The Effect of Potassium–Nitrogen Balance on the Yield and Quality of Strawberries Grown under Soilless Conditions
Abstract
:1. Introduction
2. Materials and Methods
- −
- S1: Control nutrient solution, maintaining it at a low-balance (1.3) level during the growth period and at a high-balance (2.0) level during the production period. This is a common practice of Moroccan strawberry farmers [29].
- −
- S2: High-balance nutrient solution (2.6) during the growth period, and low-balance (1.0) during the production period.
- −
- S3: very-high-balance nutrient solution (3.0) during the growth period, and very-low-balance (0.6) during the production period.
2.1. Growth and Production Parameters
2.2. Statistical Analysis
3. Results and Discussion
3.1. Effect of K:N Balance on the Growth Parameters of Strawberry Plants Grown in Soilless Conditions
3.2. Effect of K:N Balance on the Productivity Parameters of Strawberry Plants Grown in Soilless Conditions
3.3. Effect of K:N Balance on the Quality Parameters of Strawberry Plants Grown in Soilless Conditions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Interproberries Morocco: Moroccan Interprofessional Federation of Fruit Berries. Moroccan berries sector, 4th International Strawberry Congress, Antwerp, Belgium, 21–22 September 2022. Available online: https://www.iscbelgium.com (accessed on 10 February 2023).
- Darbellay, C.; Carlen, C.; Azodanlou, R.; Villettaz, J.C. Measurement of the organoleptic quality of strawberries. Acta Hortic. 2002, 567, 819–822. [Google Scholar] [CrossRef]
- Sadat, T.; Ebrahimzadeh, H.; Rahemi, A.; Babalar, M.; Ebadi, A. The effect of nitrate: Ammonium ratios on fruit quality of the strawberry cultivar “Selva”. Acta Hortic. 2006, 708, 313–318. [Google Scholar] [CrossRef]
- Sánchez, P.C. Determinación de las Curvas de Crecimiento y Acumulación de Nutrientes en la Variedad Albion de Fresa (Fragaria × ananassa) para Establecer los Requerimientos Nutricionales de las Plantaciones Desarrolladas en la Zona de Fraijanes, Cantón Central de Alajuela. Master’s Thesis, Universidad de Costa Rica, San Pedro, Costa Rica, 2017. [Google Scholar]
- Tagliavini, M.; Baldi, E.; Nestby, R.; Raynal-Lacroix, C.; Lieten, P.; Salo, T.; Pivot, D.; Lucchi, P.L.; Baruzzi, G.; Faedi, W. Uptake and Partitioning of major nutrients by strawberry plants. Acta Hortic. 2004, 649, 197–200. [Google Scholar] [CrossRef]
- Macit, I.; Koc, A.; Guler, S.; Deligoz, I. Yield, quality and nutritional status of organically and conventionally-grown strawberry cultivars. Asian J. Plant Sci. 2007, 6, 1131–1136. [Google Scholar]
- Guérineau, C.; Bigey, J.; Longuesserre, J.; Navatel, J.-C.; Pommier, J.-J.; Raynal-Lacroix, C. La Culture du Fraisier sur Substrat; Centre Technique Interprofessionnel des Fruits et Légume: Paris, France, 2003. [Google Scholar]
- Dorais, M.; Papadopoulos, A.P.; Gosselin, A. Greenhouse tomato fruit quality. Hortic. Rev. 2001, 26, 239–319. [Google Scholar] [CrossRef]
- Rodas, C.L.; Pereira, S.I.; Toledo-Coelho, V.A.; Guimaries-Ferreira, D.M.; De Souza, R.J.; Ciuedes de Carvalho, J. Chemical properties and rates of externalcolor of strawberry fruits grown using nitrogen and potassium fertigation. IDESIA 2013, 31, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Tagliavini, M.; Baldia, E.; Lucchic, P.; Antonellia, M.; Sorrentia, G.; Baruzzib, G.; Faedib, W. Dynamics of nutrients uptake by strawberry plants (Fragaria × Ananassa Dutch.) Grown in soil and soilless culture. Eur. J. Agron. 2005, 23, 15–25. [Google Scholar] [CrossRef]
- Yoon, H.S.; An, J.U.; Hwang, Y.H.; An, C.G.; Chang, Y.H.; Shon, G.M.; Rho, C.W. Improved fertilization strategy for strawberry fertigation culture. Acta Hortic. 2014, 1049, 521–528. [Google Scholar] [CrossRef]
