Effects of Vermicompost on Quality and Physiological Parameters of Cucumber (Cucumis sativus L.) Seedlings and Plant Productivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Growing Conditions
2.2. Biometric Measurements
2.3. Determination of Dry Matter
2.4. Determination of Photosynthetic Parameters
2.5. Nondestructive Measurements
2.6. Determination of Mineral Elements in Substrates and Leaves
2.7. Yielding of Plants
2.8. Determination of Nitrates
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Basheer, M.; Agrawal, O.P. Effect of vermicompost on the growth and productivity of tomato plant (Solanum Lycopersicum) under field conditions. Int. J. Recent Sci. Res. 2013, 3, 247–249. [Google Scholar]
- Edwards, C.A.; Arancon, N.Q.; Vasko-Bennett, M.; Askar, A.; Keene, G. Effect of aqueous extracts from vermicomposts on attacks by cucumber beetles (Acalymnavittatum) (Fabr.) on cucumbers and tobacco hornworm (Manduca sexta) (L.) on tomatoes. Pedobiologia 2010, 53, 141–148. [Google Scholar] [CrossRef]
- Gupta, R.; Garg, V.K. Potential and possibilities of vermicomposting in sustainable solid waste management: A review. Int. J. Environ. Waste Manag. 2011, 7, 210–234. [Google Scholar] [CrossRef]
- Gupta, C.; Prakash, D.; Gupta, S.; Nazareno, M.A. Role of Vermicomposting in Agricultural Waste Management. In Sustainable Green Technologies for Environmental Management; Shah, S., Venkatramanan, V., Prasad, R., Eds.; Springer: Singapore, 2019; pp. 283–295. [Google Scholar] [CrossRef]
- Soni, R.; Sharma, A. Vermiculture Technology: A Novel Approach in Organic Farming. Indian Hortic. J. 2016, 6, 150–154. [Google Scholar]
- Atiyeh, R.M.; Edwards, C.A.; Subler, S.; Metzger, J.D. Pig manure vermicompost as a component of a horticultural bedding plant medium: Effects on physicochemical properties and plant growth. Bioresour. Technol. 2001, 78, 11–20. [Google Scholar] [CrossRef]
- Prabha, M.L.; Jayraaj, I.A.; Jayraaj, R.; Rao, D.S. Effect of vermicompost on growth parameters of selected vegetable and medicinal plants. Asian J. Microbiol. Biotechnol. Environ. Sci 2007, 9, 321–326. [Google Scholar]
- Atiyeh, R.M.; Subler, S.; Edwards, C.A.; Bachman, G.; Metzger, J.D.; Shuster, W. Effects of vermicomposts and composts on plant growth in horticultural container media and soil. Pedobiologia 2000, 44, 579–590. [Google Scholar] [CrossRef] [Green Version]
- Zaller, J.G. Vermicompost in seedling potting media can affect germination, biomass allocation, yields and fruit quality of three tomato varieties. Eur. J. Soil Biol. 2007, 43, 332–336. [Google Scholar] [CrossRef]
- Paul, L.C.; Metzger, J.D. Impact of Vermicompost on Vegetable Transplant Quality. HortScience 2005, 40, 2020–2023. [Google Scholar] [CrossRef] [Green Version]
- Arancon, N.Q.; Edwards, C.A.; Bierman, P.; Metzger, J.D.; Lee, S.; Welch, C. Effects of vermicomposts on growth and marketable fruits of field-grown tomatoes, peppers and strawberries. Pedobiologia 2004, 47, 731–735. [Google Scholar] [CrossRef] [Green Version]
