Aqueous Zinc–Chalcogen Batteries: Emerging Conversion-Type Energy Storage Systems
Abstract
:1. Introduction
2. Aqueous Zn–S Batteries (AZSBs)
2.1. Electrolyte Modification for AZSBs
2.1.1. Choice of Solute, Concentration, and Solvent for AZSBs
2.1.2. Choice of Electrolyte Additive for AZSBs
- Without changing the two-electron reaction process.
- Changing the two-electron reaction to the four-electron reaction
2.2. Cathode Optimization for AZSBs
3. Aqueous Zn–Se Batteries (AZSeBs)
3.1. Electrolyte Modification for AZSeBs
3.1.1. Choice of Electrolyte for AZSeBs
3.1.2. Choice of Electrolyte Additive for AZSeBs
3.2. Cathode Optimization for AZSeBs
4. Aqueous Zn–Te Batteries (AZTeBs)
4.1. Mechanism Investigation for AZTeBs
4.2. Performance Optimization for AZTeBs
5. Conclusions and Perspective
- (1)
- Research on AZSBs mainly includes electrolyte modification and cathode optimization. As for the electrolyte choice, how factors such as the solute, concentration, and solvent influence the performance of AZSBs are summarized. Regarding electrolyte additive selection, two types of electrolyte additives are described in detail, depending on whether to change the two-electron reaction processes of AZSBs. For cathode optimization, various strategies and their mechanisms are thoroughly discussed.
- (2)
- Research on AZSeBs mostly involves electrolyte modification and cathode optimiza-tion. In terms of electrolyte choice, the similarities and differences among AZSeBs in organic and aqueous electrolytes are compared, and the working mechanisms are presented. As for the choice of the electrolyte additive, the strategy and corresponding mechanism of changing the two-electron reaction to the four-electron reaction are de-tailed. For cathode optimization, different strategies and their mechanisms are com-prehensively discussed.
- (3)
- >Research on AZTeBs focuses on mechanism investigation and performance optimization. For mechanism investigation, two systems are proposed and compared according to different working mechanisms. For performance optimization, a system operating at extremely high temperatures is described and its mechanism is thoroughly analyzed.
- (1)
- The mechanism investigations of AZCBs are still not thorough and systematic, and the working mechanism of some systems is not clear. For example, the influence of protons on the working mechanism in insertion-type aqueous batteries is known to be significant [107,108,109,110]. However, there are different opinions about whether protons are involved in the redox reactions of conversion-type AZCBs, which must be further explored by combining theoretical calculations and experimental evidence.
- (2)
- Low discharge voltage is a common issue for AZCBs, but there are few studies on increasing discharge voltage, which affects the commercialization process of AZCBs. Therefore, improving the voltage output is an important future development direction of AZCBs, which requires further in-depth and systematic research.
- (3)
- Most of the current strategies are only proposed for one side (cathode or anode) of the AZCBs, and the issues existing in the cathode and anode cannot be solved simultaneously, thus probably affecting the further development of AZCBs. Developing multifunctional strategies or combining different strategies to solve both these problems at the same time may be a direction worth exploring.
- (4)
- Unified and standardized testing protocols should be established for AZCBs, especially in the early stage of development. The lack of unified standards interferes considerably with fair comparisons and will be an obstacle to future research and even commercialization. Moreover, targets for optimizing key parameters, such as capacity, energy density, cycling life, and CE, should be set to facilitate the development of AZCBs for commercial applications.
- (5)
- The electrochemical test conditions should be closer to the practical application situations (harsher environments), such as increasing the mass loading of cathode materials, increasing the current density, and decreasing the amount of electrolyte. Furthermore, tests using full batteries should be introduced as necessary performance evaluation methods to promote the further development of AZCBs.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, Y.; Dong, H.; Aurbach, D.; Yao, Y. Current status and future directions of multivalent metal-ion batteries. Nat. Energy 2020, 5, 646–656. [Google Scholar] [CrossRef]
