Updates on Microgreens Grown under Artificial Lighting: Scientific Advances in the Last Two Decades
Abstract
:1. Introduction
2. Scientific Production on Microgreens from 2000 to 2021: A General Overview
3. Scientific Production on Artificial Lighting on Microgreens
3.1. From 2000 to 2021: A General Overview
3.2. Lighting with Cold, White, and Incandescent Fluorescent Lamps
3.3. From Complementing to Replacing HPS Lighting for LED Lamps
3.4. Effects of Light Intensity and Quality on Microgreen Production
3.5. Effects of the Photoperiod on Microgreen Production
3.6. Effects of Light Frequency on Microgreen Production
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bhaswant, M.; Shanmugam, D.K.; Miyazawa, T.; Abe, C.; Miyazawa, T. Microgreens—A Comprehensive Review of Bioactive Molecules and Health Benefits. Molecules 2023, 28, 867. [Google Scholar] [CrossRef] [PubMed]
- Purquerio, L.F.V.; Calori, A.H.; Moraes, L.A.S.d.; Factor, T.L.; Tivelli, S.W. Produção de baby leaf em bandejas utilizadas para produção de mudas e em hidroponia NFT. In Produção de Mudas de Hortaliças; Nascimento, W.M., Pereira, R.B., Eds.; Embrapa: Brasília, Brazil, 2016; pp. 221–253. ISBN 9788570355799. [Google Scholar]
- Loconsole, D.; Cocetta, G.; Santoro, P.; Ferrante, A. Optimization of LED Lighting and Quality Evaluation of Romaine Lettuce Grown in an Innovative Indoor Cultivation System. Sustainability 2019, 11, 841. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.M.; Cruz, L.P.; Pacheco, V.S.; Machado, E.C.; Purquerio, L.F.V.; Ribeiro, R.V. Energetic Efficiency of Biomass Production Is Affected by Photoperiod in Indoor Lettuce Cultivation. Theor. Exp. Plant Physiol. 2022, 34, 265–276. [Google Scholar] [CrossRef]
- Morrow, R.C. LED Lighting in Horticulture. HortScience 2008, 43, 1947–1950. [Google Scholar] [CrossRef] [Green Version]
- Vetchinnikov, A.A.; Filatov, D.A.; Olonina, S.I.; Kazakov, A.V.; Olonin, I.Y. Influence of the Radiation Intensity of LED Light Sources of the Red-Blue Spectrum on the Yield and Energy Consumption of Microgreens. IOP Conf. Ser. Earth Environ. Sci. 2021, 723, 032046. [Google Scholar] [CrossRef]
- Brazaitytė, A.; Miliauskienė, J.; Vaštakaitė-Kairienė, V.; Sutulienė, R.; Laužikė, K.; Duchovskis, P.; Małek, S. Effect of Different Ratios of Blue and Red Led Light on Brassicaceae Microgreens under a Controlled Environment. Plants 2021, 10, 801. [Google Scholar] [CrossRef] [PubMed]
- Jones-Baumgardt, C.; Llewellyn, D.; Ying, Q.; Zheng, Y. Intensity of Sole-Source Light-Emitting Diodes Affects Growth, Yield, and Quality of Brassicaceae Microgreens. HortScience 2019, 54, 1168–1174. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Pill, W.G.; Cobb, B.B.; Olszewski, M. Seed Treatments to Advance Greenhouse Establishment of Beet and Chard Microgreens. J. Hortic. Sci. Biotechnol. 2004, 79, 565–570. [Google Scholar] [CrossRef]
- Murphy, C.J.; Llort, K.F.; Pill, W.G. Factors Affecting the Growth of Microgreen Table Beet. Int. J. Veg. Sci. 2010, 16, 253–266. [Google Scholar] [CrossRef]
- Treadwell, D.; Hochmuth, R.; Landrum, L.; Laughlin, W. Microgreens: A New Specialty Crop. Available online: https://edis.ifas.ufl.edu/publication/HS1164 (accessed on 27 February 2022).
