Altered brassinolide sensitivity1 Regulates Fruit Size in Association with Phytohormones Modulation in Tomato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Quantitative Gene Expression Profiling
2.3. Morphological Characterization of Fruits
2.4. Anatomical Observations of Fruit Pericarp
2.5. Extraction and Quantification of Phytohormones
2.6. Statistical Analyses
3. Results
3.1. BR Signaling Components Expression during Fruit Development
3.2. The Altered Transcript Level of BR Signaling Components in abs1 Mutant
3.3. BR-Signaling Disruption Causes a Decrease in Phytohormone Production
3.4. BR-Signaling Disruption Decreased Fruit Size in abs1 Mutant
3.5. BR-Signaling Disruption Decreases Cell Division and Expansion during Early Developmental Stages
3.6. The Altered Transcript Level of Fruit Size-Determining Genes in abs1 Mutant Fruit
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Quinet, M.; Angosto, T.; Yuste-Lisbona, F.J.; Blanchard-Gros, R.; Bigot, S.; Martinez, J.P.; Lutts, S. Tomato fruit development and metabolism. Front. Plant Sci. 2019, 29, 1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Y.; Wang, X.; Zhu, Z.; Sun, M.; Li, M.; Hou, L. Expression analysis of genes related to auxin metabolism at different growth stages of pak choi. Hortic. Plant J. 2020, 6, 25–33. [Google Scholar] [CrossRef]
- Zhu, Z.; Bai, Y.; Lv, M.; Tian, G.; Zhang, X.; Li, L.; Jiang, Y.; Ge, S. Soil fertility, microbial biomass, and microbial functional diversity responses to four years fertilization in an apple orchard in north China. Hortic. Plant J. 2020, 6, 223–230. [Google Scholar] [CrossRef]
- Wang, L.; Zou, Y.; Kaw, H.Y.; Wang, G.; Sun, H.; Cai, L.; Li, C.; Meng, L.Y.; Li, D. Recent developments and emerging trends of mass spectrometric methods in plant hormone analysis: A review. Plant Methods 2020, 16, 16–54. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.W.; Guan, S.; Sun, Y.; Deng, Z.; Tang, W.; Shang, J.X.; Sun, Y.; Burlingame, A.L.; Wang, Z.Y. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat. Cell Biol. 2009, 11, 10. [Google Scholar] [CrossRef]
- Mumtaz, M.A.; Hao, Y.; Mehmood, S.; Shu, H.; Zhou, Y.; Jin, W.; Chen, C.; Li, L.; Altaf, M.A.; Wang, Z.W. Physiological and transcriptomic analysis provide molecular insight into 24-epibrassinolide mediated cr(vi)-toxicity tolerance in pepper Plants. Environ. Pollut. 2022, 306, 119375. [Google Scholar] [CrossRef]
- Bartwal, A.; Arora, S. Brassinosteroids: Molecules with Myriad Roles. In Co-Evolution of Secondary Metabolites. Reference Series in Phytochemistry; Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2020; pp. 869–895. [Google Scholar]
- Morinaka, Y.; Sakamoto, T.; Inukai, Y.; Agetsuma, M.; Kitano, H.; Ashikari, M.; Matsuoka, M. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice. Plant Physiol. 2006, 141, 924–931. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Breja, P.; Khurana, J.P.; Khurana, P. Wheat Brassinosteroid-Insensitive1 (TaBRI1) interacts with members of TaSERK gene family and cause early flowering and seed yield enhancement in Arabidopsis. PLoS ONE 2016, 11, e0153273. [Google Scholar] [CrossRef] [Green Version]