- Lieten, F.; Misotten, C. Nutrient uptake of strawberry plants (cv. Elsanta) grownonsubstrate. Acta Hortic. 1993, 348, 299–306. [Google Scholar] [CrossRef]
- Tohidloo, G.; Kazem Souri, M.; Eskandarpour, S. Growth and fruit biochemical characteristics of three strawberry genotypes under different potassium concentrations of nutrient solution. Open Agric. 2018, 3, 356–362. [Google Scholar] [CrossRef]
- Savvas, D.; Passam, H. Hydroponic Production of Vegetables and Ornamentals; Embryo Publication: Athens, Greece, 2002. [Google Scholar]
- Zuang, H.; Musard, M.; Dumoulin, J.; Thicoïpe, J.-P.; Letard, M.; Vaysse, P.; Adam, D.; Marchal, H. Cultures Légumières sur Substrats; Centre Technique Interprofessionnel des Fruits et Légumes, CTIFL: Paris, France, 1984. [Google Scholar]
- Lieten, P. Advances in Strawberry Substrate Culture during the Last Twenty Years in the Netherlands and Belgium. Int. J. Fruit Sci. 2013, 13, 84–90. [Google Scholar] [CrossRef]
- Klamkowski, K.; Treder, W. Morphological and physiological responses of strawberry plants to water stress. Agric. Conspec. Sci. 2006, 71, 159–165. [Google Scholar]
- Wang, D.; Gartung, J.; Gerik, J.; Cabrera, A.; Gabriel, M.Z.; Gonzzales, M. Evaluation of a Raised-Bed Trough (RaBet) System for Strawberry Production in California; California Strawberry Commission: Annual Production Research Report 2012–2013; California Strawberry Commission: Watsonville, CA, USA, 2012. [Google Scholar]
- Taylor, P.; Savini, G.; Neri, D.; Zucconi, F.; Sugiyama, N. Strawberry Growth and Flowering: An Architectural Model. Int. J. Fruit Sci. 2006, 5, 29–50. [Google Scholar]
- Ameri, A.; Tehranifar, A.; Shoor, M.; Davarynejad, G.H. Effect of substrate and cultivar on growth characteristic of strawberry in soilless culture system. Afr. J. Biotechnol. 2012, 11, 11960–11966. [Google Scholar]
- Prémont, V. Irrigation, Substrats et Fertilisation dans la Culture Hors-Sol du Fraisier, des Enjeux pour une Production Optimisée. Ph.D. Thesis, Université Laval, Quebec City, QC, Canada, 2015. [Google Scholar]
- Cormier, J. Gestion Optimisée de L’irrigation du Fraisier à Jours Neutres. Master’s Thesis, Université Laval, Quebec City, QC, Canada, 2015. [Google Scholar]
- Coquelet, C.; Izard, D.; Navatel, J.C.; Poncet, M.; Taussig, C. La Fraise en Culture Suspendue; APREL-SEFRA: Paris, France, 2003; pp. 1–4. [Google Scholar]
- Choi, S.-H.; Kim, D.-Y.; Lee, S.Y.; Chang, M.-S. Growth and Quality of Strawberry (Fragaria ananassa Dutch. cvs. ‘Kuemsil’) Affected by Nutrient Solution Supplying Control System Using Drainage Rate in Hydroponic Systems. Horticulturae 2022, 8, 1059. [Google Scholar] [CrossRef]
- Atwood, J. Strawberry Fertigation: Future Issues. Journées Horticoles Régionales du MAPAQ. 2005. Available online: https://www.agrireseau.net/petitsfruits/documents/jhrpfjohnatwood.pdf (accessed on 19 October 2015).
- Izard, D. La Fraise en Culture sur Substrat; APREL-SEFRA: Paris, France, 2010; 6p. [Google Scholar]
- Berjamy, I. Etude du Profil Variétal du Fraisier (Fragaria vulgaris) dans le Périmètre du Loukkos; Mémoire de fin D’études; Institut Agronomique et Vétérinaire Hassan II: Rabat, Marocco, 2015. [Google Scholar]
- AMCEF: Moroccan Association of Strawberry Exporters. Promotion of Small Red Fruits within the Framework of the Green Morocco Plan, a Lever for Agricultural Development, First Edition of the National Berry Festival, Larache, Morocco, 16–19 March 2017. Available online: https://www.groupesaoas.com/en/national-larache-red-berry-festival-act20.html (accessed on 10 February 2023).