- Brentlinger, D.J. New Trends in Hydroponic Crop Production in the U.S. Acta Hortic. 2007, 742, 31–34. [Google Scholar] [CrossRef]
- Roe, N.E. Growing Microgreens: Maybe the Ultimate Specialty Crop! Proc. Fla. State Hortic. Soc. 2006, 119, 289–290. [Google Scholar]
- Janovská, D.; Štočková, L.; Stehno, Z. Evaluation of Buckwheat Sprouts as Microgreens. Acta Agric. Slov. 2010, 95, 157–162. [Google Scholar] [CrossRef] [Green Version]
- Wieth, A.R.; Pinheiro, W.D.; Duarte, T.D.S. Purple Cabbage Microgreens Grown in Different Substrates and Nutritive Solution Concentrations. Rev. Caatinga 2019, 32, 976–985. [Google Scholar] [CrossRef] [Green Version]
- Wieth, A.R.; Pinheiro, W.D.; Da Silva Duarte, T. Commercial Substrates and Nutrient Concentrations in the Production of Arugula Microgreens. Agron. Colomb. 2021, 39, 82–88. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, A.; Rasane, P.; Dey, A.; Choudhury, A.; Singh, J.; Kaur, S.; Dhawan, K.; Kaur, D. Optimization of a Process for Microgreen and Fruit-Based Functional Beverage. An. Acad. Bras. Cienc. 2020, 92, e20190596. [Google Scholar] [CrossRef] [PubMed]
- Altuner, F.; Tuncturk, R.; Oral, E.; Tuncturk, M. Evaluation of Pigment, Antioxidant Capacity and Bioactive Compounds in Microgreens of Wheat Landraces and Cereals. Chil. J. Agric. Res. 2021, 81, 643–654. [Google Scholar] [CrossRef]
- Kong, Y.; Schiestel, K.; Zheng, Y. Maximum Elongation Growth Promoted as a Shade-Avoidance Response by Blue Light Is Related to Deactivated Phytochrome: A Comparison with Red Light in Four Microgreen Species. Can. J. Plant Sci. 2020, 100, 314–326. [Google Scholar] [CrossRef]
- Kopsell, D.A.; Pantanizopoulos, N.I.; Sams, C.E.; Kopsell, D.E. Shoot Tissue Pigment Levels Increase in “Florida Broadleaf” Mustard (Brassica juncea L.) Microgreens Following High Light Treatment. Sci. Hortic. 2012, 140, 96–99. [Google Scholar] [CrossRef]
- Brazaityte, A.; Vaštakaite, V.; Jankauskiene, J.; Viršile, A.; Samuolienė, G.; Sakalauskiene, S.; Novičkovas, A.; Miliauskiene, J.; Duchovskis, P. Comparison of LED and HPS Illumination Effects on Cultivation of Red Pak Choi Microgreens under Indoor and Greenhouse Conditions. Acta Hortic. 2020, 1287, 395–402. [Google Scholar] [CrossRef]
- Samuolienė, G.; Brazaityte, A.; Sirtautas, R.; Sakalauskiene, S.; Jankauskiene, J.; Duchovskis, P.; Novičkovas, A. The Impact of Supplementary Short-Term Red LED Lighting on the Antioxidant Properties of Microgreens. Acta Hortic. 2012, 956, 649–655. [Google Scholar] [CrossRef]
- Mlinarić, S.; Gvozdić, V.; Vuković, A.; Varga, M.; Vlašiček, I.; Cesar, V.; Begović, L. The Effect of Light on Antioxidant Properties and Metabolic Profile of Chia Microgreens. Appl. Sci. 2020, 10, 5731. [Google Scholar] [CrossRef]
- Kopsell, D.A.; Sams, C.E. Increases in Shoot Tissue Pigments, Glucosinolates, and Mineral Elements in Sprouting Broccoli after Exposure to Short-Duration Blue Light from Light Emitting Diodes. J. Am. Soc. Hortic. Sci. 2013, 138, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Ying, Q.; Kong, Y.; Zheng, Y. Growth and Appearance Quality of Four Microgreen Species under Light- emitting Diode Lights with Different Spectral Combinations. HortScience 2020, 55, 1406–1410. [Google Scholar] [CrossRef]
- Samuolienė, G.; Brazaityte, A.; Jankauskiene, J.; Viršile, A.; Sirtautas, R.; Novičkovas, A.; Sakalauskiene, S.; Sakalauskaite, J.; Duchovskis, P. LED Irradiance Level Affects Growth and Nutritional Quality of Brassica Microgreens. Cent. Eur. J. Biol. 2013, 8, 1241–1249. [Google Scholar] [CrossRef]
