High-Rate Capability of LiNi0.9Mn0.1−xAlxO2 (NMA) (x = 0.01, 0.03, 0.05) as Cathode for Lithium-Ion Batteries
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Preparation of NMA
4.2. Material Characterization
4.3. Electrochemical Measurement
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 2020, 11, 1550. [Google Scholar] [CrossRef]
- Jeevanantham, B.; Shobana, M.K. Enhanced cathode materials for advanced lithium-ion batteries using nickel-rich and lithium/manganese-rich LiNixMnyCozO2. J. Energy Storage 2022, 54, 105353. [Google Scholar] [CrossRef]
- Zhao, H.; Lam, W.-Y.A.; Sheng, L.; Wang, L.; Bai, P.; Yang, Y.; Ren, D.; Xu, H.; He, X. Cobalt-Free Cathode Materials: Families and their Prospects. Adv. Energy Mater. 2022, 12, 2103894. [Google Scholar] [CrossRef]
- Noerochim, L.; Suwarno, S.; Idris, N.H.; Dipojono, H.K. Recent Development of Nickel-Rich and Cobalt-Free Cathode Materials for Lithium-Ion Batteries. Batteries 2021, 7, 84. [Google Scholar] [CrossRef]
- Gourley, S.W.D.; Or, T.; Chen, Z. Breaking Free from Cobalt Reliance in Lithium-Ion Batteries. iScience 2020, 23, 101505. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Ye, Y.; Liu, T.; Xiao, Y.; Wang, C.; Wang, F.; Pan, F. Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control. Acc. Chem. Res. 2019, 52, 2201–2209. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, N.; Stark, J.E.; Arab, P.; Li, H.; Dahn, J.R. Synthesis of Co-Free Ni-Rich Single Crystal Positive Electrode Materials for Lithium Ion Batteries: Part I. Two-Step Lithiation Method for Al- or Mg-Doped LiNiO2. J. Electrochem. Soc. 2021, 168, 40531. [Google Scholar] [CrossRef]
- Sun, Y.; Lv, W.; Fu, P.; Song, Y.; Song, D.; Shi, X.; Zhang, H.; Li, C.; Zhang, L.; Wang, D. Influence of core and shell components on the Ni-rich layered oxides with core–shell and dual-shell structures. Chem. Eng. J. 2020, 400, 125821. [Google Scholar] [CrossRef]
- Wang, R.; He, K.; Liu, J.; Liu, Z.; Lv, X.; Su, J.; Wen, Y. Enhanced structure stability and electrochemical performance of LiNiO2 by Li2SeO4 coating and gradient surface SeO32−/SeO42− doping. Surf. Coat. Technol. 2023, 465, 129587. [Google Scholar] [CrossRef]
- Xu, T.; Du, F.; Wu, L.; Fan, Z.; Shen, L.; Zheng, J. Boosting the electrochemical performance of LiNiO2 by extra low content of Mn-doping and its mechanism. Electrochim. Acta 2022, 417, 140345. [Google Scholar] [CrossRef]
- Wu, J.; Wen, Y.; Zhou, Q.; Wang, J.; Shen, L.; Zheng, J. Simultaneous Bulk Doping and Surface Coating of Sn to Boost the Electrochemical Performance of LiNiO2. ACS Appl. Energy Mater. 2023, 6, 3010–3019. [Google Scholar] [CrossRef]
- Mao, G.; Luo, J.; Zhou, Q.; Xiao, F.; Tang, R.; Li, J.; Zeng, L.; Wang, Y. Improved cycling stability of high nickel cathode material for lithium ion battery through Al- and Ti-based dual modification. Nanoscale 2021, 13, 18741–18753. [Google Scholar] [CrossRef]