- Chamekh, A. Etude de la Conduite Culturale du Fraisier, du Framboisier et du Myrtilier et Contribution à L’étude de Marché D’exportation des Petits Fruits; Mémoire de fin D’étude en Horticulture; Institut Agronomique et Vétérinaire Hassan II: Rabat, Marocco, 2009. [Google Scholar]
- OECD. Guidance on Objective Tests to Determine Quality of Fruits and Vegetables and Dry and Dried Produce; OECD: Paris, France, 2009. [Google Scholar]
- Maynard, D.N. Influence of nitrogen levels on flowering and fruit set of peppers. Proc. Am. Soc. Hortic. Sci. 1962, 11, 385–389. [Google Scholar]
- Babicz, S. Changes of Yield Amount and Some Content Parameters of Strawberry (Fragaria × ananassa) as Affected by Potassium and Magnesium Fertilization; Analele Universitatiid in Oradea: Oradea, Romania, 2002; pp. 223–228. [Google Scholar]
- Hamano, M.; Yamato, Y.; Yamazaki, H.; Miura, H. Change in sugar contents and composition of strawberry fruit during development. Acta Hortic. 2002, 567, 369–372. [Google Scholar] [CrossRef]
- Yagmur, B.; Okur, B.; Ongun, B. Effects on enhanced potassium doses on yield quality and nutrient uptake of Tomato. In Proceedings of the IPI Regional Workshop on Potassium and Fertigation Development in West Asia and North Africa, Rabat, Morocco, 24–28 November 2004; pp. 24–28. [Google Scholar]
- Yan, L.; Jin, F.; Zheng, P. Photosynthetic properties on four cultivars of strawberry. J. Gansu Agric. Univ. 2004, 39, 620–624. [Google Scholar]
- Marschner, P. Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012; 651p. [Google Scholar]
- Fageria, V.D. Nutrient interactions in crop plants. J. Plant Nutr. 2001, 24, 1269–1290. [Google Scholar] [CrossRef]
- Kering, M.K.; Butler, T.J.; Biermacher, J.T.; Mosali, J. Effect of potassium and nitrogen fertilizer on switchgrass productivity and nutrient removal rates under two harvest systems on a low potassium soil. BioEnergy Res. 2013, 6, 329–335. [Google Scholar] [CrossRef] [Green Version]
- Sarıdaş, M.A.; Paydaş Kargı, S.; Nogay, G.; Attar Sar, Ş.H.; daş, M.A.; Paydaş Kargı, S.; Nogay, G.; Attar, Ş.H. Interrelation of plant nutrients of strawberry leaf samples under Mediterranean climate condition. Acta Hortic. 2018, 1217, 159–162. [Google Scholar]
- Nakro, A.; Bamouh, A.; Khoulali, C. Effet de l’équilibre potassium-azote en fertigation sur la productivité et la qualité de trois variétés de fraise. Rev. Mar. Sci. Agron. Vét. 2020, 8, 272–278. [Google Scholar]
- Bamouh, A.; Bouras, H.; Nakro, A. Effect of foliar potassium fertilization on yield and fruit quality of strawberry, raspberry and blueberry. Acta Hortic. 2019, 1265, 255–262. [Google Scholar] [CrossRef]
- Szczerba, M.W.; Britto, D.T.; Kronzucker, H.J. K+ transport in plants: Physiology and molecular biology. J. Plant Physiol. 2009, 166, 447–466. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.E.; Saleem, M.T.; Stauffer, M.D. Potassium in Pakistan Agriculture; PARC: Islamabad, Pakistan, 2003; p. 80. [Google Scholar]