- Arancon, N.Q.; Edwards, C.A.; Atiyeh, R.; Metzger, J.D. Effects of vermicomposts produced from food waste on the growth and yields of greenhouse peppers. Bioresour. Technol. 2004, 93, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Lazcano, C.; Domínguez, J. The use of vermicompost in sustainable agriculture: Impact on plant growth and soil fertility. In Soil Nutrients; Miransari, M., Ed.; Publisher Nova Science: Iran, 2011; pp. 1–23. [Google Scholar]
- Gutiérrez-Miceli, F.A.; Santiago-Borraz, J.; Molina, J.A.M.; Nafate, C.C.; Abud-Archila, M.; Llaven, M.A.O.; Rincón-Rosales, R.; Dendooven, L. Vermicompost as a soil supplement to improve growth, yield and fruit quality of tomato (Lycopersicum esculentum). Bioresour. Technol. 2007, 98, 2781–2786. [Google Scholar] [CrossRef] [PubMed]
- Peyvast, G.; Olfati, J.A.; Madeni, S.; Forghani, A.; Samizadeh, H. Vermicompost as a Soil Supplement to Improve Growth and Yield of Parsley. Int. J. Veg. Sci. 2008, 14, 82–92. [Google Scholar] [CrossRef]
- Wang, D.; Shi, Q.; Wang, X.; Wei, M.; Hu, J.; Liu, J.; Yang, F. Influence of cow manure vermicompost on the growth, metabolite contents, and antioxidant activities of Chinese cabbage (Brassica campestris ssp. chinensis). Biol. Fertil. Soils 2010, 46, 689–696. [Google Scholar] [CrossRef]
- Dominguez, J.J.; Edwards, C.A. Biology and ecology of earthworms species used for vermicomposting. In Vermiculture Technology. Earthworms, Organic Waste and Environmental Management; Edwards, C.A., Arancon, N.Q., Sherman, R.L., Eds.; CRC Press: Boca Raton, FL, USA, 2011; pp. 27–40. [Google Scholar] [CrossRef]
- Kaciu, S.; Babaj, I.; Sallaku, G.; Balliu, A. The influence of vermicompost on plant growth characteristics and stand establishment rate of pepper (Capsicum annuum L.) seedlings under saline conditions. J. Food Agric. Environ. 2011, 9, 488–490. [Google Scholar]
- Atiyeh, R.M.; Edwards, C.A.; Subler, S.; Metzger, J.D. Earthworm-processed organic wastes as components of horticultural potting media for growing marigold and vegetable seedlings. Compos. Sci. Util. 2000, 8, 215–223. [Google Scholar] [CrossRef]
- Bachman, G.R.; Metzger, J.D. Growth of bedding plants in commercial potting substrate amended with vermicompost. Bioresour. Technol. 2008, 99, 3155–3161. [Google Scholar] [CrossRef]
- Pour, A.A.; Moghadam, A.; Ardebili, Z.O. The effects of different levels of vermicompost on the growth and physiology of cabbage seedlings. Int. Res. J. Appl. Basic Sci. 2013, 4, 2726–2729. [Google Scholar]
- Ievinsh, Ģ. Vermicompost treatment differentially affects seed germination, seedling growth and physiological status of vegetable crop species. Plant Growth Regul. 2011, 65, 169–181. [Google Scholar] [CrossRef]
- Laužikė, K.; Uselis, N.; Kviklys, D.; Samuolienė, G. Orchard planting density and tree development stage affects physiological processes of apple (Malus domestica Borkh.) tree. Agronomy 2020, 10, 1912. [Google Scholar] [CrossRef]
- Hüner, P.A.; Dahal, K.; Bode, R.; Kurepin, L.V.; Ivanov, A.G. Photosynthetic Acclimation, Vernalization, Crop Productivity and the Grand Design of Photosynthesis. J. Plant Physiol. 2016, 203, 29–43. [Google Scholar] [CrossRef] [PubMed]
- Sala, F.; Arsene, G.G.; Iordănescu, O.; Boldea, M. Leaf Area Constant Model in Optimizing Foliar Area Measurement in Plants: A Case Study in Apple Tree. Sci. Hortic. 2015, 193, 218–224. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef]
