Optimizing Entomopathogenic Nematode Genetics and Applications for the Integrated Management of Horticultural Pests
Abstract
:1. Introduction
2. EPN Biology and Ecology
3. Potential of the Symbionts in IPM
4. Potential of the EPNs in IPM
4.1. General Precautions for Optimal EPN Applications
4.2. Applications of EPNs in IPM
5. Genetic Techniques to Enhance EPN Efficacy
5.1. General Aspects of Insect-EPN Interactions
5.2. Current EPN Genetic Techniques to Optimize Insect–EPN Interactions
5.3. Exploring EPNs Molecular Tools for Favorable Plant–Insect Interactions
5.4. Modern Examples of Progress Based on EPN-Molecular Techniques
6. Biocontrol Methods of Insect Pests by EPNs
6.1. Augmentation or Inundative Biocontrol
6.2. Classical Biocontrol
6.3. Conservation Biocontrol
7. Avoiding Unfavorable Aspects of EPN for Further IPM Exploitation
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poinar, G.O.; Thomas, G.M.; Hess, R. Characteristics of the specific bacterium associated with Heterorhabditis bacteriophora (Heterorhabditidae: Rhabditida). Nematologica 1977, 23, 97–102. [Google Scholar]
- Piedra Buena, A.; López–Cepero, J.; Campos–Herrera, R. Entomopathogenic nematode production and application: Regulation, ecological impact and non-target effects. In Nematodes Pathogenesis of Insects and Other Pests; Campos-Herrera, R., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 253–280. [Google Scholar] [CrossRef]
- Askary, T.H.; Abd-Elgawad, M.M.M. Beneficial nematodes in agroecosystems: A global perspective. In Biocontrol Agents: Entomopathogenic and Slug Parasitic Nematodes; Abd-Elgawad, M.M.M., Askary, T.H., Coupland, J., Eds.; CAB International: Wallingford, UK, 2017; pp. 3–25. [Google Scholar]
- Koppenhöfer, A.M.; Shapiro-Ilan, D.I.; Hiltpold, I. Entomopathogenic nematodes in sustainable food production. Front. Sustain. Food Syst. 2020, 4, 125. [Google Scholar] [CrossRef]
- Gaugler, R.; Kaya, H.K. Entomopathogenic Nematodes in Biological Control; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Bedding, R.; Akhurst, R.; Kaya, H. Nematodes as the Biological Control of Insect Pests; CSIRO Publishing: East Melbourne, Australia, 1993. [Google Scholar] [CrossRef]
- Gaugler, R. Entomopathogenic Nematology; CABI Publishing: Wallingford, UK, 2002. [Google Scholar] [CrossRef]
- Grewal, P.S.; Ehlers, R.-U.; Shapiro-Ilan, D.I. Nematodes as Biocontrol Agents; CABI Publishing: Wallingford, UK, 2005. [Google Scholar] [CrossRef]
- Campos-Herrera, R. Nematode Pathogenesis of Insect and Other Pests; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M.; Askary, T.H.; Coupland, J. (Eds.) Biocontrol Agents: Entomopathogenic and Slug Parasitic Nematodes; CAB International: Wallingford, UK, 2017; 648p. [Google Scholar] [CrossRef]
- Shapiro-Ilan, D.; Hazir, S.; Glazer, I. Advances in use of entomopathogenic nematodes. In Integrated Management of Insect Pests: Current and Future Developments; Kogan, M., Heinrichs, E.A., Eds.; Burleigh Dodds Science Publication: Cambridge, UK, 2020; pp. 1–30. [Google Scholar]
- Bhat, A.H.; Chaubey, A.K.; Askary, T.H. Global distribution of entomopathogenic nematodes, Steinernema and Heterorhabditis. Egypt. J. Biol. Pest Control 2020, 30, 31. [Google Scholar] [CrossRef] [Green Version]
- Hazir, S.; Kaya, H.; Touray, M.; Cimen, H.; Shapiro-Ilan, D. Basic laboratory and field manual for conducting research with the entomopathogenic nematodes, Steinernema and Heterorhabditis, and their bacterial symbionts. Turk. J. Zool. 2022, 46, 305–350. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Photorhabdus spp.: An overview of the beneficial aspects of mutualistic bacteria of insecticidal nematodes. Plants 2021, 10, 1660. [Google Scholar] [CrossRef] [PubMed]
- Abd-Elgawad, M.M.M. Xenorhabdus spp.: An overview of the useful facets of mutualistic bacteria of entomopathogenic nematodes. Life 2022, 12, 1360. [Google Scholar] [CrossRef] [PubMed]
- Shapiro-Ilan, D.I.; Hiltpold, I.; Lewis, E.E. Ecology of invertebrate pathogens: Nematodes. In Ecology of Invertebrate Diseases; Hajek, A.E., Shapiro-Ilan, D.I., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018; pp. 415–440. [Google Scholar] [CrossRef]
- Helms, A.M.; Ray, S.; Matulis, N.L.; Kuzemchak, M.C.; Grisales, W.; Tooker, J.F.; Ali, J. Chemical cues linked to risk: Cues from below-ground natural enemies enhance plant defences and influence herbivore behaviour and performance. Funct. Ecol. 2019, 33, 798–808. [Google Scholar] [CrossRef]
- Lu, D.; Macchietto, M.; Chang, D.; Barros, M.M.; Baldwin, J.; Mortazavi, A.; Dillman, A.R. Activated entomopathogenic nematode infective juveniles release lethal venom proteins. PLoS Pathog. 2017, 13, e1006302. [Google Scholar] [CrossRef] [Green Version]
- Chang, D.Z.; Serra, L.; Lu, D.; Mortazavi, A.; Dillman, A.R.A. Core set of venom proteins is released by entomopathogenic nematodes in the genus Steinernema. PLoS Pathog. 2019, 15, e1007626. [Google Scholar] [CrossRef] [Green Version]