- Nakro, A.; Bamouh, A.; El Khatib, O.; Ghaouti, L. Effect of potassium source and dose on yield and quality of strawberry fruit. Am. J. Plant Sci. 2022, 13, 1196–1208. [Google Scholar] [CrossRef]
- San Bautista, A.; López-Galarza, S.; Martínez, A.; Pascual, B.; Maroto, J.V. Influence of Cation Proportions of the Nutrient Solution on Tipburn Incidence in Strawberry Plants. J. Plant Nutr. 2009, 32, 1527–1539. [Google Scholar] [CrossRef]
- El-Nemr, M.A.; Abd El-Baky, M.M.H.; Salman, S.R.; El-Tohamy, W.A. Effect of Different Potassium Levels on the Growth, Yield and Quality of Tomato Grown in Sand-phonic Culture. Aust. J. Basic Appl. Sci. 2012, 6, 779–784. [Google Scholar]
- Ebrahimi, R.; Souri, M.K.; Ebrahimi, F.; Ahmadizadeh, M. Growth and yield of strawberries under different potassium concentrations of hydroponic system in three substrates. World Appl. Sci. J. 2012, 16, 1380–1386. [Google Scholar]
- Preciado-Rangel, P.; Troyo-Diéguez, E.; Valdez-Aguilar, L.A.; García-Hernández, J.L.; Luna-Ortega, J.G. Interactive Effects of the Potassium and Nitrogen Relationship on Yield and Quality of Strawberry Grown Under Soilless Conditions. Plants 2020, 9, 441. [Google Scholar] [CrossRef] [Green Version]
- Lieten, P. Effect of K:CA:MG ratio on performance of ´Elsanta´ strawberries grown on peat. Acta Hortic. 2006, 708, 397–400. [Google Scholar] [CrossRef]
- Schwarz, K.; Vilela-Resende, J.T.; Pierozan-Junior, C.; Tauffer-de Paula, J.; Baier, J.E.; Ligia de Souza-Silva, M.; Brendler-Oliveira, F. Yield and nutrition of greenhouse-grown strawberries (Fragaria × ananassa (Duchesne ex Weston) Duchesne ex Rozier. cv. Camarosa) as affected by potassium fertilization. Acta Agron. 2018, 67, 114–119. [Google Scholar]
- Halvin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers: An Introduction to Nutrient Management, 8th ed.; Pearson: London, UK, 2014. [Google Scholar]
- Gündüz, K.; Özbay, H. The effects of genotype and altitude of the growing location on physical, chemical, and phytochemical properties of strawberry. Turk. J. Agric. For. 2018, 42, 145–153. [Google Scholar] [CrossRef]
- Wang, M.; Zheng, Q.; Shen, Q.; Guo, S. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 2013, 14, 7370–7390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, S.; Hafeez, A.; Ma, X.; Atta Tung, S.; Liu, A.; Noor Shah, A.; Sohaib Chattha, M.; Zhang, Z.; Yang, G. Potassium relative ratio to nitrogen considerably favors carbon metabolism in late-planted cotton at high planting density. Field Crops Res. 2018, 223, 48–56. [Google Scholar] [CrossRef]
- Hafeez, A.; Ali, S.; Ma, X.; Atta Tung, S.; Noor Shah, A.; Liu, A.; Zhang, Z.; Liu, J.; Yang, G. Sucrose metabolism in cotton subtending leaves influenced by potassium-to-nitrogen ratios. Nutr. Cycl. Agroecosyst. 2019, 113, 201–216. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher, 2nd ed.; Plants Academic Press: San Diego, CA, USA, 1995. [Google Scholar]
- Cakmak, I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Soil Sci. 2005, 168, 521–530. [Google Scholar] [CrossRef]
