Phenazine-Based Compound as a Universal Water-Soluble Anolyte Material for the Redox Flow Batteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Characterization
2.2. Synthesis of Phenazine-2,3-diol (1) [54]
2.3. Synthesis of 3,3’-(Phenazine-2,3-diylbis(oxy))bis(N,N,N-trimethylpropan-1-aminium) bromide (M1)
2.4. Solubility Experiments
2.5. Solutions pH Measurements
2.6. Melting Point Determination
2.7. Density Functional Theory Calculations
2.8. CV Measurements
2.9. RDE Experiments
2.10. Impedance Measurements
2.11. Membrane Pretreatment
2.12. Membrane Conductivity Measurements
2.13. H-Cell Tests
2.14. Redox Flow Battery Tests
3. Results and Discussion
3.1. Synthesis and Characterization of M1
3.2. Cyclic Voltammetry and Rotating Disk Electrode Measurements
3.3. Pourbaix Diagrams
3.4. Investigation of M1 in Neutral Conditions
3.5. Investigation of M1 in Basic Conditions
3.6. Investigation of M1 in Acidic Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Department of Energy. Energy Storage Grand Challenge Energy Storage Market Report 2020; U.S. Department of Energy: Washington, DC, USA, 2020. [Google Scholar]
- Maddukuri, S.; Malka, D.; Chae, M.S.; Elias, Y.; Luski, S.; Aurbach, D. On the Challenge of Large Energy Storage by Electrochemical Devices. Electrochim. Acta 2020, 354, 136771. [Google Scholar] [CrossRef]
- Florin, N.; Dominish, E. Sustainability Evaluation of Energy Storage Technologies. 2017. Available online: https://acola.org/wp-content/uploads/2018/08/wp3-sustainability-evaluation-energy-storage-full-report.pdf (accessed on 28 October 2022).
- Zhen, Y.; Li, Y. Redox Flow Battery. Stud. Surf. Sci. Catal. 2019, 179, 385–413. [Google Scholar] [CrossRef]
- Arenas, L.F.; Ponce de León, C.; Walsh, F.C. Redox Flow Batteries for Energy Storage: Their Promise, Achievements and Challenges. Curr. Opin. Electrochem. 2019, 16, 117–126. [Google Scholar] [CrossRef]
- Holland-Cunz, M.V.; Cording, F.; Friedl, J.; Stimming, U. Redox Flow Batteries—Concepts and Chemistries for Cost-Effective Energy Storage. Front. Energy 2018, 12, 198–224. [Google Scholar] [CrossRef] [Green Version]
- LIVE. Vanadium Price, News and Articles. Available online: https://www.vanadiumprice.com/ (accessed on 28 October 2022).
- Zeng, Y.K.; Zhao, T.S.; An, L.; Zhou, X.L.; Wei, L. A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage. J. Power Sources 2015, 300, 438–443. [Google Scholar] [CrossRef]
- Zhong, F.; Yang, M.; Ding, M.; Jia, C. Organic Electroactive Molecule-Based Electrolytes for Redox Flow Batteries: Status and Challenges of Molecular Design. Front. Chem. 2020, 8, 451. [Google Scholar] [CrossRef]
- Chen, R. Redox Flow Batteries for Energy Storage: Recent Advances in Using Organic Active Materials. Curr. Opin. Electrochem. 2020, 21, 40–45. [Google Scholar] [CrossRef]
- Winsberg, J.; Hagemann, T.; Janoschka, T.; Hager, M.D.; Schubert, U.S. Redox-Flow Batteries: From Metals to Organic Redox-Active Materials. Angew. Chem. Int. Ed. 2017, 56, 686–711. [Google Scholar] [CrossRef]
- Kowalski, J.A.; Casselman, M.D.; Kaur, A.P.; Milshtein, J.D.; Elliott, C.F.; Modekrutti, S.; Attanayake, N.H.; Zhang, N.; Parkin, S.R.; Risko, C.; et al. A Stable Two-Electron-Donating Phenothiazine for Application in Nonaqueous Redox Flow Batteries. J. Mater. Chem. A 2017, 5, 24371–24379. [Google Scholar] [CrossRef]