- Shen, Y.; Yao, X.; Zhang, J.; Wang, S.; Zhang, D.; Yin, D.; Wang, L.; Zhang, Y.; Hu, J.; Cheng, Y.; et al. Sodium doping derived electromagnetic center of lithium layered oxide cathode materials with enhanced lithium storage. Nano Energy 2022, 94, 106900. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, Y.; Gao, P. Synthesis and characterization of Nickel-rich layered LiNi1−xMnxO2 (x = 0.02, 0.05) cathodes for lithium-ion batteries. Electrochim. Acta 2022, 427, 140891. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, J.; Xu, W.; Lu, Y.; Ma, H.; Cheng, F.; Chen, J. Gradient doping Mg and Al to stabilize Ni-rich cathode materials for rechargeable lithium-ion batteries. J. Power Sources 2022, 535, 231445. [Google Scholar] [CrossRef]
- Xin, F.; Zhou, H.; Zong, Y.; Zuba, M.; Chen, Y.; Chernova, N.A.; Bai, J.; Pei, B.; Goel, A.; Rana, J.; et al. What is the Role of Nb in Nickel-Rich Layered Oxide Cathodes for Lithium-Ion Batteries? ACS Energy Lett. 2021, 6, 1377–1382. [Google Scholar] [CrossRef]
- Gomez-Martin, A.; Reissig, F.; Frankenstein, L.; Heidbüchel, M.; Winter, M.; Placke, T.; Schmuch, R. Magnesium Substitution in Ni-Rich NMC Layered Cathodes for High-Energy Lithium Ion Batteries. Adv. Energy Mater. 2022, 12, 2103045. [Google Scholar] [CrossRef]
- Kobayashi, H.; Sakaebe, H.; Kageyama, H.; Tatsumi, K.; Arachi, Y.; Kamiyama, T. Changes in the structure and physical properties of the solid solution LiNi1−xMnxO2 with variation in its composition. J. Mater. Chem. 2003, 13, 590–595. [Google Scholar] [CrossRef]
- Kim, H.-G.; Myung, S.-T.; Lee, J.K.; Sun, Y.-K. Effects of manganese and cobalt on the electrochemical and thermal properties of layered Li[Ni0.52Co0.16+xMn0.32−x]O2 cathode materials. J. Power Sources 2011, 196, 6710–6715. [Google Scholar] [CrossRef]
- You, Y.; Celio, H.; Li, J.; Dolocan, A.; Manthiram, A. Modified High-Nickel Cathodes with Stable Surface Chemistry Against Ambient Air for Lithium-Ion Batteries. Angew. Chem. Int. Ed. 2018, 57, 6480–6485. [Google Scholar] [CrossRef]
- Nayak, P.K.; Grinblat, J.; Levi, M.; Levi, E.; Kim, S.; Choi, J.W.; Aurbach, D. Al Doping for Mitigating the Capacity Fading and Voltage Decay of Layered Li and Mn-Rich Cathodes for Li-Ion Batteries. Adv. Energy Mater. 2016, 6, 1502398. [Google Scholar] [CrossRef]
- Brow, R.; Donakowski, A.; Mesnier, A.; Pereira, D.J.; Steirer, K.X.; Santhanagopalan, S.; Manthiram, A. Mechanical Pulverization of Co-Free Nickel-Rich Cathodes for Improved High-Voltage Cycling of Lithium-Ion Batteries. ACS Appl. Energy Mater. 2022, 5, 6996–7005. [Google Scholar] [CrossRef]
- Li, W.; Lee, S.; Manthiram, A. High-Nickel NMA: A Cobalt-Free Alternative to NMC and NCA Cathodes for Lithium-Ion Batteries. Adv. Mater. 2020, 32, 2002718. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Li, W.; Manthiram, A. Delineating the Roles of Mn, Al, and Co by Comparing Three Layered Oxide Cathodes with the Same Nickel Content of 70% for Lithium-Ion Batteries. Chem. Mater. 2022, 34, 629–642. [Google Scholar] [CrossRef]
