Effect of the Flow Rate on Plant Growth and Flow Visualization of Nutrient Solution in Hydroponics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation and Measurement
2.2. Visualisation of the Flow Field in Hydroponic Cultivation
2.3. Data Analysis
3. Results
3.1. The Effect of Flow Rate on Plant Growth, Root Morphology and Nutrient Uptake
3.2. Visualisation of the Flow Field in a Hydroponic Cultivation Container
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, N.; Acharya, S.; Kumar, K.; Singh, N.; Chaurasia, O. Hydroponics as an advanced technique for vegetable production: An overview. J. Soil Water Conserv. 2018, 17, 364. [Google Scholar] [CrossRef]
- Bradley, P.; Marulanda, C. Simplified Hydroponics to Reduce Global Hunger. Acta Hortic. 2001, 289–296. [Google Scholar] [CrossRef]
- Jones, J.B., Jr. Hydroponics: A Practical Guide for the Soilless Grower; CRC press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Wortman, S. Crop physiological response to nutrient solution electrical conductivity and pH in an ebb-and-flow hydroponic system. Sci. Hortic. 2015, 194, 34–42. [Google Scholar] [CrossRef]
- Chun, C.; Takakura, T. Rate of Root Respiration of Lettuce under Various Dissolved Oxygen Concentrations in Hydroponics. Environ. Control. Biol. 1994, 32, 125–135. [Google Scholar] [CrossRef]
- Nxawe, S.; Laubscher, C.P.; Ndakidemi, P.A. Effect of regulated irrigation water temperature on hydroponics production of spinach (Spinacia oleracea L.). Afr. J. Agric. Res. 2009, 4, 1442–1446. Available online: https://academicjournals.org/journal/AJAR/article-full-text-pdf/A04898631697.pdf (accessed on 9 May 2021).
- Sakamoto, M.; Suzuki, T. Effect of Nutrient Solution Concentration on the Growth of Hydroponic Sweetpotato. Agronomy 2020, 10, 1708. [Google Scholar] [CrossRef]
- Genuncio, G.D.C.; Gomes, M.; Ferrari, A.C.; Majerowicz, N.; Zonta, E. Hydroponic lettuce production in different concentrations and flow rates of nutrient solution. Hortic. Bras. 2012, 30, 526–530. [Google Scholar] [CrossRef] [Green Version]
- Al-Tawaha, A.R.; Al-Karaki, G.; Al-Tawaha, A.R.; Sirajuddin, S.N.; Makhadmeh, I.; Wahab, P.E.M.; Massadeh, A. Effect of water flow rate on quantity and quality of lettuce (Lactuca sativa L.) in nutrient film technique (NFT) under hydroponics conditions. Bulg. J. Agric. Sci. 2018, 24, 791–798. Available online: http://agrojournal.org/24/05-09.html (accessed on 9 May 2021).
- Dalastra, C.; Filho, M.C.T.; Da Silva, M.R.; Nogueira, T.A.; Fernandes, G.C. Head lettuce production and nutrition in relation to nutrient solution flow. Hortic. Bras. 2020, 38, 21–26. [Google Scholar] [CrossRef]
- Soares, H.R.; Silva, Ê.F.; Silva, G.F.; Cruz, A.F.; Santos, J.A.; Rolim, M.M. Salinity and flow rates of nutrient solution on cauliflower biometrics in NFT hydroponic system. Rev. Bras. Eng. Agrícola Ambient. 2020, 24, 258–265. [Google Scholar] [CrossRef]
- Nuwansi, K.K.T.; Verma, A.K.; Prakash, C.; Tiwari, V.K.; Chandrakant, M.H.; Shete, A.P.; Prabhath, G.P.W.A. Effect of water flow rate on polyculture of koi carp (Cyprinus carpio var. koi) and goldfish (Carassius auratus) with water spinach (Ipomoea aquatica) in recirculating aquaponic system. Aquac. Int. 2015, 24, 385–393. [Google Scholar] [CrossRef]
- Endut, A.; Jusoh, A.; Ali, N.; Nik, W.W.; Hassan, A. Effect of flow rate on water quality parameters and plant growth of water spinach (Ipomoea aquatica) in an aquaponic recirculating system. Desalination Water Treat. 2009, 5, 19–28. [Google Scholar] [CrossRef]
- Khater, E.S.; Ali, S.A. Effect of Flow Rate and Length of Gully on Lettuce Plants in Aquaponic and Hydroponic Systems. J. Aquac. Res. Dev. 2015, 6, 1. [Google Scholar] [CrossRef]
- Durst, F. Fluid Mechanics: An Introduction to the Theory of Fluid Flows; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- OAT House Fertilizer Series. Product Information, OAT Agrio Co., Ltd. Available online: https://www.oat-agrio.co.jp/cgi/psearch/item/2013101716413104/ (accessed on 9 May 2021).
- Maboko, M.M.; Du Plooy, C.P. Effect of plant spacing and harvesting frequency on the yield of Swiss chard cultivars (Beta vulgaris L.) in a closed hydroponic system. Afr. J. Agric. Res. 2013, 8, 936–942. [Google Scholar] [CrossRef]
- Jones Jr, J.B. Kjeldahl Method for Nitrogen Determination.Kjeldahl Method for Nitrogen Determination, 1991. Available online: https://www.cabdirect.org/cabdirect/abstract/19921969818 (accessed on 9 May 2021).