- Sevov, C.S.; Brooner, R.E.M.; Chénard, E.; Assary, R.S.; Moore, J.S.; Rodríguez-López, J.; Sanford, M.S. Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries. J. Am. Chem. Soc. 2015, 137, 14465–14472. [Google Scholar] [CrossRef]
- Lai, Y.Y.; Li, X.; Liu, K.; Tung, W.Y.; Cheng, C.F.; Zhu, Y. Stable Low-Cost Organic Dye Anolyte for Aqueous Organic Redox Flow Battery. ACS Appl. Energy Mater. 2020, 3, 2290–2295. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Zuo, P.; Chen, Q.; Tang, G.; Sun, P.; Yang, Z.; Xu, T. Screening Viologen Derivatives for Neutral Aqueous Organic Redox Flow Batteries. ChemSusChem 2020, 13, 2245–2249. [Google Scholar] [CrossRef] [PubMed]
- Romadina, E.I.; Volodin, I.A.; Stevenson, K.J.; Troshin, P.A. New Highly Soluble Triarylamine-Based Materials as Promising Catholytes for Redox Flow Batteries. J. Mater. Chem. A 2021, 9, 8303–8307. [Google Scholar] [CrossRef]
- Hagemann, T.; Winsberg, J.; Wild, A.; Schubert, U.S. Synthesis and Electrochemical Study of a TCAA Derivative–A Potential Bipolar Redox-Active Material. Electrochim. Acta 2017, 228, 494–502. [Google Scholar] [CrossRef]
- Gerhardt, M.R.; Beh, E.S.; Tong, L.; Gordon, R.G.; Aziz, M.J.; John, H.; Paulson, A. Comparison of Capacity Retention Rates During Cycling of Quinone-Bromide Flow Batteries. MRS Adv. 2017, 2, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Wedege, K.; Dražević, E.; Konya, D.; Bentien, A. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility. Sci. Rep. 2016, 6, 39101. [Google Scholar] [CrossRef] [Green Version]
- Kwabi, D.G.; Lin, K.; Ji, Y.; Kerr, E.F.; Goulet, M.A.; De Porcellinis, D.; Tabor, D.P.; Pollack, D.A.; Aspuru-Guzik, A.; Gordon, R.G.; et al. Alkaline Quinone Flow Battery with Long Lifetime at PH 12. Joule 2018, 2, 1894–1906. [Google Scholar] [CrossRef]
- Jin, S.; Jing, Y.; Kwabi, D.G.; Ji, Y.; Tong, L.; De Porcellinis, D.; Goulet, M.A.; Pollack, D.A.; Gordon, R.G.; Aziz, M.J. A Water-Miscible Quinone Flow Battery with High Volumetric Capacity and Energy Density. ACS Energy Lett. 2019, 4, 1342–1348. [Google Scholar] [CrossRef]
- Xing, X.; Liu, Q.; Xu, W.; Liang, W.; Liu, J.; Wang, B.; Lemmon, J.P. All-Liquid Electroactive Materials for High Energy Density Organic Flow Battery. ACS Appl. Energy Mater. 2019, 2, 2364–2369. [Google Scholar] [CrossRef]
- Debruler, C.; Hu, B.; Moss, J.; Luo, J.; Liu, T.L. A Sulfonate-Functionalized Viologen Enabling Neutral Cation Exchange, Aqueous Organic Redox Flow Batteries toward Renewable Energy Storage. ACS Energy Lett. 2018, 3, 663–668. [Google Scholar] [CrossRef]
- Hu, B.; Tang, Y.; Luo, J.; Grove, G.; Guo, Y.; Liu, T.L. Improved Radical Stability of Viologen Anolytes in Aqueous Organic Redox Flow Batteries. Chem. Commun. 2018, 54, 6871–6874. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, A.; Hendriks, K.H.; Sigman, M.S.; Minteer, S.D.; Sanford, M.S. Realization of an Asymmetric Non-Aqueous Redox Flow Battery through Molecular Design to Minimize Active Species Crossover and Decomposition. Chem. A Eur. J. 2020, 26, 5369–5373. [Google Scholar] [CrossRef] [PubMed]
- Antoni, P.W.; Bruckhoff, T.; Hansmann, M.M. Organic Redox Systems Based on Pyridinium-Carbene Hybrids. J. Am. Chem. Soc. 2019, 141, 9701–9711. [Google Scholar] [CrossRef] [PubMed]