- Essehli, R.; Parejiya, A.; Muralidharan, N.; Jafta, C.J.; Amin, R.; Dixit, M.B.; Bai, Y.; Liu, J.; Belharouak, I. Hydrothermal synthesis of Co-free NMA cathodes for high performance Li-ion batteries. J. Power Sources 2022, 545, 231938. [Google Scholar] [CrossRef]
- Castro-García, S.; Castro-Couceiro, A.; Señarís-Rodríguez, M.A.; Soulette, F.; Julien, C. Influence of aluminum doping on the properties of LiCoO2 and LiNi0.5Co0.5O2 oxides. Solid State Ion. 2003, 156, 15–26. [Google Scholar] [CrossRef]
- Li, W.; Reimers, J.N.; Dahn, J.R. In situ x-ray diffraction and electrochemical studies of Li1−xNiO2. Solid State Ion. 1993, 67, 123–130. [Google Scholar] [CrossRef]
- Bie, Y.; Yang, J.; Wang, J.; Zhou, J.; Nuli, Y. Li2O2 as a cathode additive for the initial anode irreversibility compensation in lithium-ion batteries. Chem. Commun. 2017, 53, 8324–8327. [Google Scholar] [CrossRef]
- Kim, T.; Ono, L.K.; Fleck, N.; Raga, S.R.; Qi, Y. Transition metal speciation as a degradation mechanism with the formation of a solid-electrolyte interphase (SEI) in Ni-rich transition metal oxide cathodes. J. Mater. Chem. A 2018, 6, 14449–14463. [Google Scholar] [CrossRef]
- Zhang, S.S.; Xu, K.; Jow, T.R. Understanding Formation of Solid Electrolyte Interface Film on LiMn2O4 Electrode. J. Electrochem. Soc. 2002, 149, A1521. [Google Scholar] [CrossRef]
- Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef] [PubMed]
- Shu, H.; Wang, X.; Wu, Q.; Ju, B.; Liu, L.; Yang, X.; Wang, Y.; Bai, Y.; Yang, S. Ammonia Assisted Hydrothermal Synthesis of Monodisperse LiFePO4/C Microspheres as Cathode Material for Lithium Ion Batteries. J. Electrochem. Soc. 2011, 158, A1448–A1454. [Google Scholar] [CrossRef]
- Qian, D.; Gu, Y.; Chen, Y.; Liu, H.; Wang, J.; Zhou, H. Ultra-high specific capacity of Cr3+-doped Li4Ti5O12 at 1.55 V as anode material for lithium-ion batteries. Mater. Lett. 2019, 238, 102–106. [Google Scholar] [CrossRef]
- Noerochim, L.; Caesarendra, W.; Habib, A.; Widyastuti; Suwarno; Ni’mah, Y.L.; Subhan, A.; Prihandoko, B.; Kosasih, B. Role of TiO2 Phase Composition Tuned by LiOH on The Electrochemical Performance of Dual-Phase Li4Ti5O12-TiO2 Microrod as an Anode for Lithium-Ion Battery. Energies 2020, 13, 5251. [Google Scholar] [CrossRef]
- Karunawan, J.; Floweri, O.; Santosa, S.P.; Sumboja, A.; Iskandar, F. Stable layered-layered-spinel structure of the Li1.2Ni0.13Co0.13Mn0.54O2 cathode synthesized by ball-milling assisted solid-state method. J. Electroanal. Chem. 2022, 907, 116050. [Google Scholar] [CrossRef]
- Xiaoman Wang, H.-L.Z. Effect of Calcining Temperatures on the Electrochemical Performances of LiNi0.5Co0.2Mn0.3O2 Cathode Material for Lithium Ion Batteries. Int. J. Electrochem. Sci. 2021, 16, 151011. [Google Scholar] [CrossRef]