- Geniatakis, E.; Fousaki, M.; Chaniotakis, N.A. Direct potentiometric measurement of nitrate in seeds and produce. Commun Soil Sci Plant Anal. 2003, 34, 571–579. [Google Scholar] [CrossRef]
- Atiyeh, R.M.; Subler, S.; Edwards, C.A.; Metzger, J. Growth of tomato plants in horticultural potting media amended with vermicompost. Pedobiologia 1999, 43, 724–728. [Google Scholar]
- Atiyeh, R.M.; Arancon, N.; Edwards, C.A.; Metzger, J.D. Influence of earthworm-processed pig manure on the growth and yield of greenhouse tomatoes. Bioresour. Technol. 2000, 75, 175–180. [Google Scholar] [CrossRef]
- Azarmi, R.; Ziveh, P.S.; Satari, M.R. Effect of vermicompost on growth, yield and nutrition status of tomato (Lycopersicum esculentum). Pak. J. Biol. Sci. 2008, 11, 1797–1802. [Google Scholar] [CrossRef] [Green Version]
- Joshi, R.; Singh, J.; Vig, A.P. Vermicompost as an effective organic fertilizer and biocontrol agent: Effect on growth, yield and quality of plants. Rev. Environ. Sci. Biotechnol. 2015, 14, 137–159. [Google Scholar] [CrossRef]
- Azarmi, R.; Giglou, M.T.; Hajieghrari, B. The effect of sheep-manure vermicompost on quantitative and qualitative properties of cucumber (Cucumis sativus L.) grown in the greenhouse. Afr. J. Biotechnol. 2009, 8, 4953–4957. [Google Scholar]
- Babaj, I.S.; Kaçiu, S.K.; Sallaku, G.L.; Balliu, A. The influence of different substrate composition on growth parameters and dry mass partitioning of cucumber (Cucumis sativum L.) seedlings. Acta Hortic. 2009, 830, 419–424. Available online: https://www.actahort.org/books/830/830_59.htm (accessed on 7 July 2020). [CrossRef]
- Sallaku, G.; Babaj, I.; Kaciu, S.; Balliu, A. The influence of vermicompost on plant growth characteristics of cucumber (Cucumis sativus L.) seedlings under saline conditions. J. Food Agric. Environ. 2009, 7, 869–872. [Google Scholar]
- Mavura, M.; Mtaita, T.; Mutetwa, M.; Musimbo, N. Influence of vermicomposted soil amendments on plant growth and dry matter partitioning in seedling production. Int. J. Hort. Sci. Ornam. Plants 2017, 3, 37–46. [Google Scholar]
- Gupta, R.; Yadav, A.; Garg, V.K. Influence of vermicompost application in potting media on growth and flowering of marigold crop. Int. J. Recycl. Org. Waste Agric. 2011, 3, 47. [Google Scholar] [CrossRef] [Green Version]
- Sahni, S.; Sarma, B.K.; Singh, D.P.; Singh, H.B.; Singh, K.P. Vermicompost enhances performance of plant growth-promoting rhizobacteria in Cicer arietinum rhizosphere against Sclerotium rolfsii. Crop Prot. 2008, 27, 369–376. [Google Scholar] [CrossRef]
- Sandoval-Villa, M.; Guertal, E.A.; Wood, C.W. Tomato leaf chlorophyll meter reading as affected by variety, nitrogen form, and nighttime nutrient solution strength. J. Plant Nutr. 2000, 23, 649–661. [Google Scholar] [CrossRef]
- Uddling, J.; Gelang-Alfredsson, J.; Piikki, K.; Pleijel, H. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth. Res. 2007, 91, 37–46. [Google Scholar] [CrossRef]
- Torres, P.B.; Chow, F.; Santos, D.Y.C. Growth and photosynthetic pigments of Gracilariopsis tenuifrons (Rhodophyta, Gracilariaceae) under high light in vitro culture. J. Appl. Phycol. 2015, 27, 1243–1251. [Google Scholar] [CrossRef]