- Kamal, K.Y.; Khodaeiaminjan, M.; El-Tantawy, A.A.; Moneim, D.A.; Salam, A.A.; Ash-shormillesy, S.M.A.I.; Attia, A.; Ali, M.A.S.; Herranz, R.; El-Esawi, M.A.; et al. Evaluation of Growth and Nutritional Value of Brassica Microgreens Grown under Red, Blue and Green LEDs Combinations. Physiol. Plant. 2020, 169, 625–638. [Google Scholar] [CrossRef] [PubMed]
- Kopsell, D.A.; Sams, C.E.; Barickman, T.C.; Morrow, R.C. Sprouting Broccoli Accumulate Higher Concentrations of Nutritionally Important Metabolites under Narrow-Band Light-Emitting Diode Lighting. J. Am. Soc. Hortic. Sci. 2014, 139, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Ying, Q.; Kong, Y.; Zheng, Y. Overnight Supplemental Blue, Rather than Far-Red, Light Improves Microgreen Yield and Appearance Quality without Compromising Nutritional Quality during Winter Greenhouse Production. HortScience 2020, 55, 1468–1474. [Google Scholar] [CrossRef]
- Wollaeger, H.M.; Runkle, E.S. Growth of Impatiens, Petunia, Salvia, and Tomato Seedlings under Blue, Green, and Red Light-Emitting Diodes. HortScience 2014, 49, 734–740. [Google Scholar] [CrossRef]
- Ying, Q.; Kong, Y.; Jones-Baumgardt, C.; Zheng, Y. Responses of Yield and Appearance Quality of Four Brassicaceae Microgreens to Varied Blue Light Proportion in Red and Blue Light-Emitting Diodes Lighting. Sci. Hortic. 2020, 259, 108857. [Google Scholar] [CrossRef]
- Brazaityte, A.; Viršile, A.; Jankauskiene, J.; Sakalauskiene, S.; Samuolienė, G.; Sirtautas, R.; Novičkovas, A.; Dabašinskas, L.; Miliauskiene, J.; Vaštakaite, V.; et al. Effect of Supplemental UV-A Irradiation in Solid-State Lighting on the Growth and Phytochemical Content of Microgreens. Int. Agrophys. 2015, 29, 13–22. [Google Scholar] [CrossRef]
- Meas, S.; Luengwilai, K.; Thongket, T. Enhancing Growth and Phytochemicals of Two Amaranth Microgreens by LEDs Light Irradiation. Sci. Hortic. 2020, 265, 109204. [Google Scholar] [CrossRef]
- Brazaityte, A.; Sakalauskiene, S.; Samuolienė, G.; Jankauskiene, J.; Viršile, A.; Novičkovas, A.; Sirtautas, R.; Miliauskiene, J.; Vaštakaite, V.; Dabašinskas, L.; et al. The Effects of LED Illumination Spectra and Intensity on Carotenoid Content in Brassicaceae Microgreens. Food Chem. 2015, 173, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Vaštakaitė-Kairienė, V.; Brazaitytė, A.; Viršilė, A.; Samuolienė, G.; Miliauskienė, J.; Jankauskienė, J.; Duchovskis, P. Pulsed Light-Emitting Diodes for Higher Contents of Mineral Elements in Mustard Microgreens. Acta Hortic. 2020, 1271, 149–154. [Google Scholar] [CrossRef]
- Vaštakaite, V.; Viršile, A. Light—Emitting Diodes (LEDs) for Higher Nutritional Quality of Brassicaceae Microgreens. Res. Rural Dev. 2015, 1, 111–117. [Google Scholar]
- Brazaityte, A.; Viršile, A.; Samuolienė, G.; Vaštakaite-Kairiene, V.; Miliauskiene, J.; Jankauskiene, J.; Duchovskis, P. Effect of Supplemental UV-A Radiation on Mineral Elements Content and Nitrate Variation in Brassica Microgreens. Acta Hortic. 2020, 1296, 675–681. [Google Scholar] [CrossRef]
- Vastakaite, V.; Viršile, A.; Brazaityte, A.; Samuolienė, G.; Jankauskiene, J.; Sirtautas, R.; Novickovas, A.; Dabasinskas, L.; Sakalauskiene, S.; Miliauskiene, J.; et al. The Effect of Blue Light Dosage on Growth and Antioxidant Properties of Brassicaceae Microgreens. In Nordic View to Sustainable Rural Development; Nordic Association of Agricultural Science: Riga, Latvia, 2015; p. 104. [Google Scholar]