- Chai, Y.M.; Zhang, Q.; Tian, L.; Li, C.L.; Xing, Y.; Qin, L.; Shen, Y.Y. Brassinosteroid is involved in strawberry fruit ripening. Plant Growth Regul. 2013, 69, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Nie, S.; Huang, S.; Wang, S.; Cheng, D.; Liu, J.; Lv, S.; Li, Q.; Wang, X. Enhancing brassinosteroid signaling via overexpression of tomato (Solanum lycopersicum) SlBRI1 improves major agronomic traits. Front. Plant Sci. 2017, 8, 1386. [Google Scholar] [CrossRef]
- Feng, Y.; Yin, Y.; Fei, S. Down-regulation of BdBRI1, a putative brassinosteroid receptor gene produces a dwarf phenotype with enhanced drought tolerance in Brachypodium distachyon. Plant Sci. 2015, 234, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Bünger-Kibler, S.; Bangerth, F. Relationship between cell number, cell size and fruit size of seeded fruits of tomato (Lycopersicon esculentum Mill.), and those induced parthenocarpically by the application of plant growth regulators. Plant Growth Regul. 1982, 1, 143–154. [Google Scholar] [CrossRef]
- Liu, L.; Jia, C.; Zhang, M.; Chen, D.; Chen, S.; Guo, R.; Guo, D.; Wang, Q. Ectopic expression of a BZR1-1D transcription factor in brassinosteroid signalling enhances carotenoid accumulation and fruit quality attributes in tomato. Plant Biotechnol. J. 2014, 12, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, M.A.; Munir, S.; Liu, G.; Chen, W.; Wang, Y.; Yu, H.; Mahmood, S.; Ahiakpa, J.K.; Tamim, S.A.; Zhang, Y. Altered brassinolide sensitivity1 transcriptionally inhibits chlorophyll synthesis and photosynthesis capacity in tomato. Plant Growth Regul. 2020, 92, 417–426. [Google Scholar] [CrossRef]
- Mumtaz, M.A.; Wang, Y.; Li, F.; Shang, L.; Wang, Y.; Zhang, X.; Tao, J.; Gai, W.; Dong, H.; Ahiakpa, J.K.; et al. Hindered tomato reproductive development by altered brassinosteroid sensitivity1 mutant. Plant Growth Regul. 2022, 96, 473–481. [Google Scholar] [CrossRef]
- Zheng, L.; Gao, C.; Zhao, C.; Zhang, L.; Han, M.; An, N.; Ren, X. Effects of brassinosteroid associated with auxin and gibberellin on apple tree growth and gene expression patterns. Hortic. Plant J. 2019, 5, 93–108. [Google Scholar] [CrossRef]
- Montoya, T.; Nomura, T.; Farrar, K.; Kaneta, T.; Yokota, T.; Bishop, G.J. Cloning the tomato curl3 gene highlights the putative dual role of the leucine-rich repeat receptor kinase tBRI1/SR160 in plant steroid hormone and peptide hormone signaling. Plant Cell 2002, 14, 3163–3176. [Google Scholar] [CrossRef] [Green Version]
- Nolan, T.; Liu, S.; Guo, H.; Li, L.; Schnable, P.; Yin, Y. Identification of brassinosteroid target genes by chromatin immunoprecipitation followed by high-throughput sequencing (Chip-seq) and RNA-sequencing. Methods Mol. Biol. 2017, 1564, 63–79. [Google Scholar]
- Srivastava, A.; Handa, A.K. Hormonal regulation of tomato fruit development: A molecular perspective. J. Plant Growth Regul. 2005, 24, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Khurana, A.; Sharma, A.K. Role of plant hormones and their interplay in development and ripening of fleshy fruits. J. Exp. Bot. 2014, 65, 4561–4575. [Google Scholar] [CrossRef] [Green Version]
- Werner, T.; Schmülling, T. Cytokinin action in plant development. Curr. Opin. Plant Biol. 2009, 12, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, S.; Kikuchi, K.; Fukuda, M.; Honda, I.; Imanishi, S. Roles and regulation of cytokinins in tomato fruit development. J. Exp. Bot. 2012, 63, 5569–5579. [Google Scholar] [CrossRef] [PubMed]