- Bhat, N.R.; Suleiman, M.S.; Thomas, B.; Lekha, V.S.; George, P.; Isat Ali, S. Growing Substrates for Organic Lettuce Production in Kuwait. World J. Agric. Sci. 2013, 9, 143–147. [Google Scholar]
- Bhat, N.R.; Suleiman, M.S.; Al-Mulla, L.; Albaho, M. Comparision of Growing Substrates for Organic Tomato, Cauliflower and Iceberg Lettuce Production under Greenhouse Conditions. J. Agric. Biodivers. Res. 2013, 2, 55–62. [Google Scholar]
- Tremblay, N.; Wang, Z.; Cerovic, Z.G. Sensing crop nitrogen status with fluorescence indicators. A review. Agron. Sustain. Dev. 2012, 32, 451–464. [Google Scholar] [CrossRef] [Green Version]
- Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Proximal optical sensing of cucumber crop N status using chlorophyll fluorescence indices. Europ. J. Agron. 2016, 73, 83–97. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Prasad, R.; Lisiecka, J.; Antala, M.; Rastogi, A. Influence of Different Spent Mushroom Substrates on Yield, Morphological and Photosynthetic Parameters of Strawberry (Fragaria × ananassa Duch.). Agronomy 2021, 11, 2086. [Google Scholar] [CrossRef]
- Singh, R.; Sharma, R.R.; Kumar, S.; Gupta, R.K.; Patil, R.T. Vermicompost substitution influences growth, physiological disorders, fruit yield and quality of strawberry (Fragaria × ananassa Duch.). Bioresour. Technol. 2008, 99, 8507–8511. [Google Scholar] [CrossRef]
- Papathanasiou, F.; Papadopoulos, I.; Tsakiris, I.; Tamoutsidis, E. Vermicompost as a soil supplement to improve growth, yield and quality of lettuce (Lactuca sativa L.). J. Food Agric. Env. 2012, 10, 677–682. [Google Scholar]
- Abafita, R.; Shimbir, T.; Kebede, T. Effects of different rates of vermicompost as potting media on growth and yield of tomato (Solanum lycopersicum L.) and soil fertility enhancement. Sky. J. Soil. Sci. Environ. Manag. 2014, 3, 73–77. [Google Scholar]
- Azarmi, R.; Giglou, M.T.; Taleshmikail, R.D. Influence of vermicompost on soil chemical and physical properties in tomato (Lycopersicum esculentum) field. Afr. J. Biotechnol. 2009, 7, 2397–2401. [Google Scholar]
- Zhao, H.; Li, T.; Zhang, Y.; Hu, J.; Bai, Y.; Shan, Y.; Ke, F. Effects of vermicompost amendment as a basal fertilizer on soil properties and cucumber yield and quality under continuous cropping conditions in a greenhouse. J. Soils Sediments 2017, 17, 2718–2730. [Google Scholar] [CrossRef]
Treatments | Mineral Element Content, mg L−1 | Electrical Conductivity EC, mS/cm | Acidity, pH | ||||
---|---|---|---|---|---|---|---|
Nitrogen | Phosphorus | Potassium | Calcium | Magnesium | |||
Peat | 180 | 52 | 120 | 289 | 55 | 2.2 | 5.4 |
Peat + 10% vermicompost | 129 | 62 | 324 | 195 | 50 | 2.3 | 5.7 |
Peat + 20% vermicompost | 124 | 61 | 457 | 173 | 52 | 2.8 | 5.9 |
Peat + 30% vermicompost | 165 | 56 | 697 | 139 | 54 | 3.6 | 6.3 |
Treatments | Plant Height, cm | Hypocotyl Lenght, cm | Stem Diameter, mm | Number of Leaves, Unit | Leaf Area, cm2 |
---|---|---|---|---|---|
Peat | 24.41 b | 7.24 a | 5.89 b | 4.10 b | 578.22 c |
Peat + 10% vermicompost | 27.93 a | 7.04 a | 6.16 b | 4.67 a | 715.38 b |