- Jones-Baumgardt, C.; Llewellyn, D.; Zheng, Y. Different Microgreen Genotypes Have Unique Growth and Yield Responses to Intensity of Supplemental PAR from Light-Emitting Diodes during Winter Greenhouse Production in Southern Ontario, Canada. HortScience 2020, 55, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Brazaityte, A.; Sakalauskiene, S.; Viršile, A.; Jankauskiene, J.; Samuolienė, G.; Sirtautas, R.; Vastakaite, V.; Miliauskiene, J.; Duchovskis, P.; Noviekovas, A.; et al. The Effect of Short-Term Red Lighting on Brassicaceae Microgreens Grown Indoors. Acta Hortic. 2016, 1123, 177–183. [Google Scholar] [CrossRef]
- Xonti, A.; Hunter, E.; Kulu, N.; Maboeei, P.; Stander, M.; Kossmann, J.; Peters, S.; Loedolff, B. Diversification of Health-Promoting Phytochemicals in Radish (Raphanus raphanistrum) and Kale (Brassica oleracea) Micro-Greens Using High Light Bio-Fortification. Funct. Foods Health Dis. 2020, 10, 65–81. [Google Scholar] [CrossRef]
- Samuolienė, G.; Brazaityte, A.; Viršile, A.; Jankauskiene, J.; Sakalauskiene, S.; Duchovskis, P. Red Light-Dose or Wavelength-Dependent Photoresponse of Antioxidants in Herb Microgreens. PLoS ONE 2016, 11, e0163405. [Google Scholar] [CrossRef] [Green Version]
- Ying, Q.; Kong, Y.; Zheng, Y. Applying Blue Light Alone, or in Combination with Far-Red Light, during Nighttime Increases Elongation without Compromising Yield and Quality of Indoor-Grown Microgreens. HortScience 2020, 55, 876–881. [Google Scholar] [CrossRef]
- Carvalho, S.D.; Folta, K.M. Green Light Control of Anthocyanin Production in Microgreens. Acta Hortic. 2016, 1134, 13–18. [Google Scholar] [CrossRef]
- Kong, Y.; Zheng, Y. Growth and Morphology Responses to Narrow-Band Blue Light and Its Co-Action with Low-Level UVB or Green Light: A Comparison with Red Light in Four Microgreen Species. Environ. Exp. Bot. 2020, 178, 104189. [Google Scholar] [CrossRef]
- Gerovac, J.R.; Craver, J.K.; Boldt, J.K.; Lopez, R.G. Light Intensity and Quality from Sole-Source Light-Emitting Diodes Impact Growth, Morphology, and Nutrient Content of Brassica Microgreens. HortScience 2016, 51, 497–503. [Google Scholar] [CrossRef] [Green Version]
- Johnson, R.E.; Kong, Y.; Zheng, Y. Elongation Growth Mediated by Blue Light Varies with Light Intensities and Plant Species: A Comparison with Red Light in Arugula and Mustard Seedlings. Environ. Exp. Bot. 2020, 169, 103898. [Google Scholar] [CrossRef]
- Vaštakaite, V.; Viršile, A.; Brazaityte, A.; Samuolienė, G.; Jankauskiene, J.; Novičkovas, A.; Duchovskis, P. Pulsed Light-Emitting Diodes for a Higher Phytochemical Level in Microgreens. J. Agric. Food Chem. 2017, 65, 6529–6534. [Google Scholar] [CrossRef]
- Gao, M.; He, R.; Shi, R.; Zhang, Y.; Song, S.; Su, W.; Liu, H. Differential Effects of Low Light Intensity on Broccoli Microgreens Growth and Phytochemicals. Agronomy 2021, 11, 537. [Google Scholar] [CrossRef]
- Lobiuc, A.; Vasilache, V.; Pintilie, O.; Stoleru, T.; Burducea, M.; Oroian, M.; Zamfirache, M.M. Blue and Red LED Illumination Improves Growth and Bioactive Compounds Contents in Acyanic and Cyanic Ocimum basilicum L. Microgreens. Molecules 2017, 22, 2111. [Google Scholar] [CrossRef] [Green Version]
- Toscano, S.; Cavallaro, V.; Ferrante, A.; Romano, D.; Patané, C. Effects of Different Light Spectra on Final Biomass Production and Nutritional Quality of Two Microgreens. Plants 2021, 10, 1584. [Google Scholar] [CrossRef]
- Samuolienė, G.; Viršilė, A.; Brazaitytė, A.; Jankauskienė, J.; Sakalauskienė, S.; Vaštakaitė, V.; Novičkovas, A.; Viškelienė, A.; Sasnauskas, A.; Duchovskis, P. Blue Light Dosage Affects Carotenoids and Tocopherols in Microgreens. Food Chem. 2017, 228, 50–56. [Google Scholar] [CrossRef]