- Cao, L.; Li, D.; Pollard, T.; Deng, T.; Zhang, B.; Yang, C.; Chen, L.; Vatamanu, J.; Hu, E.; Hourwitz, M.J.; et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 2021, 16, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Sun, M.; Chen, W.; Liu, Y.; Zhang, L.; Dongfang, N.; Ruan, Y.; Zhang, J.; Wang, P.; Dong, L.; et al. Sandwich, vertical-channeled thick electrodes with high rate and cycle performance. Adv. Funct. Mater. 2019, 29, 1809196. [Google Scholar] [CrossRef]
- Zhao, Z.; Sun, M.; Wu, T.; Zhang, J.; Wang, P.; Zhang, L.; Yang, C.; Peng, C.; Lu, H. A bifunctional-modulated conformal Li/Mn-rich layered cathode for fast-charging, high volumetric density and durable Li-ion full cells. Nano-Micro Lett. 2021, 13, 118. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Chen, H.; Cui, Y. Formulating energy density for designing practical lithium-sulfur batteries. Nat. Energy 2022, 7, 312–319. [Google Scholar] [CrossRef]
- Zhong, C.; Liu, B.; Ding, J.; Liu, X.; Zhong, Y.; Li, Y.; Sun, C.; Han, X.; Deng, Y.; Zhao, N.; et al. Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc-manganese dioxide batteries. Nat. Energy 2020, 5, 440–449. [Google Scholar] [CrossRef]
- Zheng, J.; Bock, D.C.; Tang, T.; Zhao, Q.; Yin, J.; Tallman, K.R.; Wheeler, G.; Liu, X.; Deng, Y.; Jin, S.; et al. Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal–substrate bonding. Nat. Energy 2021, 6, 398–406. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, L.; Zhao, L.; Huang, X.; Li, W.; Li, T.; Shen, T.; Sun, S.; Hou, Y. Free-standing, foldable V2O3/multichannel carbon nanofibers electrode for flexible Li-ion batteries with ultralong lifespan. Small 2020, 16, 2005302. [Google Scholar] [CrossRef]
- Zhang, L.; Pan, Y.; Chen, Y.; Li, M.; Liu, P.; Wang, C.; Wang, P.; Lu, H. Designing vertical channels with expanded interlayers for Li-ion batteries. Chem. Commun. 2019, 55, 4258–4261. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, L.; Lin, S.; Chen, Z.; Wang, Y.; Zhao, X.; Wu, T.; Zhang, J.; Liu, W.; Lu, H.; et al. Building vertically-structured, high-performance electrodes by interlayer-confined reactions in accordion-like, chemically expanded graphite. Nano Energy 2020, 70, 104482. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, L.; Hou, Y. MXenes: Synthesis strategies and lithium-sulfur battery applications. eScience 2022, 2, 164–182. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, Z.; Dongfang, N.; Li, M.; Diao, C.; Wu, Q.; Chi, X.; Jiang, P.; Zhao, Z.; Dong, L.; et al. Nickel–cobalt double hydroxide as a multifunctional mediator for ultrahigh-rate and ultralong-life Li-S batteries. Adv. Energy Mater. 2018, 8, 1802431. [Google Scholar] [CrossRef]
- Lu, C.; Li, A.; Li, G.; Yan, Y.; Zhang, M.; Yang, Q.; Zhou, W.; Guo, L. S-decorated porous Ti3C2 MXene combined with in situ forming Cu2Se as effective shuttling interrupter in Na-Se batteries. Adv. Mater. 2021, 33, 2008414. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Manaig, D.; Freschi, D.J.; Liu, J. Materials design and fundamental understanding of tellurium-based electrochemistry for rechargeable batteries. Energy Storage Mater. 2021, 40, 166–188. [Google Scholar] [CrossRef]
- Tang, T.Y.; Zhang, T.; Zhao, L.N.; Zhang, B.; Li, W.; Xu, J.J.; Zhang, L.; Qiu, H.L.; Hou, Y.L. Multifunctional ultrasmall-MoS2/graphene composites for high sulfur loading Li-S batteries. Mater. Chem. Front. 2020, 4, 1483–1491. [Google Scholar] [CrossRef]
- Fang, C.; Li, J.; Zhang, M.; Zhang, Y.; Yang, F.; Lee, J.Z.; Lee, M.; Alvarado, J.; Schroeder, M.A.; Yang, Y.; et al. Quantifying inactive lithium in lithium metal batteries. Nature 2019, 572, 511–515. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Zhang, Q.; Zhu, Z.; Cai, Y.; Li, H.; Li, F. Anion-reinforced solvation for a gradient inorganic-rich interphase enables high-rate and stable sodium batteries. Angew. Chem. Int. Ed. 2022, 61, e202205045. [Google Scholar] [CrossRef]