Peat + 20% vermicompost | 28.96 a | 7.00 a | 6.27 b | 4.74 a | 778.51 ab |
Peat + 30% vermicompost | 24.88 b | 5.65 b | 7.02 a | 4.93 a | 824.09 a |
Treatments | Mineral Element Content (% DM) | ||||
---|---|---|---|---|---|
Nitrogen | Phosphorus | Potassium | Calcium | Magnesium | |
Peat | 2.76 c | 0.60 a | 2.29 c | 2.59 a | 0.60 b |
Peat + 10% vermicompost | 2.93 b | 0.68 a | 3.54 b | 2.67 a | 0.66 b |
Peat + 20% vermicompost | 2.96 b | 0.63 a | 3.27 b | 2.65 a | 0.71 ab |
Peat + 30% vermicompost | 3.28 a | 0.67 a | 4.15 a | 2.71 a | 0.81 a |
Treatment | I Measure | II Measure | III Measure | |||
---|---|---|---|---|---|---|
Plant Height, cm | Number of Leaves, unit | Plant Height, cm | Number of Leaves, unit | Plant Height, cm | Number of Leaves, unit | |
Peat | 68.07 a | 7.70 a | 91.15 a | 10.29 a | 117.66 b | 14.51 a |
Peat + 10% vermicompost | 69.91 a | 7.94 a | 98.44 a | 11.10 a | 127.60 ab | 14.17 a |
Peat + 20% vermicompost | 70.74 a | 7.61 a | 99.49 a | 10.78 a | 126.52 ab | 14.15 a |
Peat + 30% vermicompost | 72.11 a | 7.63 a | 100.91 a | 10.77 a | 136.24 a | 15.42 a |
Treatment | Photosynthetic Rate, (µmol CO2 m−2 s−1) | Stomatal Conductance, (H2O mol m−2 s−1) | Intercellular CO2, (µmol CO2 mol−1) | Transpiration Rate, (mmol H2O m−2 s−1) |
---|---|---|---|---|
Seedlings | ||||
Peat | 5.75 c | 0.20 d | 327.90 c | 1.32 d |
Peat + 10% vermicompost | 6.24 bc | 0.38 a | 334.24 bc | 1.58 c |
Peat + 20% vermicompost | 6.58 b | 0.27 c | 343.22 b | 1.76 b |
Peat + 30% vermicompost | 7.41 a | 0.32 b | 357.29 a | 1.99 a |
The peak of fruiting | ||||
Peat | 5.05 c | 0.62 c | 365.33 d | 2.78 c |
Peat + 10% vermicompost | 6.75 b | 0.96 bc | 369.89 c | 3.14 b |
Peat + 20% vermicompost | 7.96 a | 1.11 b | 375.51 b | 3.49 a |
Peat + 30% vermicompost | 9.00 a | 1.94 a | 377.94 a | 3.72 a |
The end of the harvest | ||||
Peat | 4.51 d | 0.15 a | 258.61 d | 0.60 c |
Peat + 10% vermicompost | 5.91 c | 0.17 a | 295.32 c | 0.82 bc |
Peat + 20% vermicompost | 7.42 b | 0.19 a | 319.98 b | 1.09 b |
Peat + 30% vermicompost | 8.82 a | 0.13 a | 346.57 a | 1.47 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jankauskienė, J.; Laužikė, K.; Kavaliauskaitė, D. Effects of Vermicompost on Quality and Physiological Parameters of Cucumber (Cucumis sativus L.) Seedlings and Plant Productivity. Horticulturae 2022, 8, 1009. https://doi.org/10.3390/horticulturae8111009
Jankauskienė J, Laužikė K, Kavaliauskaitė D. Effects of Vermicompost on Quality and Physiological Parameters of Cucumber (Cucumis sativus L.) Seedlings and Plant Productivity. Horticulturae. 2022; 8(11):1009. https://doi.org/10.3390/horticulturae8111009
Chicago/Turabian StyleJankauskienė, Julė, Kristina Laužikė, and Danguolė Kavaliauskaitė. 2022. "Effects of Vermicompost on Quality and Physiological Parameters of Cucumber (Cucumis sativus L.) Seedlings and Plant Productivity" Horticulturae 8, no. 11: 1009. https://doi.org/10.3390/horticulturae8111009
APA StyleJankauskienė, J., Laužikė, K., & Kavaliauskaitė, D. (2022). Effects of Vermicompost on Quality and Physiological Parameters of Cucumber (Cucumis sativus L.) Seedlings and Plant Productivity. Horticulturae, 8(11), 1009. https://doi.org/10.3390/horticulturae8111009