Review on Battery Packing Design Strategies for Superior Thermal Management in Electric Vehicles
Abstract
:1. Introduction
2. Challenges in Managing the Thermal Aspect of Batteries
2.1. Novel Battery Materials for Higher Energy and Power Density Demand
2.2. Limited Vehicle Compartment Space and Safety
2.3. Climate and Seasonal/Environmental Temperature
3. Recent Advancements in Research and Development of LIBs
4. Future Perspectives of BTMS Design
5. Conclusions and Recommendation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malik, M.; Dincer, I.; Rosen, M.; Fowler, M. Experimental Investigation of a New Passive Thermal Management System for a Li-Ion Battery Pack Using Phase Change Composite Material. Electrochim. Acta 2017, 257, 345–355. [Google Scholar] [CrossRef]
- Pesaran, A.A. Battery Thermal Models for Hybrid Vehicle Simulations. J. Power Sources 2002, 110, 377–382. [Google Scholar] [CrossRef]
- Petzl, M.; Kasper, M.; Danzer, M.A. Lithium Plating in a Commercial Lithium-Ion Battery—A Low-Temperature Aging Study. J. Power Sources 2015, 275, 799–807. [Google Scholar] [CrossRef]
- Tippmann, S.; Walper, D.; Balboa, L.; Spier, B.; Bessler, W.G. Low-Temperature Charging of Lithium-Ion Cells Part I: Electrochemical Modeling and Experimental Investigation of Degradation Behavior. J. Power Sources 2014, 252, 305–316. [Google Scholar] [CrossRef]
- Ma, S.; Jiang, M.; Tao, P.; Song, C.; Wu, J.; Wang, J.; Deng, T.; Shang, W. Temperature Effect and Thermal Impact in Lithium-Ion Batteries: A Review. Prog. Nat. Sci. Mater. Int. 2018, 28, 653–666. [Google Scholar] [CrossRef]
- Panchal, S.; Mathew, M.; Dincer, I.; Agelin-Chaab, M.; Fraser, R.; Fowler, M. Thermal and Electrical Performance Assessments of Lithium-Ion Battery Modules for an Electric Vehicle under Actual Drive Cycles. Electric. Power Syst. Res. 2018, 163, 18–27. [Google Scholar] [CrossRef]
- Jiaqiang, E.; Yue, M.; Chen, J.; Zhu, H.; Deng, Y.; Zhu, Y.; Zhang, F.; Wen, M.; Zhang, B.; Kang, S. Effects of the Different Air Cooling Strategies on Cooling Performance of a Lithium-Ion Battery Module with Baffle. Appl. Therm. Eng. 2018, 144, 231–241. [Google Scholar] [CrossRef]
- Onda, K.; Ohshima, T.; Nakayama, M.; Fukuda, K.; Araki, T. Thermal Behavior of Small Lithium-Ion Battery during Rapid Charge and Discharge Cycles. J. Power Sources 2006, 158, 535–542. [Google Scholar] [CrossRef]
- al Hallaj, S.; Prakash, J.; Selman, J.R. Characterization of Commercial Li-Ion Batteries Using Electrochemical-Calorimetric Measurements. J. Power Sources 2000, 87, 186–194. [Google Scholar] [CrossRef]
- Wu, W.; Wang, S.; Wu, W.; Chen, K.; Hong, S.; Lai, Y. A Critical Review of Battery Thermal Performance and Liquid Based Battery Thermal Management. Energy Convers. Manag. 2019, 182, 262–281. [Google Scholar] [CrossRef]
- Liu, H.; Wei, Z.; He, W.; Zhao, J. Thermal Issues about Li-Ion Batteries and Recent Progress in Battery Thermal Management Systems: A Review. Energy Convers. Manag. 2017, 150, 304–330. [Google Scholar] [CrossRef]
- Jaguemont, J.; Boulon, L.; Dubé, Y. A Comprehensive Review of Lithium-Ion Batteries Used in Hybrid and Electric Vehicles at Cold Temperatures. Appl. Energy 2016, 164, 99–114. [Google Scholar] [CrossRef]
- He, L.; Tang, X.; Luo, Q.; Liao, Y.; Luo, X.; Liu, J.; Ma, L.; Dong, D.; Gan, Y.; Li, Y. Structure Optimization of a Heat Pipe-Cooling Battery Thermal Management System Based on Fuzzy Grey Relational Analysis. Int. J. Heat Mass Transf. 2022, 182. [Google Scholar] [CrossRef]
- Jouhara, H.; Serey, N.; Khordehgah, N.; Bennett, R.; Almahmoud, S.; Lester, S.P. Investigation, Development and Experimental Analyses of a Heat Pipe Based Battery Thermal Management System. Int. J. 2020, 1, 100004. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, X.; Chen, K.; Zhou, D.; Song, M. Experimental and Numerical Studies on an Efficient Transient Heat Transfer Model for Air-Cooled Battery Thermal Management Systems. J. Power Sources 2021, 490, 229539. [Google Scholar] [CrossRef]