- Maina, S.; Ryu, D.H.; Cho, J.Y.; Jung, D.S.; Park, J.E.; Nho, C.W.; Bakari, G.; Misinzo, G.; Jung, J.H.; Yang, S.H.; et al. Exposure to Salinity and Light Spectra Regulates Glucosinolates, Phenolics, and Antioxidant Capacity of Brassica Carinata l. Microgreens. Antioxidants 2021, 10, 1183. [Google Scholar] [CrossRef]
- Kopsell, D.A.; Sams, C.E.; Morrow, R.C. Interaction of Light Quality and Fertility on Biomass, Shoot Pigmentation and Xanthophyll Cycle Flux in Chinese Kale. J. Sci. Food Agric. 2017, 97, 911–917. [Google Scholar] [CrossRef]
- Giménez, A.; Martínez-Ballesta, M.D.C.; Egea-Gilabert, C.; Gómez, P.A.; Artés-Hernández, F.; Pennisi, G.; Orsini, F.; Crepaldi, A.; Fernández, J.A. Combined Effect of Salinity and Led Lights on the Yield and Quality of Purslane (Portulaca oleracea L.) Microgreens. Horticulturae 2021, 7, 180. [Google Scholar] [CrossRef]
- Craver, J.K.; Gerovac, J.R.; Lopez, R.G.; Kopsell, D.A. Light Intensity and Light Quality from Sole-Source Light-Emitting Diodes Impact Phytochemical Concentrations within Brassica Microgreens. J. Am. Soc. Hortic. Sci. 2017, 142, 3–12. [Google Scholar] [CrossRef]
- Byrdwell, W.C.; Kubzdela, N.; Goldschmidt, R. Changes in Compositions of Galactolipids, Triacylglycerols, and Tocopherols of Lettuce Varieties (Lactuca sativa L.) with Type, Age, and Light Source. J. Food Compos. Anal. 2021, 100, 103631. [Google Scholar] [CrossRef]
- Brazaitytė, A.; Vaštakaitė, V.; Viršilė, A.; Jankauskienė, J.; Samuolienė, G.; Sakalauskienė, S.; Novičkovas, A.; Miliauskienė, J.; Duchovskis, P. Changes in Mineral Element Content of Microgreens Cultivated under Different Lighting Conditions in a Greenhouse. Acta Hortic. 2018, 1227, 507–515. [Google Scholar] [CrossRef]
- Lu, Y.; Dong, W.; Yang, T.; Luo, Y.; Chen, P. Preharvest UVB Application Increases Glucosinolate Contents and Enhances Postharvest Quality of Broccoli Microgreens. Molecules 2021, 26, 3247. [Google Scholar] [CrossRef] [PubMed]
- Vaštakaitė, V.; Viršilė, A.; Brazaitytė, A.; Samuolienė, G.; Miliauskienė, J.; Jankauskienė, J.; Duchovskis, P. Pulsed LED Light Increases the Phytochemical Level of Basil Microgreens. Acta Hortic. 2018, 1227, 579–584. [Google Scholar] [CrossRef]
- Ferrón-Carrillo, F.; Guil-Guerrero, J.L.; González-Fernández, M.J.; Lyashenko, S.; Battafarano, F.; da Cunha-Chiamolera, T.P.L.; Urrestarazu, M. LED Enhances Plant Performance and Both Carotenoids and Nitrates Profiles in Lettuce. Plant Foods Hum. Nutr. 2021, 76, 210–218. [Google Scholar] [CrossRef]
- Zhang, X.; Wei, J.; Tian, J.; Li, N.; Jia, L.; Shen, W.; Cui, J. Enhanced Anthocyanin Accumulation of Immature Radish Microgreens by Hydrogen-Rich Water under Short Wavelength Light. Sci. Hortic. 2019, 247, 75–85. [Google Scholar] [CrossRef]
- Alrifai, O.; Hao, X.; Liu, R.; Lu, Z.; Marcone, M.F.; Tsao, R. LED-Induced Carotenoid Synthesis and Related Gene Expression in Brassica Microgreens. J. Agric. Food Chem. 2021, 69, 4674–4685. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; El-Nakhel, C.; Pannico, A.; Graziani, G.; Soteriou, G.A.; Giordano, M.; Zarrelli, A.; Ritieni, A.; De Pascale, S.; Rouphael, Y. Genotype-Specific Modulatory Effects of Select Spectral Bandwidths on the Nutritive and Phytochemical Composition of Microgreens. Front. Plant Sci. 2019, 10, 1501. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Kusuma, P.; Carvalho, S.D.; Li, Y.; Folta, K.M. Manipulation of Seedling Traits with Pulsed Light in Closed Controlled Environments. Environ. Exp. Bot. 2019, 166, 103803. [Google Scholar] [CrossRef]
- Harakotr, B.; Srijunteuk, S.; Rithichai, P.; Tabunhan, S. Effects of Light-Emitting Diode Light Irradiance Levels on Yield, Antioxidants and Antioxidant Capacities of Indigenous Vegetable Microgreens. Sci. Technol. Asia 2019, 24, 59–66. [Google Scholar] [CrossRef]