- Baran, M.J.; Braten, M.N.; Montoto, E.C.; Gossage, Z.T.; Ma, L.; Chénard, E.; Moore, J.S.; Rodríguez-López, J.; Helms, B.A. Designing Redox-Active Oligomers for Crossover-Free, Nonaqueous Redox-Flow Batteries with High Volumetric Energy Density. Chem. Mater. 2018, 30, 3861–3866. [Google Scholar] [CrossRef]
- Hendriks, K.H.; Robinson, S.G.; Braten, M.N.; Sevov, C.S.; Helms, B.A.; Sigman, M.S.; Minteer, S.D.; Sanford, M.S. High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries. ACS Cent. Sci. 2018, 4, 189–196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goulet, M.A.; Tong, L.; Pollack, D.A.; Tabor, D.P.; Odom, S.A.; Aspuru-Guzik, A.; Kwan, E.E.; Gordon, R.G.; Aziz, M.J. Extending the Lifetime of Organic Flow Batteries via Redox State Management. J. Am. Chem. Soc. 2020, 141, 8014–8019. [Google Scholar] [CrossRef]
- Burgess, M.; Chénard, E.; Hernández-Burgos, K.; Nagarjuna, G.; Assary, R.S.; Hui, J.; Moore, J.S.; Rodríguez-López, J. Impact of Backbone Tether Length and Structure on the Electrochemical Performance of Viologen Redox Active Polymers. Chem. Mater. 2016, 28, 7362–7374. [Google Scholar] [CrossRef]
- Yan, Y.; Robinson, S.G.; Sigman, M.S.; Sanford, M.S. Mechanism-Based Design of a High-Potential Catholyte Enables a 3.2 V All-Organic Nonaqueous Redox Flow Battery. J. Am. Chem. Soc. 2019, 141, 15301–15306. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Goulet, M.A.; Tong, L.; Liu, Y.Y.; Ji, Y.; Wu, L.; Gordon, R.G.; Aziz, M.J.; Yang, Z.; Xu, T. A Long-Lifetime All-Organic Aqueous Flow Battery Utilizing TMAP-TEMPO Radical. Chem 2019, 5, 1861–1870. [Google Scholar] [CrossRef]
- Chai, J.; Wang, X.; Lashgari, A.; Williams, C.K.; Jiang, J. A Ph-Neutral, Aqueous Redox Flow Battery with a 3600-Cycle Lifetime: Micellization-Enabled High Stability and Crossover Suppression. ChemSusChem 2020, 13, 4069–4077. [Google Scholar] [CrossRef]
- Lee, W.; Park, G.; Kwon, Y. Alkaline Aqueous Organic Redox Flow Batteries of High Energy and Power Densities Using Mixed Naphthoquinone Derivatives. Chem. Eng. J. 2020, 386, 123985. [Google Scholar] [CrossRef]
- Geysens, P.; Li, Y.; Vankelecom, I.; Fransaer, J.; Binnemans, K. Highly Soluble 1,4-Diaminoanthraquinone Derivative for Nonaqueous Symmetric Redox Flow Batteries. ACS Sustain. Chem. Eng. 2020, 8, 3832–3843. [Google Scholar] [CrossRef]
- Chai, J.; Lashgari, A.; Wang, X.; Williams, C.K.; Jiang, J. All-PEGylated Redox-Active Metal-Free Organic Molecules in Non-Aqueous Redox Flow Battery. J. Mater. Chem. A 2020, 8, 15715–15724. [Google Scholar] [CrossRef]
- Chai, J.; Lashgari, A.; Cao, Z.; Williams, C.K.; Wang, X.; Dong, J.; Jiang, J. PEGylation-Enabled Extended Cyclability of a Non-Aqueous Redox Flow Battery. ACS Appl. Mater. Interfaces 2020, 12, 15262–15270. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Wu, W.; Debruler, C.; Hu, B.; Hu, M.; Liu, T.L. A 1.51 v PH Neutral Redox Flow Battery towards Scalable Energy Storage. J. Mater. Chem. A 2019, 7, 9130–9136. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, M.; Ma, T.; Liu, J.; Zhang, Q.; Tao, Z.; Liang, J. A Symmetric Aqueous Redox Flow Battery Based on Viologen Derivative. Chinese Chem. Lett. 2019, 31, 1690–1693. [Google Scholar] [CrossRef]