- Zhao, J.; Rao, Z.; Huo, Y.; Liu, X.; Li, Y. Thermal Management of Cylindrical Power Battery Module for Extending the Life of New Energy Electric Vehicles. Appl. Therm. Eng. 2015, 85, 33–43. [Google Scholar] [CrossRef]
- Kang, D.; Lee, P.-Y.; Yoo, K.; Kim, J. Internal Thermal Network Model-Based Inner Temperature Distribution of High-Power Lithium-Ion Battery Packs with Different Shapes for Thermal Management. J. Energy Storage 2020, 27, 101017. [Google Scholar] [CrossRef]
- Tang, Z.; Zhao, Z.; Yin, C.; Cheng, J. Orthogonal Optimization of a Liquid Cooling Structure with Straight Microtubes and Variable Heat Conduction Blocks for Battery Module. J. Energy Eng. 2022, 148, 04022017. [Google Scholar] [CrossRef]
- Chen, J.; Kang, S.; Jiaqiang, E.; Huang, Z.; Wei, K.; Zhang, B.; Zhu, H.; Deng, Y.; Zhang, F.; Liao, G. Effects of Different Phase Change Material Thermal Management Strategies on the Cooling Performance of the Power Lithium Ion Batteries: A Review. J. Power Sources 2019, 442, 227228. [Google Scholar] [CrossRef]
- Gan, Y.; He, L.; Liang, J.; Tan, M.; Xiong, T.; Li, Y. A Numerical Study on the Performance of a Thermal Management System for a Battery Pack with Cylindrical Cells Based on Heat Pipes. Appl. Therm. Eng. 2020, 179, 115740. [Google Scholar] [CrossRef]
- Widyantara, R.D.; Naufal, M.A.; Sambegoro, P.L.; Nurprasetio, I.P.; Triawan, F.; Djamari, D.W.; Nandiyanto, A.B.D.; Budiman, B.A.; Aziz, M. Low-Cost Air-Cooling System Optimization on Battery Pack of Electric Vehicle. Energies 2021, 14, 7954. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, X.; Negnevitsky, M.; Zhang, H.; Li, C. Performance Improvement of a Novel Trapezoid Air-Cooling Battery Thermal Management System for Electric Vehicles. Sustainability 2022, 14, 4975. [Google Scholar] [CrossRef]
- Chen, K.; Chen, Y.; She, Y.; Song, M.; Wang, S.; Chen, L. Construction of Effective Symmetrical Air-Cooled System for Battery Thermal Management. Appl. Therm. Eng. 2020, 166, 114679. [Google Scholar] [CrossRef]
- Gao, R.; Fan, Z.; Liu, S. A Gradient Channel-Based Novel Design of Liquid-Cooled Battery Thermal Management System for Thermal Uniformity Improvement. J. Energy Storage 2022, 48, 104014. [Google Scholar] [CrossRef]
- Wang, H.; Tao, T.; Xu, J.; Mei, X.; Liu, X.; Gou, P. Cooling Capacity of a Novel Modular Liquid-Cooled Battery Thermal Management System for Cylindrical Lithium Ion Batteries. Appl. Therm. Eng. 2020, 178, 115591. [Google Scholar] [CrossRef]
- Huang, R.; Li, Z.; Hong, W.; Wu, Q.; Yu, X. Experimental and Numerical Study of PCM Thermophysical Parameters on Lithium-Ion Battery Thermal Management. Energy Rep. 2020, 6, 8–19. [Google Scholar] [CrossRef]
- Heyhat, M.M.; Mousavi, S.; Siavashi, M. Battery Thermal Management with Thermal Energy Storage Composites of PCM, Metal Foam, Fin and Nanoparticle. J. Energy Storage 2020, 28, 101235. [Google Scholar] [CrossRef]
- Subramanian, M.; Hoang, A.T.; Kalidasan, B.; Nižetić, S.; Solomon, J.M.; Balasubramanian, D.; Subramaniyan, C.; Thenmozhi, G.; Metghalchi, H.; Nguyen, X.P. A Technical Review on Composite Phase Change Material Based Secondary Assisted Battery Thermal Management System for Electric Vehicles. J. Clean. Prod. 2021, 322, 129079. [Google Scholar] [CrossRef]
- Lazrak, A.; Fourmigué, J.F.; Robin, J.F. An Innovative Practical Battery Thermal Management System Based on Phase Change Materials: Numerical and Experimental Investigations. Appl. Therm. Eng. 2018, 128, 20–32. [Google Scholar] [CrossRef]
- Yang, W.; Zhou, F.; Zhou, H.; Wang, Q.; Kong, J. Thermal Performance of Cylindrical Lithium-Ion Battery Thermal Management System Integrated with Mini-Channel Liquid Cooling and Air Cooling. Appl. Therm. Eng. 2020, 175, 15331. [Google Scholar] [CrossRef]
- Jang, D.S.; Yun, S.; Hong, S.H.; Cho, W.; Kim, Y. Performance Characteristics of a Novel Heat Pipe-Assisted Liquid Cooling System for the Thermal Management of Lithium-Ion Batteries. Energy Convers. Manag. 2022, 251, 115001. [Google Scholar] [CrossRef]