- Gao, M.; He, R.; Shi, R.; Li, Y.; Song, S.; Zhang, Y.; Su, W.; Liu, H. Combination of Selenium and Uva Radiation Affects Growth and Phytochemicals of Broccoli Microgreens. Molecules 2021, 26, 4646. [Google Scholar] [CrossRef]
- Tantharapornrerk, N.; Vichitsoonthonkul, T.; Techavuthiporn, C.; Photchanachai, S. Growth and Antioxidant System of Chinese Kale Microgreens in Response to Different Illumination of Light Sources. N. Z. J. Crop Hortic. Sci. 2023, 51, 108–122. [Google Scholar] [CrossRef]
- Graham, T.; Yorio, N.; Zhang, P.; Massa, G.; Wheeler, R. Early Seedling Response of Six Candidate Crop Species to Increasing Levels of Blue Light. Life Sci. Sp. Res. 2019, 21, 40–48. [Google Scholar] [CrossRef]
- Jones-Baumgardt, C.; Ying, Q.; Zheng, Y.; Bozzo, G.G. The Growth and Morphology of Microgreens Is Associated with Modified Ascorbate and Anthocyanin Profiles in Response to the Intensity of Sole-Source Light-Emitting Diodes. Can. J. Plant Sci. 2021, 101, 212–228. [Google Scholar] [CrossRef]
- Zhang, X.; Bian, Z.; Li, S.; Chen, X.; Lu, C. Comparative Analysis of Phenolic Compound Profiles, Antioxidant Capacities, and Expressions of Phenolic Biosynthesis-Related Genes in Soybean Microgreens Grown under Different Light Spectra. J. Agric. Food Chem. 2019, 67, 13577–13588. [Google Scholar] [CrossRef]
- Ying, Q.; Jones-Baumgardt, C.; Zheng, Y.; Bozzo, G. The Proportion of Blue Light from Light-Emitting Diodes Alters Microgreen Phytochemical Profiles in a Species-Specific Manner. HortScience 2021, 56, 13–20. [Google Scholar] [CrossRef]
- Kong, Y.; Schiestel, K.; Zheng, Y. Pure Blue Light Effects on Growth and Morphology Are Slightly Changed by Adding Low-Level UVA or Far-Red Light: A Comparison with Red Light in Four Microgreen Species. Environ. Exp. Bot. 2019, 157, 58–68. [Google Scholar] [CrossRef]
- Truzzi, F.; Whittaker, A.; Roncuzzi, C.; Saltari, A.; Levesque, M.P.; Dinelli, G. Microgreens: Functional Food with Antiproliferative Cancer Properties Influenced by Light. Foods 2021, 10, 1690. [Google Scholar] [CrossRef]
- Lau, T.Q.; Tang, V.T.H.; Kansedo, J. Influence of Soil and Light Condition on the Growth and Antioxidants Content of Amaranthus Cruentus (Red amaranth) Microgreen. IOP Conf. Ser. Mater. Sci. Eng. 2019, 495, 012051. [Google Scholar] [CrossRef]
- Rusu, T.; Moraru, P.I.; Mintas, O.S. Influence of Environmental and Nutritional Factors on the Development of Lettuce (Lactuca sativa L.) Microgreens Grown in a Hydroponic System: A Review. Not. Bot. Horti Agrobot. Cluj Napoca 2021, 49, 12427. [Google Scholar] [CrossRef]
- Brazaitytė, A.; Viršilė, A.; Samuolienė, G.; Vaštakaitė-Kairienė, V.; Jankauskienė, J.; Miliauskienė, J.; Novičkovas, A.; Duchovskis, P. Response of Mustard Microgreens to Different Wavelengths and Durations of UV-A LEDs. Front. Plant Sci. 2019, 10, 1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rusu, T.; Cowden, R.J.; Moraru, P.I.; Maxim, M.A.; Ghaley, B.B. Overview of Multiple Applications of Basil Species and Cultivars and the Effects of Production Environmental Parameters on Yields and Secondary Metabolites in Hydroponic Systems. Sustainability 2021, 13, 11332. [Google Scholar] [CrossRef]
- Kong, Y.; Kamath, D.; Zheng, Y. Blue versus Red Light Can Promote Elongation Growth Independent of Photoperiod: A Study in Four Brassica Microgreens Species. HortScience 2019, 54, 1955–1961. [Google Scholar] [CrossRef] [Green Version]