- da Silva, W.J.; Pilz-Júnior, H.L.; Heermann, R.; da Silva, O.S. The great potential of entomopathogenic bacteria Xenorhabdus and Photorhabdus for mosquito control: A review. Parasites Vectors 2020, 13, 376. [Google Scholar] [CrossRef]
- Kim, E.; Jeoung, S.; Park, Y.; Kim, K.; Kim, Y. A novel formulation of Bacillus thuringiensis for the control of brassica leaf beetle, Phaedon brassicae (Coleoptera: Chrysomelidae). J. Econ. Entomol. 2015, 108, 2556–2565. [Google Scholar] [CrossRef] [PubMed]
- Eom, S.; Park, Y.; Kim, H.; Kim, Y. Development of a high efficient “dual Bt-plus” insecticide using a primary form of an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. Biotechnol. 2014, 24, 507–521. [Google Scholar] [CrossRef] [PubMed]
- Keskes, S.; Jallouli, W.; Atitallah, I.B.; Driss, F.; Sahli, E.; Chamkha, M.; Touns, S. Development of a cost-effective medium for Photorhabdus temperata bioinsecticide production from wastewater and exploration of performance kinetic. Sci. Rep. 2021, 11, 779. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Toxic secretions of Photorhabdus and their efficacy against crop insect pests. In Biocontrol Agents: Entomopathogenic and Slug Parasitic Nematodes; Abd-Elgawad, M.M.M., Askary, T.H., Coupland, J., Eds.; CAB International: Wallingford, UK, 2017; pp. 231–260. [Google Scholar]
- Abd-Elgawad, M.M.M. Optimizing sampling and extraction methods for plant-parasitic and entomopathogenic nematodes. Plants 2021, 10, 629. [Google Scholar] [CrossRef] [PubMed]
- Machado, R.A.R.; Muller, A.; Ghazal, S.; Thanwisai, A.; Pagès, S.; Bode, H.B.; Hussein, M.A.; Khalil, K.M.; Tisa, L.S. Photorhabdus heterorhabditis subsp. aluminescens subsp. nov., Photorhabdus heterorhabditis subsp. heterorhabditis subsp. nov., Photorhabdus australis subsp. thailandensis subsp. nov., Photorhabdus australis subsp. australis subsp. nov., and Photorhabdus aegyptia sp. nov. isolated from Heterorhabditis entomopathogenic nematodes. Int. J. Syst. Evol. Microbiol. 2021, 71, 004160. [Google Scholar]
- Castaneda-Alvarez, C.; Prodan, S.; Zamorano, A.; San-Blas, E.; Aballay, E. Xenorhabdus lircayensis sp. nov., the symbiotic bacterium associated with the entomopathogenic nematode Steinernema unicornum. Int. J. Syst. Evol. Microbiol. 2021, 71, 005151. [Google Scholar] [CrossRef]
- Bock, C.H.; Shapiro-Ilan, D.I.; Wedge, D.E.; Cantrell, C.L. Identification of the antifungal compound, trans-cinnamic acid, produced by Photorhabdus luminescens, a potential biopesticide against pecan scab. J. Pest Sci. 2014, 87, 155–162. [Google Scholar] [CrossRef]
- Wu, S.; Toews, M.D.; Cottrell, T.C.; Schmidt, J.M.; Shapiro-Ilan, D.I. Toxicity of Photorhabdus luminescens and Xenorhabdus bovienii bacterial metabolites to pecan aphids (Hemiptera: Aphididae) and the lady beetle Harmonia axyridis (Coleoptera: Coccinellidae). J. Invertebr. Pathol. 2022, 194, 107806. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Status of entomopathogenic nematodes in integrated pest management strategies in Egypt. In Biocontrol Agents: Entomopathogenic and Slug Parasitic Nematodes; Abd-Elgawad, M.M.M., Askary, T.H., Coupland, J., Eds.; CAB International: Wallingford, UK, 2017; pp. 473–501. [Google Scholar]
- Abd-Elgawad, M.M. M Towards optimization of entomopathogenic nematodes for more service in the biological control of insect pests. Egypt. J. Biol. Pest Control 2019, 29, 77. [Google Scholar] [CrossRef]
- Stevens, G.; Lewis, E. Status of entomopathogenic nematodes in integrated pest management strategies in the USA. In Biocontrol Agents: Entomopathogenic and Slug Parasitic Nematodes; Abd-Elgawad, M.M.M., Askary, T.H., Coupland, J., Eds.; CAB International: Wallingford, UK, 2017; pp. 289–311. [Google Scholar]
- Askary, T.H.; Abd-Elgawad, M.M.M. Opportunities and challenges of entomopathogenic nematodes as biocontrol agents in their tripartite interactions. Egypt. J. Biol. Pest Control 2021, 31, 42. [Google Scholar] [CrossRef]
- Koppenhöfer, A.M.; Kostromytska, O.S.; McGraw, B.A.; Ebssa, L. Entomopathogenic nematodes in turfgrass: Ecology and management of important insect pests in North America. In Nematode Pathogenesis of Insects and Other Pests; Campos-Herrera, R., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 309–327. [Google Scholar]
- Ansari, M.A.; Shah, F.A.; Butt, T.M. Combined use of entomopathogenic nematodes and Metarhizium anisopliae as a new approach for black vine weevil, Otiorhynchus sulcatus, control. Entomol Exp. Appl. 2008, 129, 340–347. [Google Scholar] [CrossRef]
- Ebssa, L.; Borgemeister, C.; Poehling, H.-M. Simultaneous application of entomopathogenic nematodes and predatory mites to control western flower thrips Frankliniella occidentalis. Biol. Control 2006, 39, 66–74. [Google Scholar] [CrossRef]