- Zhou, H.; Dai, C.; Liu, Y.; Fu, X.; Du, Y. Experimental investigation of battery thermal management and safety with heat pipe and immersion phase change liquid. J. Power Sources 2020, 473, 228545. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, C.Y. Heating Strategies for Li-Ion Batteries Operated from Subzero Temperatures. Electrochim. Acta 2013, 107, 664–674. [Google Scholar] [CrossRef]
- Wang, Y.; Rao, Z.; Liu, S.; Li, X.; Li, H.; Xiong, R. Evaluating the Performance of Liquid Immersing Preheating System for Lithium-Ion Battery Pack. Appl. Therm. Eng. 2021, 190, 116811. [Google Scholar] [CrossRef]
- He, F.; Li, X.; Zhang, G.; Zhong, G.; He, J. Experimental Investigation of Thermal Management System for Lithium Ion Batteries Module with Coupling Effect by Heat Sheets and Phase Change Materials. Int. J. Energy Res. 2018, 42, 3279–3288. [Google Scholar] [CrossRef]
- Ruan, H.; Jiang, J.; Sun, B.; Su, X.; He, X.; Zhao, K. An Optimal Internal-Heating Strategy for Lithium-Ion Batteries at Low Temperature Considering Both Heating Time and Lifetime Reduction. Appl. Energy 2019, 256, 113797. [Google Scholar] [CrossRef]
- Zhang, J.; Ge, H.; Li, Z.; Ding, Z. Internal Heating of Lithium-Ion Batteries Using Alternating Current Based on the Heat Generation Model in Frequency Domain. J. Power Sources 2015, 273, 1030–1037. [Google Scholar] [CrossRef]
- Wu, X.; Cui, Z.; Chen, E.; Du, J. Capacity Degradation Minimization Oriented Optimization for the Pulse Preheating of Lithium-Ion Batteries under Low Temperature. J. Energy Storage 2020, 31, 101746. [Google Scholar] [CrossRef]
- Yeow, K.; Teng, H.; Thelliez, M.; Tan, E. 2012 SIMULIA Community Conference 3D Thermal Analysis of Li-Ion Battery Cells with Various Geometries and Cooling Conditions Using Abaqus. In Proceedings of the SIMULIA Community Conference, Providence, RI, USA, 15–17 May 2012. [Google Scholar]
- Verma, A.; Prajapati, A.; Rakshit, D. A Comparative Study on Prismatic and Cylindrical Lithium-Ion Batteries Based on Their Performance in High Ambient Environment. J. Inst. Eng. Ser. C 2022, 103, 149–166. [Google Scholar] [CrossRef]
- Li, J.; Fleetwood, J.; Hawley, W.B.; Kays, W. From Materials to Cell: State-of-the-Art and Prospective Technologies for Lithium-Ion Battery Electrode Processing. Chem. Rev. 2022, 122, 903–956. [Google Scholar] [CrossRef]
- Goodenough, J.B. How We Made the Li-Ion Rechargeable Battery. Nat. Electron. 2018, 1, 204. [Google Scholar] [CrossRef] [Green Version]
- Nishi, Y. Lithium Ion Secondary Batteries; Past 10 Years and the Future. J. Power Sources 2001, 100, 101–106. [Google Scholar] [CrossRef]
- Xie, J.; Lu, Y.C. A Retrospective on Lithium-Ion Batteries. Nat. Commun. 2020, 11, 2499. [Google Scholar] [CrossRef]
- Grey, C.P.; Hall, D.S. Prospects for Lithium-Ion Batteries and beyond—A 2030 Vision. Nat. Commun. 2020, 11, 6279. [Google Scholar] [CrossRef]
- Preger, Y.; Barkholtz, H.M.; Fresquez, A.; Campbell, D.L.; Juba, B.W.; Romàn-Kustas, J.; Ferreira, S.R.; Chalamala, B. Degradation of Commercial Lithium-Ion Cells as a Function of Chemistry and Cycling Conditions. J. Electrochem. Soc. 2020, 167, 120532. [Google Scholar] [CrossRef]
- Huang, Y.; Dong, Y.; Li, S.; Lee, J.; Wang, C.; Zhu, Z.; Xue, W.; Li, Y.; Li, J. Lithium Manganese Spinel Cathodes for Lithium-Ion Batteries. Adv. Energy Mater. 2021, 11, 2000997. [Google Scholar] [CrossRef]
- Li, W.; Wang, H.; Zhang, Y.; Ouyang, M. Flammability Characteristics of the Battery Vent Gas: A Case of NCA and LFP Lithium-Ion Batteries during External Heating Abuse. J. Energy Storage 2019, 24, 100775. [Google Scholar] [CrossRef]
- Bak, S.M.; Hu, E.; Zhou, Y.; Yu, X.; Senanayake, S.D.; Cho, S.J.; Kim, K.B.; Chung, K.Y.; Yang, X.Q.; Nam, K.W. Structural Changes and Thermal Stability of Charged LiNixMnyCozO2 Cathode Materials Studied by Combined in Situ Time-Resolved XRD and Mass Spectroscopy. ACS Appl. Mater. Interfaces 2014, 6, 22594–22601. [Google Scholar] [CrossRef]
- Alves Dias, P.; Blagoeva, D.; Pavel, C.; Arvanitidis, N. Cobalt: Demand-Supply Balances in the Transition to Electric Mobility; Publications Office of the European Union: Luxembourg, 2018.