- Li, W.; Liu, X.; Celio, H.; Smith, P.; Dolocan, A.; Chi, M.; Manthiram, A. Mn versus Al in Layered Oxide Cathodes in Lithium-Ion Batteries: A Comprehensive Evaluation on Long-Term Cyclability. Adv. Energy Mater. 2018, 8, 1703154. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Li, X.; Zhu, Y.; Gao, P. Synthesis and characterization of Co-free NMA cathodes for fast charging lithium-ion batteries. J. Alloys Compd. 2023, 955, 170226. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J. An overview of modification strategies to improve LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode performance for automotive lithium-ion batteries. eTransportation 2021, 7, 100105. [Google Scholar] [CrossRef]
- Pang, S.; Wang, Y.; Chen, T.; Shen, X.; Xi, X.; Liao, D. The effect of AlF3 modification on the physicochemical and electrochemical properties of Li-rich layered oxide. Ceram. Int. 2016, 42, 5397–5402. [Google Scholar] [CrossRef]
- Minnici, K.; Kwon, Y.H.; Huie, M.M.; de Simon, M.V.; Zhang, B.; Bock, D.C.; Wang, J.; Wang, J.; Takeuchi, K.J.; Takeuchi, E.S.; et al. High capacity Li-ion battery anodes: Impact of crystallite size, surface chemistry and PEG-coating. Electrochim. Acta 2018, 260, 235–245. [Google Scholar] [CrossRef]
Lattice Parameter | JCPDS No. 01-089-3601 | NMA 991 | NMA 973 | NMA 955 |
---|---|---|---|---|
a = b (Å) | 2.88 | 2.88 | 2.87 | 2.87 |
c (Å) | 14.19 | 14.16 | 14.22 | 14.26 |
Cathodes | c/a | I003/I104 |
---|---|---|
NMA 991 | 4.92 | 1.15 |
NMA 973 | 4.95 | 1.36 |
NMA 955 | 4.97 | 1.11 |
Cathode | Rs (Ω cm−2) | Rct (Ω cm−2) | Li Diffusion (cm−2 s−1) |
---|---|---|---|
NMA 991 | 3.89 | 101.39 | 3.74 × 10−11 |
NMA 973 | 2.51 | 71.58 | 4.27 × 10−10 |
NMA 955 | 4.43 | 141.02 | 3.12 × 10−11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noerochim, L.; Gunawan, E.A.; Pintowantoro, S.; Nurdiansah, H.; Adam, A.D.; Idris, N.H. High-Rate Capability of LiNi0.9Mn0.1−xAlxO2 (NMA) (x = 0.01, 0.03, 0.05) as Cathode for Lithium-Ion Batteries. Batteries 2023, 9, 420. https://doi.org/10.3390/batteries9080420
Noerochim L, Gunawan EA, Pintowantoro S, Nurdiansah H, Adam AD, Idris NH. High-Rate Capability of LiNi0.9Mn0.1−xAlxO2 (NMA) (x = 0.01, 0.03, 0.05) as Cathode for Lithium-Ion Batteries. Batteries. 2023; 9(8):420. https://doi.org/10.3390/batteries9080420
Chicago/Turabian StyleNoerochim, Lukman, Elsanti Anggraini Gunawan, Sungging Pintowantoro, Haniffudin Nurdiansah, Ariiq Dzurriat Adam, and Nurul Hayati Idris. 2023. "High-Rate Capability of LiNi0.9Mn0.1−xAlxO2 (NMA) (x = 0.01, 0.03, 0.05) as Cathode for Lithium-Ion Batteries" Batteries 9, no. 8: 420. https://doi.org/10.3390/batteries9080420
APA StyleNoerochim, L., Gunawan, E. A., Pintowantoro, S., Nurdiansah, H., Adam, A. D., & Idris, N. H. (2023). High-Rate Capability of LiNi0.9Mn0.1−xAlxO2 (NMA) (x = 0.01, 0.03, 0.05) as Cathode for Lithium-Ion Batteries. Batteries, 9(8), 420. https://doi.org/10.3390/batteries9080420