- Yang, H.; He, F.; Li, M.; Huang, F.; Chen, Z.; Shi, P.; Liu, F.; Jiang, Y.; He, L.; Gu, M.; et al. Design principles of sodium/potassium protection layer for high-power high-energy sodium/potassium-metal batteries in carbonate electrolytes: A case study of Na2Te/K2Te. Adv. Mater. 2021, 33, 2106353. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, L.; Zhao, L.; Huang, X.; Hou, Y. Catalytic effects in the cathode of Li-S batteries: Accelerating polysulfides redox conversion. EnergyChem 2020, 2, 100036. [Google Scholar] [CrossRef]
- He, J.; Lv, W.; Chen, Y.; Wen, K.; Xu, C.; Zhang, W.; Li, Y.; Qin, W.; He, W. Tellurium-impregnated porous cobalt-doped carbon polyhedra as superior cathodes for lithium-tellurium batteries. ACS Nano 2017, 11, 8144–8152. [Google Scholar] [CrossRef]
- Sun, J.; Du, Z.; Liu, Y.; Ai, W.; Wang, K.; Wang, T.; Du, H.; Liu, L.; Huang, W. State-of-the-art and future challenges in high energy lithium-selenium batteries. Adv. Mater. 2021, 33, 2003845. [Google Scholar] [CrossRef] [PubMed]
- Zeng, L.; Li, W.; Jiang, Y.; Yu, Y. Recent progress in Li-S and Li-Se batteries. Rare Met. 2017, 36, 339–364. [Google Scholar] [CrossRef]
- Liu, Q.; Deng, W.; Sun, C. A potassium-tellurium battery. Energy Storage Mater. 2020, 28, 10–16. [Google Scholar] [CrossRef]
- Ji, X.; Lee, K.T.; Nazar, L.F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, Y.; Zhao, Z.; Jiang, P.; Zhang, T.; Li, M.; Pan, S.; Tang, T.; Wu, T.; Liu, P.; et al. Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li-S batteries. ACS Nano 2020, 14, 8495–8507. [Google Scholar] [CrossRef] [PubMed]
- Tang, T.; Zhang, T.; Zhao, L.; Zhang, B.; Li, W.; Xu, J.; Li, T.; Zhang, L.; Qiu, H.; Hou, Y. Multifunctional V3S4-nanowire/graphene composites for high performance Li-S batteries. Sci. China Mater. 2020, 63, 1910–1919. [Google Scholar] [CrossRef]
- Pang, Q.; Liang, X.; Kwok, C.Y.; Nazar, L.F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132. [Google Scholar] [CrossRef]
- Yang, A.; Zhou, G.; Kong, X.; Vilá, R.A.; Pei, A.; Wu, Y.; Yu, X.; Zheng, X.; Wu, C.; Liu, B.; et al. Electrochemical generation of liquid and solid sulfur on two-dimensional layered materials with distinct areal capacities. Nat. Nanotechnol. 2020, 15, 231–237. [Google Scholar] [CrossRef]
- Xiao, F.; Yang, X.; Yao, T.; Wang, H.; Rogach, A.L. Encapsulation of selenium in MOF-derived N,O-codoped porous flower-like carbon host for Na-Se batteries. Chem. Eng. J. 2022, 430, 132737. [Google Scholar] [CrossRef]
- Li, Y.; Wang, M.; Chen, Y.; Hu, L.; Liu, T.; Bao, S.; Xu, M. Muscle-like electrode design for Li-Te batteries. Energy Storage Mater. 2018, 10, 10–15. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, W.; Impeng, S.; Li, M.; Wang, R.; Liu, Y.; Zhang, L.; Dong, L.; Unruangsri, J.; Peng, C.; et al. Covalent organic framework-based ultrathin crystalline porous film: Manipulating uniformity of fluoride distribution for stabilizing lithium metal anode. J. Mater. Chem. A 2020, 8, 3459–3467. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Pei, A.; Yan, K.; Sun, Y.; Wu, C.L.; Joubert, L.M.; Chin, R.; Koh, A.L.; Yu, Y.; et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 2017, 358, 506–510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.; Shi, H.; Huang, K.; Lu, P.; Wen, P.; Xing, F.; Yang, B.; Ye, M.; Yu, Y.; Wu, Z. Achieving stable Na metal cycling via polydopamine/multilayer graphene coating of a polypropylene separator. Nat. Commun. 2021, 12, 5786. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhou, D.; Li, P.; Guo, X.; Sun, B.; Liu, H.; Yan, K.; Gogotsi, Y.; Wang, G. MXene-based dendrite-free potassium metal batteries. Adv. Mater. 2020, 32, 1906739. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, W.; Zhao, R.; Yang, Z.; Li, W.; Chao, D.; Qiao, S.; Zhao, D. Sulfur-based aqueous batteries: Electrochemistry and strategies. J. Am. Chem. Soc. 2021, 143, 15475–15489. [Google Scholar] [CrossRef]
- Chao, D.; Zhou, W.; Xie, F.; Ye, C.; Li, H.; Jaroniec, M.; Qiao, S.Z. Roadmap for advanced aqueous batteries: From design of materials to applications. Sci Adv. 2020, 6, a4098. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.Y.; Chu, X.Y.; Liu, C.; Lai, H.W.; Chen, H.; Jiang, Y.Q.; Guo, F.; Xu, Z.K.; Wang, C.S.; Gao, C. Water-salt oligomers enable supersoluble electrolytes for high-performance aqueous batteries. Adv. Mater. 2021, 33, 2007470. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, Q.; Li, X.; Liu, J.; Zhou, W.; Wang, B.; Zhao, Z.; Li, W.; Chao, D.; Zhao, D. Redox mediator chemistry regulated aqueous batteries: Insights into mechanisms and prospects. CCS Chem. 2022, 4, 2874–2887. [Google Scholar] [CrossRef]