- Flexer, V.; Baspineiro, C.F.; Galli, C.I. Lithium Recovery from Brines: A Vital Raw Material for Green Energies with a Potential Environmental Impact in Its Mining and Processing. Sci. Total Environ. 2018, 639, 1188–1204. [Google Scholar] [CrossRef]
- Iskandar Radzi, Z.; Helmy Arifin, K.; Zieauddin Kufian, M.; Balakrishnan, V.; Rohani Sheikh Raihan, S.; Abd Rahim, N.; Subramaniam, R. Review of Spinel LiMn2O4 Cathode Materials under High Cut-off Voltage in Lithium-Ion Batteries: Challenges and Strategies. J. Electroanal. Chem. 2022, 920, 116623. [Google Scholar] [CrossRef]
- Manthiram, A.; Chemelewski, K.; Lee, E.-S. A Perspective on the High-Voltage LiMn1.5Ni0.5O4 Spinel Cathode for Lithium-Ion Batteries. Energy Environ. Sci. 2014, 7, 1339. [Google Scholar] [CrossRef]
- Zhong, Q.; Bonakdarpour, A.; Zhang, M.; Gao, Y.; Dahn, J.R. Synthesis and Electrochemistry of LiNi x Mn2−x O 4. J. Electrochem. Soc. 1997, 144, 205–213. [Google Scholar] [CrossRef]
- Murashko, K.; Li, D.; Danilov, D.L.; Notten, P.H.L.; Pyrhönen, J.; Jokiniemi, J. Applicability of Heat Generation Data in Determining the Degradation Mechanisms of Cylindrical Li-Ion Batteries. J. Electrochem. Soc. 2021, 168, 010511. [Google Scholar] [CrossRef]
- Ma, L.; Nie, M.; Xia, J.; Dahn, J.R. A Systematic Study on the Reactivity of Different Grades of Charged Li[NixMnyCoz]O2 with Electrolyte at Elevated Temperatures Using Accelerating Rate Calorimetry. J. Power Sources 2016, 327, 145–150. [Google Scholar] [CrossRef]
- Golubkov, A.W.; Scheikl, S.; Planteu, R.; Voitic, G.; Wiltsche, H.; Stangl, C.; Fauler, G.; Thaler, A.; Hacker, V. Thermal Runaway of Commercial 18650 Li-Ion Batteries with LFP and NCA Cathodes—Impact of State of Charge and Overcharge. RSC Adv. 2015, 5, 57171–57186. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Ouyang, M.; Lu, L.; Li, J.; Han, X. Analysis of the Heat Generation of Lithium-Ion Battery during Charging and Discharging Considering Different Influencing Factors. J. Therm. Anal. Calorim. 2014, 116, 1001–1010. [Google Scholar] [CrossRef]
- Tan, K.S.; Reddy, M.V.; Rao, G.V.S.; Chowdari, B.V.R. High-Performance LiCoO2 by Molten Salt (LiNO3:LiCl) Synthesis for Li-Ion Batteries. J. Power Sources 2005, 147, 241–248. [Google Scholar] [CrossRef]
- Matasso, A.; Wong, D.; Wetz, D.; Liu, F. Effects of High-Rate Cycling on the Bulk Internal Pressure Rise and Capacity Degradation of Commercial LiCoO 2 Cells. J. Electrochem. Soc. 2015, 162, A885–A891. [Google Scholar] [CrossRef]
- Prosini, P.P.; Zane, D.; Pasquali, M. Improved Electrochemical Performance of a LiFePO4-Based Composite Cathode. Electrochim. Acta 2001, 46, 3517–3523. [Google Scholar] [CrossRef]
- Forman, J.C.; Moura, S.J.; Stein, J.L.; Fathy, H.K. Genetic Identification and Fisher Identifiability Analysis of the Doyle-Fuller-Newman Model from Experimental Cycling of a LiFePO4 Cell. J. Power Sources 2012, 210, 263–275. [Google Scholar] [CrossRef]
- Kurpiel, W.; Polnik, B.; Orzech, Ł.; Lesiak, K.; Miedziński, B.; Habrych, M.; Debita, G.; Zamłyńska, M.; Falkowski-gilski, P. Influence of Operation Conditions on Temperature Hazard of Lithium-Iron-Phosphate (LiFePO4) Cells. Energies 2021, 14, 6728. [Google Scholar] [CrossRef]
- Wagner, N.P.; Asheim, K.; Vullum-Bruer, F.; Svensson, A.M. Performance and Failure Analysis of Full Cell Lithium Ion Battery with LiNi0.8Co0.15Al0.05O2 and Silicon Electrodes. J. Power Sources 2019, 437, 226884. [Google Scholar] [CrossRef]
- Barkholtz, H.M.; Fresquez, A.; Chalamala, B.R.; Ferreira, S.R. A Database for Comparative Electrochemical Performance of Commercial 18650-Format Lithium-Ion Cells. J. Electrochem. Soc. 2017, 164, A2697–A2706. [Google Scholar] [CrossRef]