- Zhu, Y.; Yang, F.; Niu, Z.; Wu, H.; He, Y.; Zhu, H.; Ye, J.; Zhao, Y.; Zhang, X. Enhanced Cyclability of Organic Redox Flow Batteries Enabled by an Artificial Bipolar Molecule in Neutral Aqueous Electrolyte. J. Power Sources 2019, 417, 83–89. [Google Scholar] [CrossRef]
- Huang, Z.; Kay, C.W.M.; Kuttich, B.; Rauber, D.; Kraus, T.; Li, H.; Kim, S.; Chen, R. An “Interaction-Mediating” Strategy towards Enhanced Solubility and Redox Properties of Organics for Aqueous Flow Batteries. Nano Energy 2020, 69, 104464. [Google Scholar] [CrossRef]
- Hu, P.; Lan, H.; Wang, X.; Yang, Y.; Liu, X.; Wang, H.; Guo, L. Renewable-Lawsone-Based Sustainable and High-Voltage Aqueous Flow Battery. Energy Storage Mater. 2019, 19, 62–68. [Google Scholar] [CrossRef]
- Ok, B.; Na, W.; Kwon, T.H.; Kwon, Y.W.; Cho, S.; Hong, S.M.; Lee, A.S.; Lee, J.H.; Koo, C.M. Understanding the Enhanced Electrochemical Performance of TEMPO Derivatives in Non-Aqueous Lithium Ion Redox Flow Batteries. J. Ind. Eng. Chem. 2019, 80, 545–550. [Google Scholar] [CrossRef]
- Chang, Z.; Henkensmeier, D.; Chen, R. Shifting Redox Potential of Nitroxyl Radical by Introducing an Imidazolium Substituent and Its Use in Aqueous Flow Batteries. J. Power Sources 2019, 418, 11–16. [Google Scholar] [CrossRef]
- Kosswattaarachchi, A.M.; Cook, T.R. Concentration-Dependent Charge-Discharge Characteristics of Non-Aqueous Redox Flow Battery Electrolyte Combinations. Electrochim. Acta 2018, 261, 296–306. [Google Scholar] [CrossRef]
- Lin, K.; Gómez-Bombarelli, R.; Beh, E.S.; Tong, L.; Chen, Q.; Valle, A.; Aspuru-Guzik, A.; Aziz, M.J.; Gordon, R.G. A Redox-Flow Battery with an Alloxazine-Based Organic Electrolyte. Nat. Energy 2016, 1, 16102. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.; Kwon, B.W.; Lee, W.; Kwon, Y. Effect of Temperature on the Performance of Aqueous Redox Flow Battery Using Carboxylic Acid Functionalized Alloxazine and Ferrocyanide Redox Couple. Korean J. Chem. Eng. 2019, 36, 1732–1739. [Google Scholar] [CrossRef]
- Chang, D.R.; Kim, Y.; Jung, S. Comprehensive Study of the Performance of Alkaline Organic Redox Flow Batteries as Large-Scale Energy Storage Systems. Int. J. Energy Res. 2019, 43, 4449–4458. [Google Scholar] [CrossRef]
- Xu, J.; Pang, S.; Wang, X.; Wang, P.; Ji, Y. Ultrastable Aqueous Phenazine Flow Batteries with High Capacity Operated at Elevated Temperatures. Joule 2021, 5, 2437–2449. [Google Scholar] [CrossRef]
- Hollas, A.; Wei, X.; Murugesan, V.; Nie, Z.; Li, B.; Reed, D.; Liu, J.; Sprenkle, V.; Wang, W. A Biomimetic High-Capacity Phenazine-Based Anolyte for Aqueous Organic Redox Flow Batteries. Nat. Energy 2018, 3, 508–514. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Yu, B.; Wang, Y.; Yang, Z.; Wang, H.; Lin, H.; Ma, J.; Li, G.; Jin, Z. Molecular Design of Fused-Ring Phenazine Derivatives for Long-Cycling Alkaline Redox Flow Batteries. ACS Energy Lett. 2020, 5, 411–417. [Google Scholar] [CrossRef]
- Pang, S.; Wang, X.; Wang, P.; Ji, Y. Biomimetic Amino Acid Functionalized Phenazine Flow Batteries with Long Lifetime at Near-Neutral PH. Angew. Chem. Int. Ed. 2021, 60, 5289–5298. [Google Scholar] [CrossRef]
- Winsberg, J.; Stolze, C.; Muench, S.; Liedl, F.; Hager, M.D.; Schubert, U.S. TEMPO/Phenazine Combi-Molecule: A Redox-Active Material for Symmetric Aqueous Redox-Flow Batteries. ACS Energy Lett. 2016, 1, 976–980. [Google Scholar] [CrossRef]