- Otieno, J.A.; Pallmann, P.; Poehling, H.M. The combined effect of soil-applied azadirachtin with entomopathogens for integrated management of western flower thrips. J. Appl. Entomol. 2015, 140, 174–186. [Google Scholar] [CrossRef] [Green Version]
- Koppenhöfer, A.M.; Kostromytska, O.S.; Wu, S. Optimizing the use of entomopathogenic nematodes for the management of Listronotus maculicollis (Coleoptera: Curculionidae): Split applications and combinations with imidacloprid. Crop Prot. 2020, 137, 105229. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Optimizing biological control agents for controlling nematodes of tomato in Egypt. Egypt. J. Biol. Pest Control 2020, 30, 58. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Biological control agents in the integrated nematode management of pepper in Egypt. Egypt. J. Biol. Pest Control 2020, 30, 70. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Biological control agents in the integrated nematode management of potato in Egypt. Egypt. J. Biol. Pest Control 2020, 30, 121. [Google Scholar] [CrossRef]
- Kepenekci, I.; Hazir, S.; Oksal, E.; Lewis, E.E. Application methods of Steinernema feltiae, Xenorhabdus bovienii and Purpureocillium lilacinum to control root-knot nematodes in greenhouse tomato systems. Crop Prot. 2018, 108, 31–38. [Google Scholar] [CrossRef]
- Baltensperger, D.D.; Quesenberry, K.H.; Dunn, R.A.; Abd-Elgawad, M.M. Root-knot nematode interaction with berseem clover and other temperate forage legumes. Crop Sci. 1985, 25, 848–851. [Google Scholar] [CrossRef]
- Hazir, S.; Shapiro-Ilan, D.I.; Bock, C.H.; Hazir, C.; Leite, L.G.; Hotchkiss, M.W. Relative potency of culture supernatants of Xenorhabdus and Photorhabdus spp. on growth of some fungal phytopathogens. Eur. J. Plant Pathol. 2016, 146, 369–381. [Google Scholar] [CrossRef]
- Berry, R.E.; Liu, J.; Groth, E. Efficacy and persistence of Heterorhabditis marelatus (Rhabditida: Heterorhabditidae) against root weevils (Coleoptera: Curculionidae) in strawberry. Environ. Entomol. 1997, 26, 465–470. [Google Scholar] [CrossRef]
- Booth, S.R.; Tanigoshi, L.K.; Shanks, C.H., Jr. Evaluation of entomopathogenic nematodes to manage root weevil larvae in Washington State cranberry, strawberry, and red raspberry. Environ. Entomol. 2002, 31, 895–902. [Google Scholar] [CrossRef]
- Shields, E.J.; Testa, A.; Neumann, G.; Flanders, K.L.; Schroeder, P.C. Biological control of alfalfa snout beetle with a multi-species application of locally-adapted persistent entomopathogenic nematodes: The first success. Am. Entomol. 2009, 55, 250–257. [Google Scholar] [CrossRef] [Green Version]
- Shields, E.J. Utilizing persistent entomopathogenic nematodes in a conservation or a more classical biological control approach. In Nematode Pathogenesis of Insects and Other Pests; Campos-Herrera, R., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 165–184. [Google Scholar]
- Bruck, D.J.; Edwards, D.L.; Donahue, K.M. Susceptibility of the strawberry crown moth (Lepidoptera: Sesiidae) to entomopathogenic nematodes. J. Econ. Entomol. 2008, 101, 251–255. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Optimizing safe approaches to manage plant-parasitic nematodes. Plants 2021, 10, 1911. [Google Scholar] [CrossRef] [PubMed]
- Askary, T.H.; Bhat, A.H.; Machado, R.A.R.; Ahmad, M.J.; Abd-Elgawad, M.M.M.; Khan, A.A.; Gani, M. Virulence and reproductive potential of Indian entomopathogenic nematodes against the larvae of the rice meal moth. Arch. Phytopathol. Plant Prot. 2023, 55, 2237–2249. [Google Scholar] [CrossRef]
- Godina, G.; Vandenbossche, B.; Schmidt, M.; Sender, A.; Tambe, A.H.; Touceda-González, M.; Ehlers, R.-U. Entomopathogenic nematodes for biological control of Psylliodes chrysocephala (Coleoptera: Chrysomelidae) in oilseed rape. J. Invertebr. Pathol. 2023, 197, 107894. [Google Scholar] [CrossRef]
- Shapiro-Ilan, D.; Arthurs, S.P.; Lacey, L.A. Microbial control of arthropod pests of orchards in temperate climates. In Microbial Control of Insect and Mite Pests; Lacey, L.A., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 253–267. [Google Scholar] [CrossRef]
- Shehata, I.E.; Hammam, M.M.A.; Abd-Elgawad, M.M.M. Effects of inorganic fertilizers on virulence of the entomopathogenic nematode Steinernema glaseri and peanut germination under field conditions. Agronomy 2021, 11, 945. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M. Can rational sampling maximise isolation and fix distribution measure of entomopathogenic nematodes. Nematology 2020, 22, 907–916. [Google Scholar] [CrossRef]
- Shapiro-Ilan, D.; Garrigos, L.L.; Han, R. Production of entomopathogenic nematodes. In Mass Production of Beneficial Organisms: Invertebrates and Entmopathogens, 2nd ed.; Mrales-Ramos, J., Rojas, G., Shapiro-Ilan, D.I., Eds.; Academic Press: Amsterdam, The Netherlands, 2023; pp. 293–316. [Google Scholar]
- Oliveira-Hofman, C.; Kaplan, F.; Stevens, G.; Lewis, E.E.; Wu, S.; Alborn, H.T.; Perret-Gentil, A.; Shapiro-Ilan, D.I. Pheromone extracts act as boosters for entomopathogenic nematodes efficacy. J. Invertebr. Pathol. 2019, 164, 38–42. [Google Scholar] [CrossRef]