- Chao, D.; Qiao, S. Toward high-voltage aqueous batteries: Super- or low-concentrated electrolyte? Joule 2020, 4, 1846–1851. [Google Scholar] [CrossRef]
- Chen, G.; Sang, Z.; Cheng, J.; Tan, S.; Yi, Z.; Zhang, X.; Si, W.; Yin, Y.; Liang, J.; Hou, F. Reversible and homogenous zinc deposition enabled by in-situ grown Cu particles on expanded graphite for dendrite-free and flexible zinc metal anodes. Energy Storage Mater. 2022, 50, 589–597. [Google Scholar] [CrossRef]
- Cao, Q.; Gao, H.; Gao, Y.; Yang, J.; Li, C.; Pu, J.; Du, J.; Yang, J.; Cai, D.; Pan, Z.; et al. Regulating dendrite-free zinc deposition by 3D zincopilic nitrogen-doped vertical graphene for high-performance flexible Zn-ion batteries. Adv. Funct. Mater. 2021, 31, 2103922. [Google Scholar] [CrossRef]
- Lv, Y.; Xiao, Y.; Ma, L.; Zhi, C.; Chen, S. Recent advances in electrolytes for “beyond aqueous” zinc-ion batteries. Adv. Mater. 2022, 34, 2106409. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Liu, Z.; Huang, Q.; Gao, Y.; Regula, M.; Wang, D.; Chen, L.; Wang, D. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy 2018, 3, 1076–1083. [Google Scholar] [CrossRef]
- Ma, L.; Schroeder, M.A.; Borodin, O.; Pollard, T.P.; Ding, M.S.; Wang, C.; Xu, K. Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 2020, 5, 743–749. [Google Scholar] [CrossRef]
- Parker, J.F.; Chervin, C.N.; Pala, I.R.; Machler, M.; Burz, M.F.; Long, J.W.; Rolison, D.R. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Science 2017, 356, 414–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Wu, F.; Mei, Y.; Hao, Y.; Li, L.; Xie, M.; Chen, R. Establishing thermal infusion method for stable zinc metal anodes in aqueous zinc-ion batteries. Adv. Mater. 2022, 34, 2200782. [Google Scholar] [CrossRef]
- Xiong, L.; Fu, H.; Han, W.; Wang, M.; Li, J.; Yang, W.; Liu, G. Robust ZnS interphase for stable Zn metal anode of high-performance aqueous secondary batteries. Int. J. Miner. Metall. Mater. 2022, 29, 1053–1060. [Google Scholar] [CrossRef]
- Li, H.; Guo, C.; Zhang, T.; Xue, P.; Zhao, R.; Zhou, W.; Li, W.; Elzatahry, A.; Zhao, D.; Chao, D. Hierarchical confinement effect with zincophilic and spatial traps stabilized Zn-based aqueous battery. Nano Lett. 2022, 22, 4223–4231. [Google Scholar] [CrossRef]
- Chen, X.; Ruan, P.; Wu, X.; Liang, S.; Zhou, J. Crystal structures, reaction mechanisms, and optimization strategies of MnO2 cathode for aqueous rechargeable zinc batteries. Acta Phys. Chim. Sin. 2022, 38, 2111003. [Google Scholar]
- Song, Y.; Ruan, P.; Mao, C.; Chang, Y.; Wang, L.; Dai, L.; Zhou, P.; Lu, B.; Zhou, J.; He, Z. Metal–organic frameworks functionalized separators for robust aqueous zinc-ion batteries. Nano-Micro Lett. 2022, 14, 218. [Google Scholar] [CrossRef]
- Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K.S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, Y. Comprehensive analyses of aqueous Zn metal batteries: Characterization methods, simulations, and theoretical calculations. Adv. Energy Mater. 2021, 11, 2003823. [Google Scholar] [CrossRef]
- Canepa, P.; Sai Gautam, G.; Hannah, D.C.; Malik, R.; Liu, M.; Gallagher, K.G.; Persson, K.A.; Ceder, G. Odyssey of multivalent cathode materials: Open questions and future challenges. Chem. Rev. 2017, 117, 4287–4341. [Google Scholar] [CrossRef]
- Zhu, K.; Wei, S.; Shou, H.; Shen, F.; Chen, S.; Zhang, P.; Wang, C.; Cao, Y.; Guo, X.; Luo, M.; et al. Defect engineering on V2O3 cathode for long-cycling aqueous zinc metal batteries. Nat. Commun. 2021, 12, 6878. [Google Scholar] [CrossRef]
- Lee, W.S.V.; Xiong, T.; Wang, X.; Xue, J. Unraveling MoS2 and transition metal dichalcogenides as functional zinc-ion battery cathode: A perspective. Small Methods 2021, 5, 2000815. [Google Scholar] [CrossRef]
- Kundu, D.; Oberholzer, P.; Glaros, C.; Bouzid, A.; Tervoort, E.; Pasquarello, A.; Niederberger, M. Organic cathode for aqueous Zn-ion batteries: Taming a unique phase evolution toward stable electrochemical cycling. Chem. Mater. 2018, 30, 3874–3881. [Google Scholar] [CrossRef]