- Li, J.; Downie, L.E.; Ma, L.; Qiu, W.; Dahn, J.R. Study of the Failure Mechanisms of LiNi0.8Mn0.1Co0.1O2 Cathode Material for Lithium Ion Batteries. J. Electrochem. Soc. 2015, 162, A1401–A1408. [Google Scholar] [CrossRef]
- Li, W.; Peng, X.; Xiao, M.; Garg, A.; Gao, L. Multi-Objective Design Optimization for Mini-Channel Cooling Battery Thermal Management System in an Electric Vehicle. Int. J. Energy Res. 2019, 43, 3668–3680. [Google Scholar] [CrossRef]
- Weng, J.; Ouyang, D.; Yang, X.; Chen, M.; Zhang, G.; Wang, J. Optimization of the Internal Fin in a Phase-Change-Material Module for Battery Thermal Management. Appl. Therm. Eng. 2020, 167, 114698. [Google Scholar] [CrossRef]
- Travesset-Baro, O.; Rosas-Casals, M.; Jover, E. Transport Energy Consumption in Mountainous Roads. A Comparative Case Study for Internal Combustion Engines and Electric Vehicles in Andorra. Transp. Res. D Transp. Environ. 2015, 34, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Wahid, M.R.; Budiman, B.A.; Joelianto, E.; Aziz, M. A Review on Drive Train Technologies for Passenger Electric Vehicles. Energies 2021, 14, 6742. [Google Scholar] [CrossRef]
- Halimah, P.N.; Rahardian, S.; Budiman, B.A. Battery Cells for Electric Vehicles. Int. J. Sustain. Transp. Technol. 2019, 2, 54–57. [Google Scholar] [CrossRef] [Green Version]
- Wierzbicki, T.; Sahraei, E. Homogenized Mechanical Properties for the Jellyroll of Cylindrical Lithium-Ion Cells. J. Power Sources 2013, 241, 467–476. [Google Scholar] [CrossRef]
- Zeng, F.; Chen, J.; Yang, F.; Kang, J.; Cao, Y.; Xiang, M. Effects of Polypropylene Orientation on Mechanical and Heat Seal Properties of Polymer-Aluminum-Polymer Composite Films for Pouch Lithium-Ion Batteries. Materials 2018, 11, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budiman, B.A.; Rahardian, S.; Saputro, A.; Hidayat, A.; Pulung Nurprasetio, I.; Sambegoro, P. Structural Integrity of Lithium-Ion Pouch Battery Subjected to Three-Point Bending. Eng. Fail. Anal. 2022, 138, 106307. [Google Scholar] [CrossRef]
- Cordoba-Arenas, A.; Onori, S.; Rizzoni, G. A Control-Oriented Lithium-Ion Battery Pack Model for Plug-in Hybrid Electric Vehicle Cycle-Life Studies and System Design with Consideration of Health Management. J. Power Sources 2015, 279, 791–808. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Ji, C.; Wang, S.; Sun, J.; Pan, S.; Wang, D.; Liang, C. Study of Non-Uniform Temperature and Discharging Distribution for Lithium-Ion Battery Modules in Series and Parallel Connection. Appl. Therm. Eng. 2020, 168, 114831. [Google Scholar] [CrossRef]
- Arora, S.; Shen, W.; Kapoor, A. Review of Mechanical Design and Strategic Placement Technique of a Robust Battery Pack for Electric Vehicles. Renew. Sus. Energy Rev. 2016, 60, 1319–1331. [Google Scholar] [CrossRef]
- Omar, N.; van den Bossche, P.; Mulder, G.; Daowd, M.; Timmermans, J.M.; van Mierlo, J.; Pauwels, S. Assessment of Performance of Lithium Iron Phosphate Oxide, Nickel Manganese Cobalt Oxide and Nickel Cobalt Aluminum Oxide Based Cells for Using in Plug-in Battery Electric Vehicle Applications. In Proceedings of the 2011 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 6–9 September 2011. [Google Scholar] [CrossRef]
- Guo, J.; Jiang, F. A Novel Electric Vehicle Thermal Management System Based on Cooling and Heating of Batteries by Refrigerant. Energy Convers. Manag. 2021, 237, 114145. [Google Scholar] [CrossRef]
- Cen, J.; Jiang, F. Li-Ion Power Battery Temperature Control by a Battery Thermal Management and Vehicle Cabin Air Conditioning Integrated System. Energy Sus.Dev. 2020, 57, 141–148. [Google Scholar] [CrossRef]
- Fan, R.; Zhang, C.; Wang, Y.; Ji, C.; Meng, Z.; Xu, L.; Ou, Y.; Chin, C.S. Numerical Study on the Effects of Battery Heating in Cold Climate. J. Energy Storage 2019, 26, 100969. [Google Scholar] [CrossRef]