- Grewal, P.; Bornstein-Forst, S.B.; Rnell, A.; Glazer, I.; Jagdale, G. Physiological, genetic, and molecular mechanisms of chemoreception, thermobiosis, and anhydrobiosis in entomopathogenic nematodes. Biol. Control Theory Appl. Pest Manag. 2006, 38, 54–65. [Google Scholar] [CrossRef]
- El-Lakwah, S.; Azazy, A. Physiological and biological studies of some entomopathogenic nematode species of families (steinernematidae and heterorabditidae). Egypt. Acad. J. Biol. Sci. C Physiol. Mol. Biol. 2010, 2, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Heena; Rana, A.; Bhat, A.H.; Chaubey, A.K. Morpho-taxometrical and molecular characterization of Steinernema abbasi (Nematoda: Steinernematidae) and its pathogenicity and generative potential against lepidopteran pests. Egypt. J. Biol. Pest Control 2021, 31, 21. [Google Scholar] [CrossRef]
- Glazer, I.; Shapiro-Ilan, D.I. Genetic improvement of beneficial organisms. In Nematodes as Model Organisms; Glazer, I., Shapiro Ilan, D.I., Sternberg, P., Eds.; CAB International: Wallingford, UK, 2022; pp. 346–364. [Google Scholar]
- Gaugler, R. Entomogenous nematodes and their prospects for genetic improvement. In Biotechnology in Invertebrate Pathology and Cell Culture; Maramorosch, K., Ed.; Academic Press: San Diego, CA, USA, 1987; pp. 457–484. [Google Scholar]
- Glazer, I. Improvement of entomopathogenic nematodes: A genetic approach. In Nematode Pathogenesis of Insects and Other Pests; Campos-Herrera, R., Ed.; Springer: Cham, Switzerland, 2015; pp. 29–55. [Google Scholar]
- Gaugler, R.; Campbell, J.F. Selection for enhanced host-finding of scarab larvae (Coleoptera: Scarabaeidae) in an entomopathogenic nematode, Environ. Entomol. 1991, 20, 700–706. [Google Scholar] [CrossRef]
- Santhi, V.S.; Ment, D.; Salame, L.; Soroker, V.; Glazer, I. Genetic improvement of host-seeking ability in the entomopathogenic nematodes Steinernema carpocapsae and Heterorhabditis bacteriophora toward the Red Palm Weevil Rhynchophorus ferrugineus. Biol. Control 2016, 100, 29–36. [Google Scholar] [CrossRef]
- Peters, A.; Ehlers, R.-U. Evaluation and selection for enhanced nematode pathogenicity against Tipula spp. In Pathogenicity of Entomopathogenic Nematodes Versus Insect Defence Mechanisms: Impact on Selection of Virulent Strains; Simoes, N., Boemare, N., Ehlers, R.-U., Eds.; European Commission Publications: Luxembourg, 1998; pp. 225–242. [Google Scholar]
- Vandenbossche, B.; Barg, M.; Postel, H.; Ladurner, E.; Piergiacomi, M.; Ehlers, R.-U. Efficacy of species mixtures of entomopathogenic nematodes against different larval stages of cockchafers. In Proceedings of the 7th International Congress of Nematology, Antibes Juan-les-Pins, France, 1–5 May 2022; p. 348. [Google Scholar]
- Grewal, P.S.; Tomalak, M.; Keil, C.B.O.; Gaugler, R. Evaluation of a genetically selected strain of Steinemema feltiae against the mushroom sciarid Lycoriella mali. Ann. Appl. Biol. 1993, 123, 695–702. [Google Scholar] [CrossRef]
- Molina, C.; Sumaya, N.H.N.; Godina, G.; Singh, R.; Kirsch, C.; Vandenbossche, B.; Dörfler, V.; Barg, M.; Ehlers, R.-U. Extending the survival of Heterorhabditis bacteriophora through phenotype selection and marker-assisted breeding. In Proceedings of the 7th International Congress of Nematology, Antibes Juan-les-Pins, France, 1–5 May 2022; p. 287. [Google Scholar]
- Glazer, I.; Kozodoi, E.; Hashmi, G.; Gaugler, R. Biological characteristics of the entomopathogenic nematode Heterorhabditis sp. IS-5: A heat tolerant isolate from Israel. Nematologica 1996, 42, 481–492. [Google Scholar] [CrossRef]
- Mracek, Z.; Becvar, S.; Kindlmann, P.; Webster, J.M. Infectivity and specificity of Canadian and Czech isolates of Steinernema kraussei (Steiner, 1923) to some insect pests at low temperatures in the laboratory. Nematologica 1998, 44, 437–448. [Google Scholar]
- Ehlers, R.-U.; Molina, C.; Vandenbossche, B.; Toepfer, S. Diabrotica v. virgifera management using genetically improved strains of Heterorhabditis bacteriophora. In Proceedings of the 7th International Congress of Nematology, Antibes Juan-les-Pins, France, 1–5 May 2022; p. 347. [Google Scholar]
- Glazer, I.; Salame, L.; Segal, D. Genetic enhancement of nematicide resistance in entomopathogenic nematodes. Biocontrol Sci. Technol. 1997, 7, 499–512. [Google Scholar] [CrossRef]
- Gaugler, R.; McGuire, R.; Campbell, J. Genetic variability among strains of the entomopathogenic nematode Steinememafeltiae. J. Nematol. 1989, 21, 247–253. [Google Scholar]
- Nugent, M.J.; Burnell, A.M. The Cryopreservation of Heterorhabditis, COST 8 J 2 Workshop; EUR 15681 EN Report; European Commission: Maynooth, Ireland, 1994; pp. 188–189. [Google Scholar]
- Brey, C.W.; Hashmi, S. Genetic improvement of entomopathogenic nematodes for insect biocontrol. In Advances in Microbial Control of Insect Pests; Upadhyay, R.K., Ed.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2002; pp. 297–311. [Google Scholar]