- Yong, B.; Ma, D.; Wang, Y.; Mi, H.; He, C.; Zhang, P. Understanding the design principles of advanced aqueous zinc-ion battery cathodes: From transport kinetics to structural engineering, and future perspectives. Adv. Energy Mater. 2020, 10, 2002354. [Google Scholar] [CrossRef]
- Pam, M.E.; Yan, D.; Yu, J.; Fang, D.; Guo, L.; Li, X.L.; Li, T.C.; Lu, X.; Ang, L.K.; Amal, R.; et al. Microstructural engineering of cathode materials for advanced zinc-ion aqueous batteries. Adv. Sci. 2021, 8, 2002722. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, Z.; Xu, X.; Nie, Y.; Tu, J.; Zhou, A.; Zhang, J.; Qiu, L.; Chen, F.; Xie, J.; et al. Low-cost and long-life Zn/Prussian blue battery using a water-in-ethanol electrolyte with a normal salt concentration. Energy Storage Mater. 2022, 48, 192–204. [Google Scholar] [CrossRef]
- Yang, K.; Hu, Y.; Zhang, T.; Wang, B.; Qin, J.; Li, N.; Zhao, Z.; Zhao, J.; Chao, D. Triple-functional polyoxovanadate cluster in regulating cathode, anode, and electrolyte for tough aqueous zinc-ion battery. Adv. Energy Mater. 2022, 12, 2202671. [Google Scholar] [CrossRef]
- Zhang, H.; Shang, Z.; Luo, G.; Jiao, S.; Cao, R.; Chen, Q.; Lu, K. Redox catalysis promoted activation of sulfur redox chemistry for energy-dense flexible solid-state Zn-S Battery. ACS Nano 2022, 16, 7344–7351. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Jin, X.; Ma, H.; Hu, L.; Sun, G.; Chen, H.; Yang, Q.; Xu, M.; Liu, Q.; Xiao, Y.; et al. Maximizing energy storage of flexible aqueous batteries through decoupling charge carriers. Adv. Energy Mater. 2021, 11, 2003982. [Google Scholar] [CrossRef]
- Zhou, T.; Wan, H.; Liu, M.; Wu, Q.; Fan, Z.; Zhu, Y. Regulating uniform nucleation of ZnS enables low-polarized and high stable aqueous Zn-S batteries. Mater. Today Energy 2022, 27, 101025. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Y.; Gou, W.; Liu, M.; Sun, Y.; Han, X.; Sun, W.; Li, C. The key role of concentrated Zn(OTF)2 electrolyte in the performance of aqueous Zn-S batteries. Chem. Commun. 2022, 58, 8145–8148. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Mo, F.N.; Wang, T.R.; Yang, Q.; Huang, Z.D.; Wang, D.H.; Liang, G.J.; Chen, A.; Li, Q.; Guo, Y.; et al. Zinc/selenium conversion battery: A system highly compatible with both organic and aqueous electrolytes. Energy Environ. Sci. 2021, 14, 2441–2450. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, Q.; Mo, F.; Li, N.; Liang, G.; Li, X.; Huang, Z.; Wang, D.; Huang, W.; Fan, J.; et al. Aqueous zinc-tellurium batteries with ultraflat discharge plateau and high volumetric capacity. Adv. Mater. 2020, 32, 2001469. [Google Scholar] [CrossRef]
- Wu, X.; Markir, A.; Ma, L.; Xu, Y.; Jiang, H.; Leonard, D.P.; Shin, W.; Wu, T.; Lu, J.; Ji, X. A four-electron sulfur electrode hosting a Cu2+/Cu+ redox charge carrier. Angew. Chem. Int. Ed. 2019, 58, 12640–12645. [Google Scholar] [CrossRef]
- Dai, C.; Hu, L.; Chen, H.; Jin, X.; Han, Y.; Wang, Y.; Li, X.; Zhang, X.; Song, L.; Xu, M.; et al. Enabling fast-charging selenium-based aqueous batteries via conversion reaction with copper ions. Nat. Commun. 2022, 13, 1863. [Google Scholar] [CrossRef]
- Chen, Z.; Cui, H.; Hou, Y.; Wang, X.; Jin, X.; Chen, A.; Yang, Q.; Wang, D.; Huang, Z.; Zhi, C. Anion chemistry enabled positive valence conversion to achieve a record high-voltage organic cathode for zinc batteries. Chem 2022, 8, 2204–2216. [Google Scholar] [CrossRef]
- Yu, B.; Huang, A.; Srinivas, K.; Zhang, X.; Ma, F.; Wang, X.; Chen, D.; Wang, B.; Zhang, W.; Wang, Z.; et al. Outstanding catalytic effects of 1T′-MoTe2 quantum dots@3D graphene in shuttle-free Li-S batteries. ACS Nano 2021, 15, 13279–13288. [Google Scholar] [CrossRef]
- Wang, H.; Jamil, S.; Tang, W.; Zhao, J.; Liu, H.; Bao, S.; Liu, Y.; Xu, M. Melamine-sacrificed pyrolytic synthesis of spiderweb-like nanocages encapsulated with catalytic Co atoms as cathode for advanced Li-S batteries. Batteries 2022, 8, 161. [Google Scholar] [CrossRef]