- Zhang, S.S.; Xu, K.; Jow, T.R. The Low Temperature Performance of Li-Ion Batteries. J. Power Sources 2003, 115, 137–140. [Google Scholar] [CrossRef]
- Lei, Z.; Zhang, Y.; Lei, X. Improving Temperature Uniformity of a Lithium-Ion Battery by Intermittent Heating Method in Cold Climate. Int. J. Heat Mass Transf. 2018, 121, 275–281. [Google Scholar] [CrossRef]
- Hebert, A.; McCalla, E. The Role of Metal Substitutions in the Development of Li Batteries, Part I: Cathodes. Mater. Adv. 2021, 2, 3474–3518. [Google Scholar] [CrossRef]
- Lighting Global. Lithium-Ion Battery Overview; International Finance Group: Washington, DC, USA, 2012. [Google Scholar]
- Li, W.; Erickson, E.M.; Manthiram, A. High-Nickel Layered Oxide Cathodes for Lithium-Based Automotive Batteries. Nat. Energy 2020, 5, 26–34. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, J.; Hu, Z.; Cui, G.; Chen, L. Identifying and Addressing Critical Challenges of High-Voltage Layered Ternary Oxide Cathode Materials. Chem. Mater. 2019, 31, 6033–6065. [Google Scholar] [CrossRef]
- Zou, H.; Wang, W.; Zhang, G.; Qin, F.; Tian, C.; Yan, Y. Experimental Investigation on an Integrated Thermal Management System with Heat Pipe Heat Exchanger for Electric Vehicle. Energy Convers. Manag. 2016, 118, 88–95. [Google Scholar] [CrossRef]
- Zhang, C.-M.; Li, F.; Zhu, X.-Q.; Yu, J.-G. Triallyl Isocyanurate as an Efficient Electrolyte Additive for Layered Oxide Cathode Material-Based Lithium-Ion Batteries with Improved Stability under High-Voltage. Molecules 2022, 27, 3107. [Google Scholar] [CrossRef]
- Park, S.; Jeong, S.Y.; Lee, T.K.; Park, M.W.; Lim, H.Y.; Sung, J.; Cho, J.; Kwak, S.K.; Hong, S.Y.; Choi, N.-S. Replacing Conventional Battery Electrolyte Additives with Dioxolone Derivatives for High-Energy-Density Lithium-Ion Batteries. Nat. Commun. 2021, 12, 838. [Google Scholar] [CrossRef]
- Xu, G.; Huang, S.; Cui, Z.; Du, X.; Wang, X.; Lu, D.; Shangguan, X.; Ma, J.; Han, P.; Zhou, X.; et al. Functional Additives Assisted Ester-Carbonate Electrolyte Enables Wide Temperature Operation of a High-Voltage (5 V-Class) Li-Ion Battery. J. Power Sources 2019, 416, 29–36. [Google Scholar] [CrossRef]
- Chen, M.; Liu, Z.; Zhao, X.; Li, K.; Wang, K.; Liu, Z.; Xia, L.; Yuan, J.; Zhao, R. Fluorinated Co-Solvent Electrolytes for High-Voltage Ni-Rich LiNi0.8Co0.1Mn0.1O2 (NCM811) Positive Electrodes. Front. Energy Res. 2022, 10, 973336. [Google Scholar] [CrossRef]
- Qin, Y.; Ren, Z.; Wang, Q.; Li, Y.; Liu, J.; Liu, Y.; Guo, B.; Wang, D. Simplifying the Electrolyte Systems with the Functional Co-solvent. ACS Appl. Mater. Interfaces 2019, 11, 27854–27861. [Google Scholar] [CrossRef]
- Chatterjee, K.; Pathak, A.D.; Lakma, A.; Sharma, C.S.; Sahu, K.K.; Singh, A.K. Synthesis, Characterization and Application of a Non-Flammable Dicationic Ionic Liquid in Lithium-Ion Battery as Electrolyte Additive. Sci. Rep. 2020, 10, 9606. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Petibon, R.; Du, C.Y.; Dahn, J.R. Effects of Electrolyte Additives and Solvents on Unwanted Lithium Plating in Lithium-Ion Cells. J. Electrochem. Soc. 2017, 164, A1173–A1183. [Google Scholar] [CrossRef]
- Lu, W.; Xie, K.; Chen, Z.; Xiong, S.; Pan, Y.; Zheng, C. A New Co-Solvent for Wide Temperature Lithium Ion Battery Electrolytes: 2,2,2-Trifluoroethyl n-Caproate. J. Power Sources 2015, 274, 676–684. [Google Scholar] [CrossRef]
- Ouyang, D.; Wang, K.; Yang, Y.; Wang, Z. Fluoroethylene Carbonate as Co-Solvent for Li(Ni0.8Mn0.1Co0.1)O2 Lithium-Ion Cells with Enhanced High-Voltage and Safety Performance. J. Power Sources 2022, 542, 231780. [Google Scholar] [CrossRef]
- Gond, R.; van Ekeren, W.; Mogensen, R.; Naylor, A.J.; Younesi, R. Non-Flammable Liquid Electrolytes for Safe Batteries. Mater. Horiz. 2021, 8, 2913–2928. [Google Scholar] [CrossRef] [PubMed]