- O’Leary, S.A.; Burnell, A.M. The isolation of mutants of Heterorhabditis megidis (Strain UK211) with increased desiccation tolerance. Fundam. Appl. Nematol. 1997, 20, 197–205. [Google Scholar]
- Seifert, H.S.; Chen, E.Y.; So, M.; Heffron, F. Shuttle mutagenesis: A method of transposon mutagenesis for Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1986, 83, 735–739. [Google Scholar] [CrossRef]
- Koltai, H.; Glazer, I.; Segal, D. Phenotypic and genetic characterization of two new mutants of Heterorhabditis bacteriophora. J. Nematol. 1994, 26, 32–39. [Google Scholar] [PubMed]
- Cao, M.; Schwartz, H.T.; Tan, C.H.; Sternberg, P.W. The entomopathogenic nematode Steinernema hermaphroditum is a self-fertilizing hermaphrodite and a genetically tractable system for the study of parasitic and mutualistic symbiosis. Genetics. 2022, 220, 170. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, D.I.; Glazer, I.; Segal, D. Genetic improvement of heat tolerance in Heterorhabditis bacteriophora through hybridization. Biol. Control 1997, 8, 153–159. [Google Scholar] [CrossRef]
- Sharifi-Far, S.; Shapiro-Ilan, D.I.; Brownbridge, M.; Hallett, R.H. The combined approach of strain discovery and the inbred line technique for improving control of Delia radicum with Heterorhabditis bacteriophora. Biol. Control 2018, 118, 37–43. [Google Scholar] [CrossRef]
- Hashmi, S.; Hashmi, G.; Gaugler, R. Genetic transformation of an entomopathogenic nematode by microinjection. J. Invertebr. Pathol. 1995, 66, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Vellai, T.; Molnar, A.; Laktos, L.; Banfalvi, Z.; Fodor, A.; Saringer, G. Transgenic nematodes carrying a cloned stress gene from yeast. In Survival of Entomopathogenic Nematodes; Glazer, I., Richardson, P., Boemare, N., Coudert, F., Eds.; European Commission Publication: Luxembourg, 1999; pp. 105–119. [Google Scholar]
- Hashmi, S.; Abu Hatab, M.A.; Gaugler, R. GFP: Green fluorescent protein a versatile gene marker for entomopathogenic nematodes. Fundam. Appl. Nematol. 1997, 20, 323–327. [Google Scholar]
- Baiocchi, T.; Abd-Elgawad, M.M.M.; Dillman, A.R. Genetic improvement of entomopathogenic nematodes for enhanced biological control. In Biocontrol Agents: Entomopathogenic and Slug Parasitic Nematodes; Abd-Elgawad, M.M.M., Askary, T.H., Coupland, J., Eds.; CAB International: Wallingford, UK, 2017; pp. 505–517. [Google Scholar]
- St Leger, R.J.; Joshi, L.; Bidochka, M.J.; Roberts, D.W. Construction of an improved mycoinsecticide over-expressing a toxic protease. Proc. Natl. Acad. Sci. USA 1996, 93, 6349–6354. [Google Scholar] [CrossRef] [PubMed]
- Pava-Ripoll, M.; Posada, F.J.; Momen, B.; Wang, C.; Leger, R.S. Increased pathogenicity against coffee berry borer, Hypothenemus hampei (Coleoptera: Curculionidae) by Metarhizium anisopliae expressing the scorpion toxin (AaIT) gene. J. Invertebr. Pathol. 2008, 99, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Adams, B.J.; Ciche, T.A.; Clifton, S.; Gaugler, R.; Kim, K.-S.; Spieth, J.; Sternberg, P.W.; Wilson, R.K.; Grewal, P.S. A lover and a fighter: The genome sequence of an entomopathogenic nematode Heterorhabditis bacteriophora. PLoS ONE 2013, 8, e69618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abuhatab, M.; Selvan, S.; Gaugler, R. Role of proteases in penetration of insect gut by the entomopathogenic nematode Steinernema glaseri (Nematoda, Steinernematidae). J. Invertebr. Pathol. 1995, 66, 125–130. [Google Scholar] [CrossRef]
- Balasubramanian, N.; Hao, Y.J.; Toubarro, D.; Nascimento, G.; Simoes, N. Purification, biochemical and molecular analysis of a chymotrypsin protease with prophenoloxidase suppression activity from the entomopathogenic nematode Steinernema carpocapsae. Int. J. Parasitol. 2009, 39, 975–984. [Google Scholar] [CrossRef] [PubMed]
- McKerrow, J.H.; Caffrey, C.; Kelly, B.; Loke, P.; Sajid, M. Proteases in parasitic diseases. Ann. Rev. Pathol.—Mech. Dis. 2006, 1, 497–536. [Google Scholar] [CrossRef] [PubMed]
- Solomon, A.; Solomon, R.; Paperna, I.; Glazer, I. Desiccation stress of entomopathogenic nematodes induces the accumulation of a novel heat-stable protein. Parasitology 2000, 121, 409–416. [Google Scholar] [CrossRef]
- Wang, Y.; Gaugler, R. Steinernema glaseri surface coat protein suppresses the immune response of Popilliajaponica (Coleoptera: Sacarabaeidae) larvae. Biol. Control 1999, 14, 45–50. [Google Scholar] [CrossRef]
- Dillman, A.; Parks, S.; Nguyen, C.; Nasrolahi, S.; Lu, D.; Ramaswamy, R.; Buchman, A.; Akbari, O.; Yamanaka, N.; Boulanger, M. Molecular effectors in immune modulation and pathogenicity by entomopathogenic nematodes. In Proceedings of the 7th International Congress of Nematology, Antibes Juan-les-Pins, France, 1–5 May 2022; p. 78. [Google Scholar]