- Shirko, R.; Nazarideljou, M.J.; Akbar, M.A.; Naser, G. Photosynthetic reaction, mineral uptake, and fruit quality of strawberry affected by different levels of macronutrients. J. Plant Nutr. 2018, 41, 1807–1820. [Google Scholar] [CrossRef]
- Kaya, C.; Higgs, D.; Saltali, K.; Gezerel, O. Response of strawberry grown at high salinity and alkalinity to supplementary potassium. J. Plant Nutr. 2002, 25, 1415–1427. [Google Scholar] [CrossRef]
- Martin-Prével, P. Développements Récents des Recherches sur la Nutrition Minérale des Plantes Fruitières Tropicales et Subtropicales; Congrès International d’Horticulture: Paris, France, 1970; pp. 353–365. [Google Scholar]
- Morard, K.; Raynal, C. Nutrition control of strawberreis hydroponically grow in vertical columns using percolate analysis. In Proceedings of the 6th International Congress; ISOSC: Lunterne, The Netherlands, 1984; pp. 393–399. [Google Scholar]
- Nam, M.H.; Jeong, S.K.; Lee, Y.S.; Choi, J.M.; Kim, H.G. Effects of nitrogen, phosphorus, potassium and calcium nutrition on strawberry anthracnose. Plant Pathol. 2006, 55, 246–249. [Google Scholar] [CrossRef]
- Asami, D.K.; Hong, Y.J.; Barrett, D.M.; Mitchell, A.E. Comparison of the total phenolic and ascorbic acid content of freeze-dried and air-dried marionberry, strawberry, and corn grown using conventional, organic, and sustainable agricultural practices. J. Agric. Food Chem. 2003, 51, 1237–1241. [Google Scholar] [CrossRef]
- Chow, K.K.; Price, T.V.; Hanger, B.C. Nutritional requirements for growth and yield of strawberry in deep flow hydroponic systems. Sci. Hortic. 1992, 52, 95–104. [Google Scholar] [CrossRef]
Stage | Nutrient Solution | K:N Balance | N-NO3 | N-NH4 | P | K | Ca | Mg | SO4 | pH | EC (dS m−1) |
---|---|---|---|---|---|---|---|---|---|---|---|
Growth | S1 | 1.3 | 5.94 | 1.63 | 1.52 | 3.82 | 3.40 | 2.47 | 1.31 | 6.67 | 2.28 |
S2 | 2.6 | 5.94 | 1.63 | 1.52 | 7.41 | 3.40 | 2.47 | 2.55 | 6.61 | 2.77 | |
S3 | 3.0 | 5.94 | 1.63 | 1.52 | 8.80 | 3.40 | 2.47 | 3.03 | 6.62 | 2.53 | |
Production | S1 | 2.0 | 5.35 | 0.75 | 0.76 | 4.44 | 3.65 | 1.74 | 1.53 | 6.26 | 1.60 |
S2 | 1.0 | 5.35 | 0.75 | 0.76 | 2.29 | 3.65 | 1.74 | 0.79 | 6.25 | 1.77 | |
S3 | 0.6 | 5.35 | 0.75 | 0.76 | 1.46 | 3.65 | 1.74 | 0.50 | 6.35 | 1.70 |
Factor | Chlorophyll Index (CI) | Stomatal Conductance (s cm−1) |
---|---|---|
Cultivar | ||
Fortuna San Andreas Sabrina | 48.3 z a ± 2.8 y a | 0.84 |
46.1 ± 2.8 b | 0.69 | |
39.1 ± 2.9 c | 0.64 | |
LSD (p < 0.05) | ±2.14 | - |
Nutrient solution | ||
S1 S2 S3 | 43.3 ± 4.6 b | 0.76 |
47.1 ± 3.8 a | 0.78 | |
43.1 ± 3.0 b | 0.62 | |
LSD (p < 0.05) | ±2.14 | - |
ANOVA (df) | ||
Factor (df) | Percentage of the total sum of squares | |
Cultivar (2) | 63.8 ** | 5.00 n.s. |
Nutrient solution (2) | 13.8 ** | 3.46 n.s. |
Cultivar x nutrient solution (4) | 9.6 * | 7.62 n.s. |
Factor | Early | Total | ||||
---|---|---|---|---|---|---|
Fruit Size (mm) | Fruit Weight (g) | Yield (t ha−1) | Fruit Size (mm) | Fruit Weight (g) | Yield (t ha−1) | |
Cultivar | ||||||
Fortuna San Andreas Sabrina | 22.1 z ± 2.4 y c | 16.4 | 2.49 z ± 1.1 y c | 25.4 | 17.1 | 11.4 z ± 8.8 y b |