- Kang, N.; Lin, Y.; Yang, L.; Lu, D.; Xiao, J.; Qi, Y.; Cai, M. Cathode porosity is a missing key parameter to optimize lithium-sulfur battery energy density. Nat. Commun. 2019, 10, 4597. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Yan, Z.; Xiao, J.; Xin, W.; Zhang, L.; Peng, H.; Geng, Y.; Li, J.; Wang, Y.; Liu, L.; et al. Boosting cathode activity and anode stability of Zn-S batteries in aqueous media through cosolvent-catalyst synergy. Angew. Chem. Int. Ed. 2022, 61, e202212666. [Google Scholar]
- Li, W.; Wang, K.; Jiang, K. A Low cost aqueous Zn-S battery realizing ultrahigh energy density. Adv. Sci. 2020, 7, 2000761. [Google Scholar] [CrossRef]
- Wang, F.; Borodin, O.; Gao, T.; Fan, X.; Sun, W.; Han, F.; Faraone, A.; Dura, J.A.; Xu, K.; Wang, C. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 2018, 17, 543–549. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, B.; Zhang, T.; Li, T.; Shi, T.; Li, W.; Shen, T.; Huang, X.; Xu, J.; Zhang, X.; et al. Eliminating dendrites and side reactions via a multifunctional ZnSe protective layer toward advanced aqueous Zn metal batteries. Adv. Funct. Mater. 2021, 31, 2100186. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, M.; Jiang, K.; Yang, D.; Tan, X.; Zhai, S.; Feng, R.; Chen, N.; King, G.; Zhang, H.; et al. Self-repairing interphase reconstructed in each cycle for highly reversible aqueous zinc batteries. Nat. Commun. 2022, 13, 5348. [Google Scholar] [CrossRef]
- Zhao, Z.; Wang, R.; Peng, C.; Chen, W.; Wu, T.; Hu, B.; Weng, W.; Yao, Y.; Zeng, J.; Chen, Z.; et al. Horizontally arranged zinc platelet electrodeposits modulated by fluorinated covalent organic framework film for high-rate and durable aqueous zinc ion batteries. Nat. Commun. 2021, 12, 6606. [Google Scholar] [CrossRef]
- Xie, F.; Li, H.; Wang, X.; Zhi, X.; Chao, D.; Davey, K.; Qiao, S.Z. Mechanism for zincophilic sites on zinc-metal anode hosts in aqueous batteries. Adv. Energy Mater. 2021, 11, 2003419. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, C.; Wu, X.; Han, C.; Xu, Y.; Ji, X.; Jiang, J. A Zn-S aqueous primary battery with high energy and flat discharge plateau. Chem. Commun. 2021, 57, 9918–9921. [Google Scholar] [CrossRef]
- Wang, C.; Pei, Z.; Meng, Q.; Zhang, C.; Sui, X.; Yuan, Z.; Wang, S.; Chen, Y. Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: The pivotal role of ZnCl2 salt-based electrolytes. Angew. Chem. Int. Ed. 2021, 60, 990–997. [Google Scholar] [CrossRef]
- Zhang, N.; Cheng, F.; Liu, Y.; Zhao, Q.; Lei, K.; Chen, C.; Liu, X.; Chen, J. Cation-deficient spinel ZnMn2O4 cathode in Zn(CF3SO3)2 electrolyte for rechargeable aqueous Zn-ion battery. J. Am. Chem. Soc. 2016, 138, 12894–12901. [Google Scholar] [CrossRef] [PubMed]
- Cui, M.; Fei, J.; Mo, F.; Lei, H.; Huang, Y. Ultra-high-capacity and dendrite-free zinc-sulfur conversion batteries based on a low-cost deep eutectic solvent. ACS Appl. Mater. Interfaces 2021, 13, 54981–54989. [Google Scholar] [CrossRef] [PubMed]
- Dai, C.; Hu, L.; Jin, X.; Chen, H.; Zhang, X.; Zhang, S.; Song, L.; Ma, H.; Xu, M.; Zhao, Y.; et al. A cascade battery: Coupling two sequential electrochemical reactions in a single battery. Adv. Mater. 2021, 33, 2105480. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Li, C.; Liu, J.; Wang, Y.; Xia, Y. A long-life lithium-air battery in ambient air with a polymer electrolyte containing a redox mediator. Angew. Chem. Int. Ed. 2017, 56, 7505–7509. [Google Scholar] [CrossRef] [PubMed]
- Tułodziecki, M.; Leverick, G.M.; Amanchukwu, C.V.; Katayama, Y.; Kwabi, D.G.; Bardé, F.; Hammond, P.T.; Shao-Horn, Y. The role of iodide in the formation of lithium hydroxide in lithium-oxygen batteries. Energy Environ. Sci. 2017, 10, 1828–1842. [Google Scholar] [CrossRef]
- Yang, H.; Qiao, Y.; Chang, Z.; Deng, H.; He, P.; Zhou, H. A metal-organic framework as a multifunctional ionic sieve membrane for long-life aqueous zinc-iodide batteries. Adv. Mater. 2020, 32, 2004240. [Google Scholar] [CrossRef]
- Zhang, S.J.; Hao, J.; Li, H.; Zhang, P.F.; Yin, Z.W.; Li, Y.Y.; Zhang, B.; Lin, Z.; Qiao, S.Z. Polyiodide confinement by starch enables shuttle-free Zn-iodine batteries. Adv. Mater. 2022, 34, 2201716. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, D.; Li, X.; Yang, Q.; Guo, Y.; Mo, F.; Li, Q.; Peng, C.; Li, H.; Zhi, C. Initiating a reversible aqueous Zn/sulfur battery through a “liquid film”. Adv. Mater. 2020, 32, 2003070. [Google Scholar] [CrossRef]