- Cockx, B.; Boelen, R.; Dalzell, J.; Temmerman, L. Mass spectrometry-driven discovery of neuropeptidergic systems regulating nictation in free-living and parasitic nematodes. In Proceedings of the 7th International Congress of Nematology, Antibes Juan-les-Pins, France, 1–5 May 2022; p. 81. [Google Scholar]
- Lefoulon, E.; McMullen, J.G.; Stock, S.P. Transcriptomic analysis of Steinernema nematodes highlights metabolic costs associated to Xenorhabdus endosymbiont association and rearing conditions. Front. Physiol. 2022, 13, 821845. [Google Scholar] [CrossRef]
- Levy, N.; Faigenboim, A.; Salame, L.; Molina, C.; Ehlers, R.-U.; Glazer, I.; Ment, D. Characterization of the phenotypic and genotypic tolerance to abiotic stresses of natural populations of Heterorhabditis bacteriophora. Sci. Rep. 2020, 10, 10500. [Google Scholar] [CrossRef]
- Ehlers, R.-U. Heterorhabditis bacteriophora: An excellent model for genetic improvement of biocontrol traits. In Proceedings of the 7th International Congress of Nematology, Antibes Juan-les-Pins, France, 1–5 May 2022; p. 644. [Google Scholar]
- Rajput, M.; Choudhary, K.; Kumar, M.; Vivekanand, V.; Chawade, A.; Ortiz, R.; Pareek, N. RNA interference and CRISPR/Cas gene editing for crop improvement: Paradigm shift towards sustainable agriculture. Plants 2001, 10, 1914. [Google Scholar] [CrossRef]
- Ibrahim, H.M.M.; Ahmad, E.M.; Martínez-Medina, A.; Aly, M.A.M. Effective approaches to study the plant-root knot nematode interaction. Plant Physiol. Biochem. 2019, 141, 332–342. [Google Scholar] [CrossRef]
- Jaffuel, G.; Sbaiti, I.; Turlings, T.C.J. Encapsulated entomopathogenic nematodes can protect maize plants from Diabrotica balteata larvae. Insects 2020, 11, 27. [Google Scholar] [CrossRef] [Green Version]
- Radhakrishnan, S.; Shanmugam, S.; Ramasamy, R. Biocontrol efficacy of entomopathogenic nematodes against black cutworms, Agrotis ipsilon (Hufnagel) (Noctuidae: Lepidoptera) in potato. Chem. Sci. Rev. Lett. 2017, 6, 219–224. [Google Scholar]
- Campos-Herrera, R.; Jaffuel, G.; Chiriboga, X.; Blanco-Pérez, R.; Fesselet, M.; Půža, V.; Mascher, F.; Turlings, T.C.J. Traditional and molecular detection methods reveal intense interguild competition and other multitrophic interactions associated with native entomopathogenic nematodes in Swiss tillage soils. Plant Soil 2015, 389, 237–255. [Google Scholar] [CrossRef]
- Nguyen, K.B.; Smart, G.C., Jr. Steinernema scapterisci n. sp. (Steinernematidae: Nematoda). J. Nematol. 1990, 22, 187–199. [Google Scholar] [PubMed]
- Dolinski, C.; Choo, H.Y.; Duncan, L.W. Grower acceptance of entomopathogenic nematodes: Case studies on three continents. J. Nematol. 2012, 44, 226–235. [Google Scholar]
- Duncan, L.W.; Stuart, R.J.; El-Borai, F.E.; Campos-Herrera, R.; Pathak, E.; Giurcanu, M.; Graham, J.H. Modifying orchard planting sites conserves entomopathogenic nematodes, reduces weevil herbivory and increases citrus tree growth, survival and fruit yield. Biol. Control 2013, 64, 26–36. [Google Scholar] [CrossRef]
- Hussaini, S.S. Entomopathogenic nematodes: Ecology, diversity and geographical distribution. In Biocontrol Agents: Entomopathogenic and Slug Parasitic Nematodes; Abd-Elgawad, M.M.M., Askary, T.H., Coupland, J., Eds.; CAB International: Wallingford, UK, 2017; pp. 88–142. [Google Scholar]
- Campos-Herrera, R.; Pathak, E.; El-Borai, F.E.; Schumann, A.; Abd-Elgawad, M.M.M.; Duncan, L.W. New citriculture system suppresses native and augmented entomopathogenic nematodes. Biol. Control 2013, 66, 183–194. [Google Scholar] [CrossRef]
- Nielsen, A.L.; Spence, K.O.; Nakatani, J.; Lewis, E.E. Effect of soil salinity on entomopathogenic nematode survival and behaviour. Nematology 2011, 3, 859–867. [Google Scholar] [CrossRef] [Green Version]
- Campos-Herrera, R.; Stuart, R.J.; Pathak, E.; EL-Borai, F.E.; Duncan, L.W. Temporal patterns of entomopathogenic nematodes in Florida citrus orchards: Evidence of natural regulation by microorganisms and nematode competitors. Soil Biol. Biochem. 2019, 128, 193–204. [Google Scholar] [CrossRef]
- Stuart, R.J.; El-Borai, F.E.; Duncan, L.W. From augmentation to conservation of entomopathogenic nematodes. Trophic cascades, habitat manipulation and enhanced biological control of Diaprepes abbreviatus in Florida citrus groves. J. Nematol. 2008, 40, 73–84. [Google Scholar]
- Campos-Herrera, R. Conservation biocontrol with entomopathogenic nematodes: Biotic and abiotic factors driving its potential. In Proceedings of the 7th International Congress of Nematology, Antibes Juan-les-Pins, France, 1–5 May 2022; p. 342. [Google Scholar]
- Dritsoulas, A.; El-Borai, F.E.; Shehata, I.E.; Hammam, M.M.; El-Ashry, R.M.; Mohamed, M.M.; Abd-Elgawad, M.M.; Duncan, L.W. Reclaimed desert habitats favor entomopathogenic nematode and microarthropod abundance compared to ancient farmlands in the Nile Basin. J. Nematol. 2021, 53, 1–13. [Google Scholar] [CrossRef]