- Kong, Y.; Zheng, Y. Early-Stage Dark Treatment Promotes Hypocotyl Elongation Associated with Varying Effects on Yield and Quality in Sunflower and Arugula Microgreens. Can. J. Plant Sci. 2021, 101, 954–961. [Google Scholar] [CrossRef]
- Brazaitytė, A.; Vaštakaitė-Kairienė, V.; Jankauskienė, J.; Viršilė, A.; Samuolienė, G.; Sakalauskienė, S.; Novičkovas, A.; Miliauskienė, J.; Duchovskis, P. Effect of Blue Light Percentage on Mineral Elements Content in Brassica Microgreens. Acta Hortic. 2020, 1271, 119–125. [Google Scholar] [CrossRef]
- Bantis, F. Light Spectrum Differentially Affects the Yield and Phytochemical Content of Microgreen Vegetables in a Plant Factory. Plants 2021, 10, 2182. [Google Scholar] [CrossRef]
- Samuolienė, G.; Miliauskienė, J.; Kazlauskas, A.; Viršilė, A. Growth Stage Specific Lighting Spectra Affect Photosynthetic Performance, Growth and Mineral Element Contents in Tomato. Agronomy 2021, 11, 901. [Google Scholar] [CrossRef]
- Cathey, H.M.; Campbell, L.E. Security Lighting and Its Impact on the Landscape. Arboric. Urban For. 1975, 1, 181–187. [Google Scholar] [CrossRef]
- Zhou, Y.; Singh, B.R. Red Light Stimulates Flowering and Anthocyanin Biosynthesis in American Cranberry. Plant Growth Regul. 2002, 38, 165–171. [Google Scholar] [CrossRef]
- Li, Q.; Kubota, C. Effects of Supplemental Light Quality on Growth and Phytochemicals of Baby Leaf Lettuce. Environ. Exp. Bot. 2009, 67, 59–64. [Google Scholar] [CrossRef]
- Wu, M.C.; Hou, C.Y.; Jiang, C.M.; Wang, Y.T.; Wang, C.Y.; Chen, H.H.; Chang, H.M. A Novel Approach of LED Light Radiation Improves the Antioxidant Activity of Pea Seedlings. Food Chem. 2007, 101, 1753–1758. [Google Scholar] [CrossRef]
- Ilieva, I.; Ivanova, T.; Naydenov, Y.; Dandolov, I.; Stefanov, D. Plant Experiments with Light-Emitting Diode Module in Svet Space Greenhouse. Adv. Sp. Res. 2010, 46, 840–845. [Google Scholar] [CrossRef]
- Anjana, S.U.; Iqbal, M. Factors responsible for nitrate accumulation: A review. In Sustainable Agriculture; Lichtfouse, E., Navarrete, M., Debaeke, P., Véronique, S., Alberola, C., Eds.; Springer: Cham, Switzerland, 2009; pp. 533–554. ISBN 9789048126668. [Google Scholar]
- Kami, C.; Lorrain, S.; Hornitschek, P.; Fankhauser, C. Light-Regulated Plant Growth and Development. Curr. Top. Dev. Biol. 2010, 91, 29–66. [Google Scholar] [CrossRef] [Green Version]
- Hogewoning, S.W.; Trouwborst, G.; Maljaars, H.; Poorter, H.; van Ieperen, W.; Harbinson, J. Blue Light Dose-Responses of Leaf Photosynthesis, Morphology, and Chemical Composition of Cucumis Sativus Grown under Different Combinations of Red and Blue Light. J. Exp. Bot. 2010, 61, 3107–3117. [Google Scholar] [CrossRef]
- Iwai, M.; Ohta, M.; Tsuchiya, H.; Suzuki, T. Enhanced Accumulation of Caffeic Acid, Rosmarinic Acid and Luteolin-Glucoside in Red Perilla Cultivated under Red Diode Laser and Blue LED Illumination Followed by UV-A Irradiation. J. Funct. Foods 2010, 2, 66–70. [Google Scholar] [CrossRef]
- Wargent, J.J.; Jordan, B.R. From Ozone Depletion to Agriculture: Understanding the Role of UV Radiation in Sustainable Crop Production. New Phytol. 2013, 197, 1058–1076. [Google Scholar] [CrossRef]
- Neugart, S.; Schreiner, M. UVB and UVA as Eustressors in Horticultural and Agricultural Crops. Sci. Hortic. 2018, 234, 370–381. [Google Scholar] [CrossRef]
Author and Year | Country | Author and Year | Country |
---|---|---|---|
Kopsell et al. (2012) [20] | USA | Brazaitytė et al. (2020b) [21] | Lithuania |
Samuolienė et al. (2012) [22] | Lithuania | Mlinaric et al. (2020) [23] | Croatia |
Kopsell and Sams (2013) [24] | USA | Ying et al. (2020a) [25] | Canada |
Samuolienė et al. (2013) [26] | Lithuania | Kamal et al. (2020) [27] | Egypt |