- Romadina, E.I.; Komarov, D.S.; Stevenson, K.J.; Troshin, P.A. New Phenazine Based Anolyte Material for High Voltage Organic Redox Flow Batteries. Chem. Commun. 2021, 57, 2986–2989. [Google Scholar] [CrossRef] [PubMed]
- Hagemann, T.; Strumpf, M.; Schröter, E.; Stolze, C.; Grube, M.; Nischang, I.; Hager, M.D.; Schubert, U.S. (2,2,6,6-Tetramethylpiperidin-1-Yl)Oxyl-Containing Zwitterionic Polymer as Catholyte Species for High-Capacity Aqueous Polymer Redox Flow Batteries. Chem. Mater. 2019, 31, 7987–7999. [Google Scholar] [CrossRef]
- Wiberg, C.; Owusu, F.; Wang, E.; Ahlberg, E. Electrochemical Evaluation of a Napthalene Diimide Derivative for Potential Application in Aqueous Organic Redox Flow Batteries. Energy Technol. 2019, 7, 1900843. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Li, Y.; Qian, Y.; Zhang, L.; Ye, J.; Zhang, X.; Zhao, Y. Anthraquinone-Based Anode Material for Aqueous Redox Flow Batteries Operating in Nondemanding Atmosphere. J. Power Sources 2021, 501, 229984. [Google Scholar] [CrossRef]
- Rhodes, Z.; Simoska, O.; Dantanarayana, A.; Stevenson, K.; Minteer, S. Using structure-function relationships to understand the mechanism of phenazine-mediated extracellular electron transfer in Escherichia coli. iScience 2021, 24, 103033. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H.; et al. J. Gaussian 16 Rev. C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Wang, H.; Sayed, S.Y.; Luber, E.J.; Olsen, B.C.; Shirurkar, S.M.; Venkatakrishnan, S.; Tefashe, U.M.; Farquhar, A.K.; Smotkin, E.S.; McCreery, R.L.; et al. Redox Flow Batteries: How to Determine Electrochemical Kinetic Parameters. ACS Nano 2020, 14, 2575–2584. [Google Scholar] [CrossRef]
- Jiang, B.; Yu, L.; Wu, L.; Mu, D.; Liu, L.; Xi, J.; Qiu, X. Insights into the Impact of the Nafion Membrane Pretreatment Process on Vanadium Flow Battery Performance. ACS Appl. Mater. Interfaces 2016, 8, 12228–12238. [Google Scholar] [CrossRef]
- Tong, L.; Goulet, M.A.; Tabor, D.P.; Kerr, E.F.; De Porcellinis, D.; Fell, E.M.; Aspuru-Guzik, A.; Gordon, R.G.; Aziz, M.J. Molecular Engineering of an Alkaline Naphthoquinone Flow Battery. ACS Energy Lett. 2019, 4, 1880–1887. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, S.; Chen, S.; Wang, H.; Zhang, J.; Xiang, Y. A Sustainable Redox Flow Battery with Alizarin-Based Aqueous Organic Electrolyte. ACS Appl. Energy Mater. 2019, 2, 2469–2474. [Google Scholar] [CrossRef]
- Guiheneuf, S.; Lê, A.; Godet-Bar, T.; Chancelier, L.; Fontmorin, J.M.; Floner, D.; Geneste, F. Behaviour of 3,4-Dihydroxy-9,10-Anthraquinone-2-Sulfonic Acid in Alkaline Medium: Towards a Long-Cycling Aqueous Organic Redox Flow Battery. ChemElectroChem 2021, 8, 2526–2533. [Google Scholar] [CrossRef]
- Wang, C.; Yang, Z.; Wang, Y.; Zhao, P.; Yan, W.; Zhu, G.; Ma, L.; Yu, B.; Wang, L.; Li, G.; et al. High-Performance Alkaline Organic Redox Flow Batteries Based on 2-Hydroxy-3-Carboxy-1,4-Naphthoquinone. ACS Energy Lett. 2018, 3, 2404–2409. [Google Scholar] [CrossRef]
- Mirle, C.; Medabalmi, V.; Ramanujam, K. Crossover-Free Hydroxy-Substituted Quinone Anolyte and Potassium Ferrocyanide Catholyte for Aqueous Alkaline Organic Redox Flow Battery. Catal. Today 2021, 370, 173–180. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, Y.; Zhu, Y.; Shen, Y.M.; Wang, W.; Chen, Z.; Cao, J.; Xu, J. Redox-Active Poly(6-(1H-Pyrrol-1-Yl)Quinoxaline) as a Novel Organic Anode Material for Aqueous Hybrid Flow Batteries. J. Power Sources 2020, 451, 9227788. [Google Scholar] [CrossRef]