- Shehata, I.E.; Hammam, M.M.A.; El-Borai, F.E.; Duncan, L.W.; Abd-Elgawad, M.M.M. Comparison of virulence, reproductive potential, and persistence among local Heterorhabditis indica populations for the control of Temnorhynchus baal (Reiche & Saulcy) (Coleoptera: Scarabaeidae) in Egypt. Egypt. J. Biol. Pest Control 2019, 29, 32. [Google Scholar] [CrossRef]
- Abd-Elgawad, M.M.M.; Askary, T.H. Factors affecting success of biological agents used in controlling plant-parasitic nematodes. Egypt. J. Biol. Pest. Control 2020, 30, 17. [Google Scholar] [CrossRef]
- Anbesse, S.; Sumaya, N.H.; Dörfler, A.V.; Strauch, O.; Ehlers, R.-U. Selective breeding for desiccation tolerance in liquid culture provides genetically stable inbred lines of the entomopathogenic nematode Heterorhabditis bacteriophora. Appl. Microbiol. Biotechnol. 2013, 97, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Ehlers, R.-U.; Oestergaard, J.; Hollmer, S.; Wingen, M.; Strauch, O. Genetic selection for heat tolerance and low temperature activity of the entomopathogenic nematode–bacterium complex Heterorhabditis bacteriophora–Photorhabdus luminescens. Biocontrol 2005, 50, 699–716. [Google Scholar] [CrossRef]
- Jagdale, G.B.; Grewal, P.S. Storage temperature influences desiccation and ultra violet radiation tolerance of entomopathogenic nematodes. J. Therm. Biol. 2007, 32, 20–27. [Google Scholar] [CrossRef]
- Tomalak, M. Genetic improvement of Steinernema feltiae for integrated control of the western flower thrips Frankliniella occidentalis. IOBC/WPRS Bull. 1994, 17, 17–20. [Google Scholar]
- Gaugler, R.; Wilson, M.; Shearer, P. Field release and environmental fate of a transgenic entomopathogenic nematode. Biol. Control 1997, 9, 75–80. [Google Scholar] [CrossRef]
- Zhang, H.; Mao, J.; Liu, F.; Zeng, F. Expression of a nematode symbiotic bacterium-derived protease inhibitor protein in tobacco enhanced tolerance against Myzus persicae. Plant Cell Rep. 2012, 31, 1981–1989. [Google Scholar] [CrossRef]
- Zhen, S.; Li, Y.; Hou, Y.; Gu, X.; Zhang, L.; Ruan, W.; Shapiro-Ilan, D. Enhanced entomopathogenic nematode yield and fitness via addition of pulverized insect powder to solid media. J. Nematol. 2018, 50, 495–506. [Google Scholar] [CrossRef] [Green Version]
- Dunn, M.D.; Malan, A.P. Protein source impact on the recovery and yield of entomopathogenic nematodes, using in vitro liquid culture. In Proceedings of the 7th International Congress of Nematology, Antibes Juan-les-Pins, France, 1–5 May 2022; p. 642. [Google Scholar]
- Shapiro-Ilan, D.I.; Cottrell, T.E.; Mizell, R.F.; Horton, D.L.; Behle, R.W.; Dunlap, C.A. Efficacy of Steinernema carpocapsae for control of the lesser peachtree borer, Synanthedon pictipes: Improved aboveground suppression with a novel gel application. Biol. Control 2010, 54, 23–28. [Google Scholar] [CrossRef]
- Duncan, L.W.; McCoy, C.W. Vertical distribution in soil, persistence, and efficacy against citrus root weevil (Coleoptera: Curculionidae) of two species of entomogenous nematodes (Rhabditida: Steinernematidae; Heterorhabditidae). Environ. Entomol. 1996, 25, 174–178. [Google Scholar] [CrossRef]
- Marianelli, L.; Paoli, F.; Torrini, G.; Mazza, G.; Benvenuti, C.; Binazzi, F.; Peverieri, G.S.; Bosio, G.; Venanzio, D.; Giacometto, E.; et al. Entomopathogenic nematodes as potential biological control agents of Popillia japonica (Coleoptera, scarabaeidae) in piedmont region (Italy). J. Appl. Entomol. 2018, 142, 311–318. [Google Scholar] [CrossRef]
- Jiménez, J.A.; López, N.J.C.; Soto, G.A. Patogenicidad de dos nemátodos entomopatogenos sobre Metamasius hemipterus sericeus (Coleoptera: Curculionidae). Boletín Científico Mus. De Hist. Nat. 2012, 16, 87–97. [Google Scholar]
- Leite, L.G.; Machado, L.A.; Goulart, R.M.; Tavares, F.M.; Batista-Filho, A. Screening of entomopathogenic nematodes (Nemata: Rhabditida) and the efficiency of Heterorhabditis sp. against the sugar cane root spittlebug Mahanarva fimbriolata (Fabr.) (Hemiptera: Cercopidae). Neotrop. Entomol. 2005, 34, 785–790. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, X.; Chen, X.; Li, L. Study on control of chive root gnat using entomopathogenic nematode. Sci. Technol. Tianjin Agric. For. 1994, 2, 4–6. [Google Scholar]
- Treverrow, N.; Bedding, R.A.; Dettmann, E.B.; Maddox, C. Evaluation of entomopathogenic nematodes for control of Cosmopolites sordidus Germar (Coleoptera: Curcilionidae), a pest of bananas in Australia. Ann. Appl. Biol. 1991, 119, 139–145. [Google Scholar] [CrossRef]
Strategy | EPN/Bacterial Species | Target Pests or Media Used | Target Beneficial Traits/Objectives | References |
---|---|---|---|---|
1. Genetic improvement | ||||
(A) Discovery of new species or strains | Steinernema scapterisci | Mole crickets (Scapteriscus spp.) | Efficacy against invasive mole crickets inflicting pasture and turf | [105] |
(B) Selection/breeding of promising EPNs | ||||
i. Enhancing foraging strategy | S. carpocapsae and Heterorhabditis bacteriophora | Red palm weevil (Rhynchophorus ferrugineus) | High host-seeking ability | [65] |