Kopsell et al. (2014) [28] | USA | Ying et al. (2020b) [29] | Canada |
Wollaeger and Runkle (2014) [30] | USA | Ying et al. (2020c) [31] | Canada |
Brazaityte et al. (2015a) [32] | Lithuania | Meas et al. (2020) [33] | Thailand |
Brazaityte et al. (2015b) [34] | Lithuania | Vaštakaitė -Kairienė et al. (2020) [35] | Lithuania |
Vaštakaitė and Viršile (2015a) [36] | Lithuania | Brazaityte et al. (2020c) [37] | Lithuania |
Vaštakaitė et al. (2015b) [38] | Lithuania | Jones-Baumgardt et al. (2020) [39] | Canada |
Brazaitytė et al. (2016) [40] | Lithuania | Xonti et al. (2020) [41] | South Africa |
Samuolienė et al. (2016) [42] | Lithuania | Ying et al. (2020d) [43] | Canada |
Carvalho and Folta (2016) [44] | USA | Kong and Zheng (2020) [45] | Canada |
Gerovac et al. (2016) [46] | USA | Johnson et al. (2020) [47] | Canada |
Vaštakaite et al. (2017) [48] | Lithuania | Gao et al. (2021a) [49] | China |
Lobiuc et al. (2017) [50] | Romania | Toscano et al. (2021) [51] | Italy |
Samuolienė et al. (2017) [52] | Lithuania | Maina et al. (2021) [53] | South Korea |
Kopsell et al. (2017) [54] | USA | Giménez et al. (2021) [55] | Spain |
Craver et al. (2017) [56] | USA | Byrdwel et al. (2021) [57] | USA |
Brazaitytė et al. (2018) [58] | Lithuania | Lu et al. (2021) [59] | China |
Vaštakaitė et al. (2018) [60] | Lithuania | Ferrón-Carrillo et al. (2021) [61] | Spain |
Zhang et al. (2019a) [62] | China | Alrifai et al. (2021) [63] | Canada |
Kyriacou et al. (2019) [64] | Italy | Vetchinnikov et al. (2021) [6] | Russia |
Song et al. (2019) [65] | USA | Brazaityté et al. (2021) [7] | Lithuania |
Harakotr et al. (2019) [66] | Thailand | Gao et al. (2021b) [67] | China |
Jones-Baumgardt et al. (2019) [8] | Canada | Tantharapornrerk et al. (2021) [68] | Thailand |
Graham et al. (2019) [69] | USA | Jones-Baumgardt et al. (2021) [70] | Canada |
Zhang et al. (2019b) [71] | China | Ying et al. (2021) [72] | Canada |
Kong et al. (2019a) [73] | Canada | Truzzi et al. (2021) [74] | Italy |
Lau et al. (2019) [75] | Malaysia | Rusu et al. (2021a) [76] | Romania |
Brazaityte et al. (2019) [77] | Lithuania | Rusu et al. (2021b) [78] | Romania |
Kong et al. (2019b) [79] | Canada | Kong and Zheng (2021) [80] | Canada |
Brazaityte et al. (2020a) [81] | Lithuania | Bantis (2021) [82] | Greece |
Kong et al. (2020) [19] | Canada |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pescarini, H.B.; Silva, V.G.d.; Mello, S.d.C.; Purquerio, L.F.V.; Sala, F.C.; Zorzeto Cesar, T.Q. Updates on Microgreens Grown under Artificial Lighting: Scientific Advances in the Last Two Decades. Horticulturae 2023, 9, 864. https://doi.org/10.3390/horticulturae9080864
Pescarini HB, Silva VGd, Mello SdC, Purquerio LFV, Sala FC, Zorzeto Cesar TQ. Updates on Microgreens Grown under Artificial Lighting: Scientific Advances in the Last Two Decades. Horticulturae. 2023; 9(8):864. https://doi.org/10.3390/horticulturae9080864
Chicago/Turabian StylePescarini, Henrique Baeninger, Vitor Gonçalves da Silva, Simone da Costa Mello, Luis Felipe Villani Purquerio, Fernando Cesar Sala, and Thais Queiroz Zorzeto Cesar. 2023. "Updates on Microgreens Grown under Artificial Lighting: Scientific Advances in the Last Two Decades" Horticulturae 9, no. 8: 864. https://doi.org/10.3390/horticulturae9080864
APA StylePescarini, H. B., Silva, V. G. d., Mello, S. d. C., Purquerio, L. F. V., Sala, F. C., & Zorzeto Cesar, T. Q. (2023). Updates on Microgreens Grown under Artificial Lighting: Scientific Advances in the Last Two Decades. Horticulturae, 9(8), 864. https://doi.org/10.3390/horticulturae9080864