- Liu, D.; He, B.; Zhong, Y.; Chen, J.; Yuan, L.; Li, Z.; Huang, Y. A durable ZnS cathode for aqueous Zn-S batteries. Nano Energy 2022, 101, 107474. [Google Scholar] [CrossRef]
- Gu, X.; Xin, L.; Li, Y.; Dong, F.; Fu, M.; Hou, Y. Highly reversible Li-Se batteries with ultra-lightweight N,S-codoped graphene blocking layer. Nano-Micro Lett. 2018, 10, 59. [Google Scholar] [CrossRef] [Green Version]
- Mukkabla, R.; Deshagani, S.; Meduri, P.; Deepa, M.; Ghosal, P. Selenium/graphite platelet nanofiber composite for durable Li–Se batteries. ACS Energy Lett. 2017, 2, 1288–1295. [Google Scholar] [CrossRef]
- Wang, H.; Lai, K.; Guo, F.; Long, B.; Zeng, X.; Fu, Z.; Wu, X.; Xiao, Y.; Dou, S.; Dai, J. Theoretical calculation guided materials design and capture mechanism for Zn–Se batteries via heteroatom-doped carbon. Carbon Neutralization 2022, 1, 59–67. [Google Scholar] [CrossRef]
- Dong, W.; Chen, H.; Xia, F.; Yu, W.; Song, J.; Wu, S.; Deng, Z.; Hu, Z.; Hasan, T.; Li, Y.; et al. Selenium clusters in Zn-glutamate MOF derived nitrogen-doped hierarchically radial-structured microporous carbon for advanced rechargeable Na-Se batteries. J. Mater. Chem. A 2018, 6, 22790–22797. [Google Scholar] [CrossRef]
- Song, J.; Wu, L.; Dong, W.; Li, C.; Chen, L.; Dai, X.; Li, C.; Chen, H.; Zou, W.; Yu, W.; et al. MOF-derived nitrogen-doped core–shell hierarchical porous carbon confining selenium for advanced lithium-selenium batteries. Nanoscale 2019, 11, 6970–6981. [Google Scholar] [CrossRef]
- Du, Y.; Ma, S.; Dai, J.; Lin, J.; Zhou, X.; Chen, T.; Gu, X. Biomass carbon materials contribute better alkali-metal-selenium batteries: A mini-review. Batteries 2022, 8, 123. [Google Scholar] [CrossRef]
- Ma, L.; Ying, Y.; Chen, S.; Chen, Z.; Li, H.; Huang, H.; Zhao, L.; Zhi, C. Electrocatalytic selenium redox reaction for high-mass-loading zinc-selenium batteries with improved kinetics and selenium utilization. Adv. Energy Mater. 2022, 12, 2201322. [Google Scholar] [CrossRef]
- Li, W.; Ma, Y.; Li, P.; Jing, X.; Jiang, K.; Wang, D. Synergistic effect between S and Se enhancing the electrochemical behavior of SexSy in aqueous Zn metal batteries. Adv. Funct. Mater. 2021, 31, 2101237. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, Q.; Wang, D.; Chen, A.; Li, X.; Huang, Z.; Liang, G.; Wang, Y.; Zhi, C. Tellurium: A high-performance cathode for magnesium ion batteries based on a conversion mechanism. ACS Nano 2022, 16, 5349–5357. [Google Scholar] [CrossRef]
- Chen, Z.; Zhao, Y.; Mo, F.; Huang, Z.; Li, X.; Wang, D.; Liang, G.; Yang, Q.; Chen, A.; Li, Q.; et al. Metal-tellurium batteries: A rising energy storage system. Small Struct. 2020, 1, 2000005. [Google Scholar] [CrossRef]
- Dong, S.; Yu, D.D.; Yang, J.; Jiang, L.; Wang, J.W.; Cheng, L.W.; Zhou, Y.; Yue, H.L.; Wang, H.; Guo, L. Tellurium: A high-volumetric-capacity potassium-ion battery electrode material. Adv. Mater. 2020, 32, 1908027. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lu, W.; Zhao, P.; Aboonasr Shiraz, M.H.; Manaig, D.; Freschi, D.J.; Liu, Y.; Liu, J. A durable lithium-tellurium battery: Effects of carbon pore structure and tellurium content. Carbon 2021, 173, 11–21. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Xu, Y.; Zhu, Y.; Bigio, D.; Wang, C. Lithium-tellurium batteries based on tellurium/porous carbon composite. J. Mater. Chem. A 2014, 2, 12201–12207. [Google Scholar] [CrossRef]
- Wang, J.; Du, J.; Zhao, J.; Wang, Y.; Tang, Y.; Cui, G. Unraveling H+/Zn2+ sequential conversion reactions in tellurium cathodes for rechargeable aqueous zinc batteries. J. Phys. Chem. Lett. 2021, 12, 10163–10168. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Y.; Wang, Y.; Dong, S.; Cheng, L.; Li, Y.; Wang, Z.; Trabzon, L.; Wang, H. Working aqueous Zn metal batteries at 100 °C. ACS Nano 2022, 16, 15770–15778. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Liang, Z.; Lu, Y. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 2020, 19, 1006–1011. [Google Scholar] [CrossRef] [PubMed]
- Park, M.J.; Yaghoobnejad Asl, H.; Manthiram, A. multivalent-ion versus proton insertion into battery electrodes. ACS Energy Lett. 2020, 5, 2367–2375. [Google Scholar] [CrossRef]
