenović S, Perić I, Gunjača MJ, Tadić T, Dolić K, Anđelinović Š, Bašić Ž, Jerković I. Classifying Sex from MSCT-Derived 3D Mandibular Models Using an Adapted PointNet++ Deep Learning Approach in a Croatian Population. Journal of Imaging. 2025; 11(10):328. https://doi.org/10.3390/jimaging11100328
Chicago/Turabian StyleShimkus, Eva, Ivana Kružić, Saša Mladenović, Iva Perić, Marija Jurić Gunjača, Tade Tadić, Krešimir Dolić, Šimun Anđelinović, Željana Bašić, and Ivan Jerković. 2025. "Classifying Sex from MSCT-Derived 3D Mandibular Models Using an Adapted PointNet++ Deep Learning Approach in a Croatian Population" Journal of Imaging 11, no. 10: 328. https://doi.org/10.3390/jimaging11100328
APA StyleShimkus, E., Kružić, I., Mladenović, S., Perić, I., Gunjača, M. J., Tadić, T., Dolić, K., Anđelinović, Š., Bašić, Ž., & Jerković, I. (2025). Classifying Sex from MSCT-Derived 3D Mandibular Models Using an Adapted PointNet++ Deep Learning Approach in a Croatian Population. Journal of Imaging, 11(10), 328. https://doi.org/10.3390/jimaging11100328