- Gomez, M.D.; Barro-Trastoy, D.; Escoms, E.; Saura-Sańchez, M.; Sańchez, I.; Briones-Moreno, A.; Vera-Sirera, F.; Carrera, E.; Ripoll, J.J.; Yanofsky, M.F.; et al. Gibberellins negatively modulate ovule number in plants. Development 2018, 9, dev163865. [Google Scholar] [CrossRef] [Green Version]
- McAtee, P.; Karim, S.; Schaffer, R.; David, K. A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening. Front. Plant Sci. 2013, 17, 4–79. [Google Scholar] [CrossRef] [Green Version]
- Shinozaki, Y.; Hao, S.; Kojima, M.; Sakakibara, H.; Ozeki-Iida, Y.; Zheng, Y.; Fei, Z.; Zhong, S.; Giovannoni, J.J.; Rose, J.K.C.; et al. Ethylene suppresses tomato (Solanum lycopersicum) fruit set through modification of gibberellin metabolism. Plant J. 2015, 83, 237–251. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, N.; Gévaudant, F.; Hernould, M.; Chevalier, C.; Mouras, A. The cell cycle-associated protein kinase WEE1 regulates cell size in relation to endoreduplication in developing tomato fruit. Plant J. 2007, 51, 642–655. [Google Scholar] [CrossRef] [PubMed]
- Frary, A.; Nesbitt, T.C.; Frary, A.; Grandillo, S.; Van Der Knaap, E.; Cong, B.; Liu, J.; Meller, J.; Elber, R.; Alpert, K.B.; et al. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science 2000, 7, 85. [Google Scholar] [CrossRef] [Green Version]
- Czerednik, A.; Busscher, M.; Angenent, G.C.; De Maagd, R.A. The cell size distribution of tomato fruit can be changed by overexpression of CDKA1. Plant Biotechnol. J. 2015, 13, 259–268. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer Sequence | Reverse Primer Sequence | Purpose |
---|---|---|---|
BZR1 | AAACCTAGCCTTCGCATGCT | TTGCATGCATGGCAGTGTTC | qRT-PCR |
BIN2 | GAGACAGTTGCGATAAAGA | CTGACGTTTGCCACCGAGACT | qRT-PCR |
SUT1 | CGGTGATGCGAAACTGTACG | GTCTCTTAGCACCACCGATCTTC | qRT-PCR |
WEE | TCTTCTTCCGGGTCACTCCT | CAGAAGGACGACGTGTTGGA | qRT-PCR |
CDKA1 | GTATGTGCCGTGATTGTCTG | AACCCCTGAATAGAACCAAATG | qRT-PCR |
CDKB2 | CCGCCGTACTAAGGGATTCA | TTGGTTTCACGAACGAAGGC | qRT-PCR |
IAA9 | GCGCAGCCTTTGTGAAAGTT | TGCCAAGTGCATCAGAGAGT | qRT-PCR |
GAox20 | TGTGGACGATGAATGGCGTT | TACCGCTCTGTGTAGGCAAC | qRT-PCR |
FW2.2 | CAACCTTATGTTCCTCCTCACTATGTAT | GGGTCATCAAAACAATGACAAAGA | qRT-PCR |
β-actin | ACCTTCAATGTCCCTGCTATG | CTCCACCTTCAGAAACGCAAC | Control |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mumtaz, M.A.; Li, F.; Zhang, X.; Tao, J.; Ge, P.; Wang, Y.; Wang, Y.; Gai, W.; Dong, H.; Zhang, Y. Altered brassinolide sensitivity1 Regulates Fruit Size in Association with Phytohormones Modulation in Tomato. Horticulturae 2022, 8, 1008. https://doi.org/10.3390/horticulturae8111008
Mumtaz MA, Li F, Zhang X, Tao J, Ge P, Wang Y, Wang Y, Gai W, Dong H, Zhang Y. Altered brassinolide sensitivity1 Regulates Fruit Size in Association with Phytohormones Modulation in Tomato. Horticulturae. 2022; 8(11):1008. https://doi.org/10.3390/horticulturae8111008
Chicago/Turabian StyleMumtaz, Muhammad Ali, Fangman Li, Xingyu Zhang, Jinbao Tao, Pingfei Ge, Ying Wang, Yaru Wang, Wenxian Gai, Haiqiang Dong, and Yuyang Zhang. 2022. "Altered brassinolide sensitivity1 Regulates Fruit Size in Association with Phytohormones Modulation in Tomato" Horticulturae 8, no. 11: 1008. https://doi.org/10.3390/horticulturae8111008
APA StyleMumtaz, M. A., Li, F., Zhang, X., Tao, J., Ge, P., Wang, Y., Wang, Y., Gai, W., Dong, H., & Zhang, Y. (2022). Altered brassinolide sensitivity1 Regulates Fruit Size in Association with Phytohormones Modulation in Tomato. Horticulturae, 8(11), 1008. https://doi.org/10.3390/horticulturae8111008