- Knodler, R. Thermal Properties of Sodium-Sulphur Cells. J. Appl. Electrochem. 1984, 14, 39–46. [Google Scholar] [CrossRef]
- Manthiram, A.; Yu, X.; Wang, S. Lithium Battery Chemistries Enabled by Solid-State Electrolytes. Nat. Rev. Mater. 2017, 2, 16103. [Google Scholar] [CrossRef]
- Chen, H.; Zheng, M.; Qian, S.; Ling, H.Y.; Wu, Z.; Liu, X.; Yan, C.; Zhang, S. Functional Additives for Solid Polymer Electrolytes in Flexible and High-energy-density Solid-state Lithium-ion Batteries. Carbon Energy 2021, 3, 929–956. [Google Scholar] [CrossRef]
- Xia, S.; Wu, X.; Zhang, Z.; Cui, Y.; Liu, W. Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries. Chem 2019, 5, 753–785. [Google Scholar] [CrossRef]
- Kanno, R. Secondary Batteries—Lithium Rechargeable Systems | Electrolytes: Solid Sulfide. In Encyclopedia of Electrochemical Power Sources; Elsevier: Amsterdam, The Netherlands, 2009; pp. 129–137. [Google Scholar] [CrossRef]
- Liu, Y.; Li, B.; Kitaura, H.; Zhang, X.; Han, M.; He, P.; Zhou, H. Fabrication and Performance of All-Solid-State Li–Air Battery with SWCNTs/LAGP Cathode. ACS Appl. Mater. Interfaces 2015, 7, 17307–17310. [Google Scholar] [CrossRef]
- Yao, P.; Yu, H.; Ding, Z.; Liu, Y.; Lu, J.; Lavorgna, M.; Wu, J.; Liu, X. Review on Polymer-Based Composite Electrolytes for Lithium Batteries. Front. Chem. 2019, 7, 522. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Zhang, L.; Xu, S.; McOwen, D.W.; Gong, Y.; Yang, C.; Pastel, G.R.; Xie, H.; Fu, K.; Dai, J.; et al. 3D Lithium Metal Anodes Hosted in Asymmetric Garnet Frameworks toward High Energy Density Batteries. Energy Storage Mater. 2018, 14, 376–382. [Google Scholar] [CrossRef]
- Singh, V.K.; Faisal, M.; Khan, J. Analytical Study and Comparison of Solid and Liquid Batteries for Electric Vehicles and Thermal Management Simulation. United Int. J. Res.Technol. (UIJRT) 2019, 1, 27–33. [Google Scholar]
- Budiman, B.A.; Saputro, A.; Rahardian, S.; Aziz, M.; Sambegoro, P.; Nurprasetio, I.P. Mechanical Damages in Solid Electrolyte Battery Due to Electrode Volume Changes. J. Energy Storage 2022, 52, 104810. [Google Scholar] [CrossRef]
- Chang, Z.; Yang, H.; Zhu, X.; He, P.; Zhou, H. A Stable Quasi-Solid Electrolyte Improves the Safe Operation of Highly Efficient Lithium-Metal Pouch Cells in Harsh Environments. Nat. Commun. 2022, 13, 1510. [Google Scholar] [CrossRef]
- Robinson, A.L.; Janek, J. Solid-State Batteries Enter EV Fray. MRS Bull 2014, 39, 1046–1047. [Google Scholar] [CrossRef] [Green Version]
- Motavalli, J. Technology: A Solid Future. Nature 2015, 526, S96–S97. [Google Scholar] [CrossRef] [Green Version]
- Bindra, A. Electric Vehicle Batteries Eye Solid-State Technology: Prototypes Promise Lower Cost, Faster Charging, and Greater Safety. IEEE Power Electr.Mag. 2020, 7, 16–19. [Google Scholar] [CrossRef]
- Al-Zareer, M.; Dincer, I.; Rosen, M.A. Novel Thermal Management System Using Boiling Cooling for High-Powered Lithium-Ion Battery Packs for Hybrid Electric Vehicles. J. Power Sources 2017, 363, 291–303. [Google Scholar] [CrossRef]
- Khan, S.A.; Eze, C.; Dong, K.; Shahid, A.R.; Patil, M.S.; Ahmad, S.; Hussain, I.; Zhao, J. Design of a New Optimized U-Shaped Lightweight Liquid-Cooled Battery Thermal Management System for Electric Vehicles: A Machine Learning Approach. Int. Commun. Heat Mass Transf. 2022, 136, 106209. [Google Scholar] [CrossRef]
- Jouhara, H.; Delpech, B.; Bennett, R.; Chauhan, A.; Khordehgah, N.; Serey, N.; Lester, S.P. Heat Pipe Based Battery Thermal Management: Evaluating the Potential of Two Novel Battery Pack Integrations. Int. J. Therm. 2021, 12, 100115. [Google Scholar] [CrossRef]
- Sarchami, A.; Najafi, M.; Imam, A.; Houshfar, E. Experimental Study of Thermal Management System for Cylindrical Li-Ion Battery Pack Based on Nanofluid Cooling and Copper Sheath. Int. J. Therm. Sci. 2022, 171, 107244. [Google Scholar] [CrossRef]