ii. Raising drought tolerance | H. megidis and H. bacteriophora | Greater wax moth (Galleria mellonella) | Enhanced desiccation tolerance | [77,117] |
iii. Boosting tolerance to temperature extremes | H. bacteriophora | Greater wax moth (Galleria mellonella) | Tolerance to temperature extremes | [118] |
iv. Securing EPN virulence under UV-stressed conditions | S. carpocapsae and S. riobrave | Greater wax moth (Galleria mellonella) | Keep the virulence of UV-stressed nematodes in warm/cold ambient | [119] |
v. Boosting EPN virulence | S. feltiae | Western flower thrips (Frankliniella occidentalis) | Increased infectivity and efficacy | [120] |
vi. Increasing nematicide resistance | H. bacteriophora strain HP88 | Greater wax moth (Galleria mellonella) | Improve resistance to fenamiphos, oxamyl and avermectin | [73] |
vii. Breeding EPN for cost-effective application | H. bacteriophora | Western Corn Rootworm (Diabrotica virgifera virgifera) | Reducing EPN application density to bring costs into the range of chemical pesticides | [72] |
viii. Extending the survival | H. bacteriophora | Greater wax moth (Galleria mellonella) | Improving stress tolerance and survival | [69] |
(A) Nematode-genetic engineering | ||||
i. Raising thermotolerance | H. bacteriophora | Turfgrass field microplots | Heat tolerance via transforming a heat shock protein | [121] |
ii. Raising osmotolerance and desiccation tolerance in the transgenic adults | S. feltiae | Laboratory bioassays | Improve osmotolerance and desiccation tolerance in the modified EPN adults | [84] |
(B) Plant-incorporated protectants | ||||
i. Enhancing plant tolerance against aphids | Xenorhabdus bovienii | Peach-potato aphid (Myzus persicae) | Expressing protease inhibitor protein to enhance insect tolerance | [122] |
ii. Bacterial mixture to control an insect pest | P. temperate temperata culture broth | Brassica leaf beetle (Phaedon brassicae) | The bacterial cultured broth showed potent immunosuppressive activity | [21] |
2. Non-genetic improvement | ||||
i. Raising EPN yield and fitness | S. feltiae SN strain | Optimized in vitro solid culture media | Improve EPN yield and fitness against Spodoptera litura | [123] |
ii. Inducing high EPN recovery and yield | S. jeffreyense and S. yirgalemense | Optimized in vitro liquid culture medium | Obtaining high EPN recovery and yield | [124] |
iii. Improved formulation | S. carpocapsae | Lesser peachtree borer (Synanthedon pictipes) | Enhanced IJ survival and induced high pest mortality | [125] |
iv. Dual-purpose: | H. bacteriophora strain EGG | Both insect and plant parasitic nematode pests | Multi-purpose usage of EPNs | [30] |
v. Co-application: | Formulate S. carpoca- psae with S. feltiae | Black vine weevil (Otiorhynchus sulcatus) larvae | Keep the pest populations below the economic threshold level | [48] |
vi. Sequential application of Metarhizium anisopliae at 0, 7, or 14 days prior to EPN | H. bacteriophora, S. carpocapsae or S. kraussei | Black vine weevil (Otiorhynchus sulcatus) larvae | Synergistic or additive effect of the fungus and an EPN species | [35] |
Country (Continent) | Crop | Insect Target | EPNs | Mortality | References |
---|---|---|---|---|---|
USA (North America) | Citrus | Diaprepes abbreviatus | Steinernema riobrave | 77–90% | [126] |
Italy (Europe) | Nature Parks | Popillia japonica | Heterorhabditis bacteriophora | 44–93% | [127] |
Colombia (South America) | Banana | Metamasius hem-ipterus sericeus | Steinernema colombiense | Adult (50%) Larvae (90%) | [128] |
Brazil (South America) | Sugarcane | Mahanarva fimbriolata | Heterorhabditis sp. | 74% | [129] |
Egypt (Africa) | Peanut | Agrotis ipsilon | S. glaseri | 85.8–93.3% | [54] |
China (Asia) | Chinese chive | Bradysia odoriphaga | Heterorhabditis sp. & S. bibionis | 69%% | [130] |
Australia | Banana | Cosmopolites sordidus | Steinemema carpocapsae | Up to 68% of infected larvae | [131] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd-Elgawad, M.M.M. Optimizing Entomopathogenic Nematode Genetics and Applications for the Integrated Management of Horticultural Pests. Horticulturae 2023, 9, 865. https://doi.org/10.3390/horticulturae9080865
Abd-Elgawad MMM. Optimizing Entomopathogenic Nematode Genetics and Applications for the Integrated Management of Horticultural Pests. Horticulturae. 2023; 9(8):865. https://doi.org/10.3390/horticulturae9080865
Chicago/Turabian StyleAbd-Elgawad, Mahfouz M. M. 2023. "Optimizing Entomopathogenic Nematode Genetics and Applications for the Integrated Management of Horticultural Pests" Horticulturae 9, no. 8: 865. https://doi.org/10.3390/horticulturae9080865
APA StyleAbd-Elgawad, M. M. M. (2023). Optimizing Entomopathogenic Nematode Genetics and Applications for the Integrated Management of Horticultural Pests. Horticulturae, 9(8), 865. https://doi.org/10.3390/horticulturae9080865