- Ghosh, M.; Vijayakumar, V.; Kurian, M.; Dilwale, S.; Kurungot, S. Naphthalene dianhydride organic anode for a ‘rocking-chair’ zinc-proton hybrid ion battery. Dalton Trans. 2021, 50, 4237–4243. [Google Scholar] [CrossRef]
- Peng, L.; Ren, X.; Liang, Z.; Sun, Y.; Zhao, Y.; Zhang, J.; Yao, Z.; Ren, Z.; Li, Z.; Wang, J.; et al. Reversible proton co-intercalation boosting zinc-ion adsorption and migration abilities in bismuth selenide nanoplates for advanced aqueous batteries. Energy Storage Mater. 2021, 42, 34–41. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Y.; Hu, J.; Wang, X.; Zhu, J.; Niu, C.; Han, C.; Mai, L. Universal multifunctional hydrogen bond network construction strategy for enhanced aqueous Zn2+/proton hybrid batteries. Nano Energy 2022, 100, 107539. [Google Scholar] [CrossRef]
Cathodes for Systems | Electrolytes | Full Batteries | Energy Densities (Wh kg−1) | Ref. | ||
---|---|---|---|---|---|---|
Rate Performance (mAh g−1/ mA g−1) | Discharge Plateau (V/mA g−1) | Cycling Performance (mAh g−1/cycles/mA g−1) | ||||
KB-S for AZSBs | 1 M ZnCl2 | 1668/50 >1500/1000 | 0.7/50 | Primary battery | 1083.3 | [80] |
CMK-3@S for AZSBs | 3 M Zn(OTF)2 | 699/200 415/1000 | 0.24/200 | 270/100/1000 | -- | [64] |
S@CB for AZSBs | 0.5 M ZnCl2 + 0.5 M LiCl in DES | 846/500 (with 10% AN additive) 569.3/500, 122.6/4000 (with 5% AN additive) | ~0.7/500 | 126.1/400/1000 (with 5% AN additive) | 259 | [83] |
S@CNTs-50 for AZSBs | 1 M Zn(AC)2 + PEG additive | 1116/100 774/1000 | ~0.8 /100 | 645/300/1000 | -- | [63] |
S/AC for AZSBs | Catholyte: 0.5 M CuSO4 Anolyte: 0.5 M ZnSO4 | 2000/50 | 1.15/50 | >1500/110/1000 | 547 | [67] |
S@C for AZSBs | Catholyte: Gelatin/CuSO4 Anolyte: Gelatin/ZnSO4 | 2063/100 938/2000 | ~1.2/100 | 1442/100/500 | 2372 | [62] |
S@C for AZSBs | Catholyte: PAM/CuSO4 Anolyte: PAM/ZnSO4 | 48 mAh cm−2 /9.6 mg cm−2 cathode loading | Step 1: 1.15 Step 2: 1.05 (1 mA cm−2) | 6 mAh cm−2/100 /1 mA cm−2 | 47.6 mWh cm−2 | [84] |
S@CNTs-50 for AZSBs | 1 M Zn(AC)2 + 0.05 wt% I2 | 1105/100 407/4000 | 0.5/100 | 302/225/1000 | 502 | [74] |
HCS/S-53.7 for AZSBs | Zn(OTF)2/G4/I2 | 1140/500 472/5000 | ~0.5/500 | 349/600/4000 | -- | [73] |
S@Fe-PANi for AZSBs | PVA/ZnSO4 | 1205/200 705/2000 | 0.58/200 | 604/500/2000 | 720 | [61] |
LF-PLSD for AZSBs | 1 M Zn(TFSI)2 | 1148/300 489/500 | 0.9–1.5/300 | 235/700/1000 247/900/1000 (quasi-solid) | 724.7 | [89] |
ZnS@CF for AZSBs | 3 M ZnSO4 + 1 wt% TUI | 465/100 390/2000 | 0.59/100 | 226/300/2000 | 274 | [90] |
Se/CMK-3 for AZSeBs | 1 M Zn(TFSI)2 in EMC 2M Zn(TFSI)2 in water + PEG | 551/100, 282/5000 611/100, 315/5000 | ~1.2/100 0.94 V/(Ah g−1) ~1.25/100 0.61 V/(Ah g−1) | 334/500/1000 365/1000/1000 | 581 751 | [65] |
Se@C for AZSeBs | Catholyte: 0.5 M CuSO4 Anolyte: 0.5 M ZnSO4 | ~900/500 ~900/6000 | 1.2/500 | ~900 (~100%)/400/2000 | 1500 mWh g−1 | [68] |
Se-in-Cu[Co(CN)6] for AZSeBs | 4 M Zn(OTf)2/ PEO | 664.7/200 430.6/10,000 | ~1.2/200 | ~500(90.6%)/6000/5000 | 728.9 | [97] |
TP-Se for AZSeBs | 1 M Zn(OTf)2 + AN | 317/500 138/30,000 | 1.96/500 | 211/4300/2000 | 621.3 | [69] |
SeS5.76@3D-NPCF for AZSeBs | 3 M ZnSO4 + 0.1 wt% I2 | 1222/200 713/5000 | 0.71/200 | 527/500/4000 | 867.6 | [98] |
Te nanosheets for AZTeBs | 1 M ZnSO4 | 2619 mAh cm−3/50 1185 mAh cm−3/5000 | Step 1: 0.59/50 Step 2: 0.48/50 | 1546 mAh cm−3/500/1000 | 1504 Wh L−1 | [66] |
Te for AZTeBs | 1 M ZnSO4 | 460/50 | ~0.6/50 | 162/50/50 | -- | [104] |
Te-G-CNT for AZTeBs | Zn(OTf)2-H2O/PD | 386.4/212 | ~0.5/212 | 195.7/100/850 (100 °C) | -- | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Liu, Y. Aqueous Zinc–Chalcogen Batteries: Emerging Conversion-Type Energy Storage Systems. Batteries 2023, 9, 62. https://doi.org/10.3390/batteries9010062
Zhang L, Liu Y. Aqueous Zinc–Chalcogen Batteries: Emerging Conversion-Type Energy Storage Systems. Batteries. 2023; 9(1):62. https://doi.org/10.3390/batteries9010062
Chicago/Turabian StyleZhang, Long, and Yongchang Liu. 2023. "Aqueous Zinc–Chalcogen Batteries: Emerging Conversion-Type Energy Storage Systems" Batteries 9, no. 1: 62. https://doi.org/10.3390/batteries9010062
APA StyleZhang, L., & Liu, Y. (2023). Aqueous Zinc–Chalcogen Batteries: Emerging Conversion-Type Energy Storage Systems. Batteries, 9(1), 62. https://doi.org/10.3390/batteries9010062