- Liao, G.; Wang, W.; Zhang, F.; E, J.; Chen, J.; Leng, E. Thermal Performance of Lithium-Ion Battery Thermal Management System Based on Nanofluid. Appl. Therm. Eng. 2022, 216, 118997. [Google Scholar] [CrossRef]
- Lu, M.; Zhang, X.; Ji, J.; Xu, X.; Zhang, Y. Research Progress on Power Battery Cooling Technology for Electric Vehicles. J. Energy Storage 2020, 27, 101155. [Google Scholar] [CrossRef]
- Zhang, G.; Qin, F.; Zou, H.; Tian, C. Experimental Study on a Dual- Parallel-Evaporator Heat Pump System for Thermal Management of Electric Vehicles. Energy Procedia 2017, 105, 2390–2395. [Google Scholar] [CrossRef]
- Tang, X.; Guo, Q.; Li, M.; Wei, C.; Pan, Z.; Wang, Y. Performance Analysis on Liquid-Cooled Battery Thermal Management for Electric Vehicles Based on Machine Learning. J. Power Sources 2021, 494, 229727. [Google Scholar] [CrossRef]
- Can, A.; Selimefendigil, F.; Öztop, H.F. A Review on Soft Computing and Nanofluid Applications for Battery Thermal Management. J. Energy Storage 2022, 53, 105214. [Google Scholar] [CrossRef]
- Minea, A.A. A Study on Brinkman Number Variation on Water Based Nanofluid Heat Transfer in Partially Heated Tubes. Mech. Res. Commun. 2016, 73, 7–11. [Google Scholar] [CrossRef]
- Berdichevsky, G.; Kelty, K.; Straubel, J.B.; Toomre, E. The Tesla Roadster Battery System; Tesla Motors Inc.: San Carlos, CA, USA, 2006. [Google Scholar]
- Ogawa, M.; Yoshida, K.; Harada, K. All-Solid-State Lithium Batteries with Wide Operating Temperature Range. Environ. Energy Res. 2012, 74, 88–90. [Google Scholar]
- Wang, S.; Song, H.; Song, X.; Zhu, T.; Ye, Y.; Chen, J.; Yu, L.; Xu, J.; Chen, K. An Extra-Wide Temperature All-Solid-State Lithium-Metal Battery Operating from −73 °C to 120 °C. Energy Storage Mater. 2021, 39, 139–145. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, S.; He, Y.-B.; Kang, F.; Chen, L.; Li, H.; Yang, Q.-H. Solid-State Lithium Batteries: Safety and Prospects. EScience 2022, 2, 138–163. [Google Scholar] [CrossRef]
- Hughes, R.; Vagg, C. Assessing the Feasibility of a Cold Start Procedure for Solid State Batteries in Automotive Applications. Batteries 2022, 8, 13. [Google Scholar] [CrossRef]
- Li, H.; Wang, H.; Xu, Z.; Wang, K.; Ge, M.; Gan, L.; Zhang, Y.; Tang, Y.; Chen, S. Thermal-Responsive and Fire-Resistant Materials for High-Safety Lithium-Ion Batteries. Small 2021, 17, 2103679. [Google Scholar] [CrossRef]
- Jin, C.; Sun, Y.; Yao, J.; Feng, X.; Lai, X.; Shen, K.; Wang, H.; Rui, X.; Xu, C.; Zheng, Y.; et al. No Thermal Runaway Propagation Optimization Design of Battery Arrangement for Cell-to-Chassis Technology. ETransportation 2022, 14, 100199. [Google Scholar] [CrossRef]
- Roper, S.W.K.; Kim, I.Y. Integrated Topology and Packaging Optimization for Conceptual-Level Electric Vehicle Chassis Design via the Component-Existence Method. Proc. Inst. Mech.Eng. Part D J. Automob. Eng. 2022, 09544070221113895. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Widyantara, R.D.; Zulaikah, S.; Juangsa, F.B.; Budiman, B.A.; Aziz, M. Review on Battery Packing Design Strategies for Superior Thermal Management in Electric Vehicles. Batteries 2022, 8, 287. https://doi.org/10.3390/batteries8120287
Widyantara RD, Zulaikah S, Juangsa FB, Budiman BA, Aziz M. Review on Battery Packing Design Strategies for Superior Thermal Management in Electric Vehicles. Batteries. 2022; 8(12):287. https://doi.org/10.3390/batteries8120287
Chicago/Turabian StyleWidyantara, Robby Dwianto, Siti Zulaikah, Firman Bagja Juangsa, Bentang Arief Budiman, and Muhammad Aziz. 2022. "Review on Battery Packing Design Strategies for Superior Thermal Management in Electric Vehicles" Batteries 8, no. 12: 287. https://doi.org/10.3390/batteries8120287