- Luo, J.; Sam, A.; Hu, B.; DeBruler, C.; Wei, X.; Wang, W.; Liu, T.L. Unraveling PH Dependent Cycling Stability of Ferricyanide/Ferrocyanide in Redox Flow Batteries. Nano Energy 2017, 42, 215–221. [Google Scholar] [CrossRef]
- Cunha, Á.; Martins, J.; Rodrigues, N.; Brito, F.P. Vanadium redox flow batteries: A technology review. Int. J. Energy Res. 2015, 39, 889–918. [Google Scholar] [CrossRef]
- Roe, S.; Menictas, C.; Skyllas-Kazacos, M. A High Energy Density Vanadium Redox Flow Battery with 3 M Vanadium Electrolyte. J. Electrochem. Soc. 2016, 163, A5023–A5028. [Google Scholar] [CrossRef]
- Lourenssen, K.; Williams, J.; Ahmadpour, F.; Clemmer, R.; Tasnim, S. Vanadium Redox Flow Batteries: A Comprehensive Review. J. Energy Storage 2019, 25, 100844. [Google Scholar] [CrossRef]
- Phenazine|C12H8N2—PubChem. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Phenazine (accessed on 28 October 2022).
- Hong, J.; Kim, K. Neutral Red and Ferroin as Reversible and Rapid Redox Materials for Redox Flow Batteries. ChemSusChem 2018, 11, 1866–1872. [Google Scholar] [CrossRef]
- Wellala, N.; Hollas, A.; Duanmu, K.; Murugesan, V.; Zhang, X.; Feng, R.; Shao, Y.; Wang, W. Decomposition pathways and mitigation strategies for highly-stable hydroxyphenazine flow battery anolytes. J. Mater. Chem. A 2021, 9, 21918–21928. [Google Scholar] [CrossRef]
- Safety Data Sheet Potassium Hydroxide, 0.5N (0.5M). According to Federal Register. Vol. 77, No. 58/Monday, 26 March 2012. Rules and Regulations. Available online: https://www.labchem.com/tools/msds/msds/LC19520.pdf (accessed on 28 October 2022).
- Rhodes, F.; Barbour, C. The Viscosities of Mixtures of Sulfuric Acid and Water. Ind. Eng. Chem. 1923, 15, 850–852. [Google Scholar] [CrossRef]
M1 | 1.0 M KOH | 1.0 M NaCl | 1.0 M H2SO4 |
Solubility, M | 0.56 | 0.70 | 1.30 |
E1/2 a, V | −0.85 | −0.67 | +0.05 (1st electron) −0.26 (2nd electron) |
Cycling stability b | Stable | Stable | Stable |
Kinetic rate constant(s) c, cm s−1 | 5.16 × 10−4 ± 8 × 10−7 | 2.59 × 10−4 ± 1 × 10−7 | - |
M1 | 0.5 M KOH | 0.5 M NaCl | 0.5 M H2SO4 |
Diffusion coefficient(s) d, cm2 s−1 c | 1.94 × 10−6 ± 3 × 10−9 | 9.64 × 10−7 ± 6 × 10−9 | 1st electron reduction 2.09 × 10−6 ± 5 × 10−10 2nd electron reduction 5.66 × 10−6 ± 1 × 10−9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romadina, E.I.; Akkuratov, A.V.; Simoska, O.; Stevenson, K.J. Phenazine-Based Compound as a Universal Water-Soluble Anolyte Material for the Redox Flow Batteries. Batteries 2022, 8, 288. https://doi.org/10.3390/batteries8120288
Romadina EI, Akkuratov AV, Simoska O, Stevenson KJ. Phenazine-Based Compound as a Universal Water-Soluble Anolyte Material for the Redox Flow Batteries. Batteries. 2022; 8(12):288. https://doi.org/10.3390/batteries8120288
Chicago/Turabian StyleRomadina, Elena I., Alexander V. Akkuratov, Olja Simoska, and Keith J. Stevenson. 2022. "Phenazine-Based Compound as a Universal Water-Soluble Anolyte Material for the Redox Flow Batteries" Batteries 8, no. 12: 288. https://doi.org/10.3390/batteries8120288