27.1 ± 2.9 b | 18.4 | 4.42 ± 1.2 b | 29.9 | 18.5 | 26.7 ± 9.1 a | |
32.4 ± 3.4 a | 18.8 | 4.92 ± 1.1 a | 32.7 | 17.1 | 20.3 ± 9.8 a | |
LSD (p < 0.05) | ±1.57 | - | ±0.47 | - | - | ±5.09 |
Nutrient solution | ||||||
S1 S2 S3 | 27.7 | 15.5 z ± 2.7 y b | 3.17 z ± 0.16 y c | 29.6 z ± 2.8 y ab | 16.1 z ± 1.8 y b | 18.8 z ± 6.4 y b |
27.1 | 20.0 ± 2.7 a | 4.92 ± 0.16 a | 30.2 ± 2.0 a | 19.4 ± 2.3 a | 26.7 ± 3.7 a | |
26.7 | 18.1 ± 2.9 a | 3.74 ± 0.16 b | 28.3 ± 2.1 b | 17.2 ± 1.9 b | 20.3 ± 4.8 b | |
LSD (p < 0.05) | - | ±2.30 | ±0.47 | ±1.57 | ±1.32 | ±5.09 |
ANOVA (df) | ||||||
Factor (df) | Percentage of the total sum of squares | |||||
Cultivar (2) | 83.1 ** | 12.6 n.s. | 57.6 ** | 72.8 ** | 11.0 n.s. | 63.06 ** |
Nutrient solution (2) | 0.9 n.s. | 40.6 ** | 27.7 ** | 4.6 n.s | 53.3 ** | 13.3 ** |
Cultivar–nutrient solution (4) | 4.48 n.s. | 4.17 n.s. | 6.81 * | 8.93 * | 3.68 n.s. | 3.91 n.s. |
Factor | Total Soluble Solids (TSS) | Titratable Acidity (%) | Maturity Index | Taste (1–4) | Shelf-Life (% Weight Loss) | Dry Matter Content (%) |
---|---|---|---|---|---|---|
Cultivar | ||||||
Fortuna San Andreas Sabrina | 6.49 | 0.64 z ± 0.08 y c | 10.3 z ± 1.9 y a | 2.20 z ± 0.15 y b | 7.01 z ± 1.23 y b | 7.24 z ± 1.21 y b |
6.83 | 0.74 ± 0.10 b | 9.3 ± 2.0 a | 2.44 ± 0.13 a | 7.07 ± 1.26 b | 7.25 ± 1.25 b | |
6.94 | 0.91 ± 0.10 a | 7.6 ± 2.1 b | 2.31 ± 0.15 ab | 4.01 ± 1.27 a | 8.81 ± 1.26 a | |
LSD (p < 0.05) | - | ±0.07 | ±1.27 | ±0.15 | ±0.86 | ±1.19 |
Nutrient solution | ||||||
S1 S2 S3 | 6.27 z ± 0.65 y c | 0.76 | 8.3 | 2.22 z ± 0.14 y b | 6.03 z ± 1.80 y b | 7.09 |
7.29 ± 0.60 a | 0.76 | 9.8 | 2.47 ± 0.14 a | 5.05 ± 1.90 a | 8.29 | |
6.71 ± 0.60 b | 0.77 | 9.1 | 2.27 ± 0.16 b | 7.01 ± 1.62 c | 7.89 | |
LSD (p < 0.05) | ±0.38 | - | - | ±0.15 | ±0.86 | - |
ANOVA (df) | ||||||
Factor (df) | Percentage of the total sum of squares | |||||
Cultivar (2) | 9.23 n.s. | 76.03 ** | 45.4 ** | 26.9 ** | 61.8 ** | 30.6 * |
Nutrient solution (2) | 42.9 ** | 0.10 n.s. | 12.1 n.s. | 39.3 ** | 19.4 ** | 14.1 n.s. |
Cultivar–nutrient solution (4) | 23.8 * | 5.45 n.s. | 3.36 n.s. | 3.93 n.s. | 3.56 n.s. | 1.17 n.s. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakro, A.; Bamouh, A.; Bouslama, H.; San Bautista, A.; Ghaouti, L. The Effect of Potassium–Nitrogen Balance on the Yield and Quality of Strawberries Grown under Soilless Conditions. Horticulturae 2023, 9, 304. https://doi.org/10.3390/horticulturae9030304
Nakro A, Bamouh A, Bouslama H, San Bautista A, Ghaouti L. The Effect of Potassium–Nitrogen Balance on the Yield and Quality of Strawberries Grown under Soilless Conditions. Horticulturae. 2023; 9(3):304. https://doi.org/10.3390/horticulturae9030304
Chicago/Turabian StyleNakro, Amal, Ahmed Bamouh, Hajar Bouslama, Alberto San Bautista, and Lamiae Ghaouti. 2023. "The Effect of Potassium–Nitrogen Balance on the Yield and Quality of Strawberries Grown under Soilless Conditions" Horticulturae 9, no. 3: 304. https://doi.org/10.3390/horticulturae9030304