- Grant, I. Particle image velocimetry: A review. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 1997, 211, 55–76. [Google Scholar] [CrossRef]
- Thielicke, W.; Stamhuis, E.J. PIVlab—Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB. J. Open Res. Softw. 2014, 2, e30. [Google Scholar] [CrossRef] [Green Version]
- Barber, S.A.; Walker, J.M.; Vasey, E.H. Mechanisms for Movement of Plant Nutrients from Soil and Fertilizer to Plant Root. J. Agric. Food Chem. 1963, 11, 204–207. [Google Scholar] [CrossRef]
- Dorward, A.; Chirwa, E. A Review of Methods for Estimating Yield and Production Impacts, 2010. Available online: https://eprints.soas.ac.uk/16731/ (accessed on 9 May 2021).
- Huang, W.; Ratkowsky, D.A.; Hui, C.; Wang, P.; Su, J.; Shi, P. Leaf Fresh Weight Versus Dry Weight: Which is Better for Describing the Scaling Relationship between Leaf Biomass and Leaf Area for Broad-Leaved Plants? Forests 2019, 10, 256. [Google Scholar] [CrossRef] [Green Version]
- Barber, S.A.; Silberbush, M. Plant Root Morphology and Nutrient Uptake. Asaspecial 2015, 65–87. [Google Scholar] [CrossRef]
- Crawford, N.M. Nitrate: Nutrient and signal for plant growth. Plant Cell 1995, 7, 859–868. [Google Scholar] [CrossRef] [Green Version]
- Aladjadjiyan, A. 2007. The use of physical methods for plant growing stimulation in Bulgaria. J. Cent. Eur. Agric. 2007, 8, 369–380. Available online: https://hrcak.srce.hr/19607 (accessed on 9 May 2021).
- Jaffe, M.J. Thigmomorphogenesis: The response of plant growth and development to mechanical stimulation. Planta 1973, 114, 143–157. [Google Scholar] [CrossRef]
- Hussain, T.; Verma, A.K.; Tiwari, V.K.; Prakash, C.; Rathore, G.; Shete, A.P.; Saharan, N. Effect of water flow rates on growth of Cyprinus carpio var. koi (Cyprinus carpio L., 1758) and spinach plant in aquaponic system. Aquac. Int. 2014, 23, 369–384. [Google Scholar] [CrossRef]
- Lynch, J. Root Architecture and Plant Productivity. Plant Physiol. 1995, 109, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Gosselin, F.P. Mechanics of a plant in fluid flow. J. Exp. Bot. 2019, 70, 3533–3548. [Google Scholar] [CrossRef] [PubMed]
- De Langre, E. Effects of Wind on Plants. Annu. Rev. Fluid Mech. 2008, 40, 141–168. [Google Scholar] [CrossRef] [Green Version]
- Guzmán-Valdivia, C.H.; Talavera-Otero, J.; Désiga-Orenday, O.; Valdivia, G.; Otero, T.; Orenday, D. Turbulent Kinetic Energy Distribution of Nutrient Solution Flow in NFT Hydroponic Systems Using Computational Fluid Dynamics. AgriEngineering 2019, 1, 21. [Google Scholar] [CrossRef] [Green Version]
- Grigas, A.; Kemzūraitė, A.; Steponavičius, D.; Steponavičienė, A.; Domeika, R. Impact of Slope of Growing Trays on Productivity of Wheat Green Fodder by a Nutrient Film Technique System. Water 2020, 12, 3009. [Google Scholar] [CrossRef]
- Kim, B.-S.; Youm, S.; Kim, Y.-K. Sterilization of Harmful Microorganisms in Hydroponic Cultivation Using an Ultraviolet LED Light Source. Sensors Mater. 2020, 32, 3773. [Google Scholar] [CrossRef]
- Goto, E.; Both, A.; Albright, L.; Langhans, R.; Leed, A. Effect of dissolved oxygen concentration on lettuce growth in floating hydroponics. Acta Hortic. 1996, 205–210. [Google Scholar] [CrossRef]
- Baiyin, B.; Tagawa, K.; Gutierrez, J. Techno-Economic Feasibility Analysis of a Stand-Alone Photovoltaic System for Combined Aquaponics on Drylands. Sustainability 2020, 12, 9556. [Google Scholar] [CrossRef]
Composition | T-N | P2O5 | K2O | CaO | MgO | MnO | B2O3 | Fe | Cu | Zn | Mo |
---|---|---|---|---|---|---|---|---|---|---|---|
Concentration (ppm) | 260 | 120 | 405 | 230 | 60 | 1.5 | 1.5 | 2.7 | 0.03 | 0.09 | 0.03 |
Measurement Objective | Measurement Instrument | |
---|---|---|
Plant growth | Leaf area | Leaf area meter (LI3000A, LI-COR, Lincoln, Nebraska USA) |
Fresh weight | Precision balance (UP623Y, SHIMAZU, Kyoto, Japan) | |
Dry weight | ||
Root morphology | Length | Root scanner and software (WinRhizo 2008a, REGENT INS, Quebec, Canada) |
Surface area | ||
Nutrient content | N | Digest system (K-437, BUCHI, Wilmington, USA), Distillation Unit (K-355, BUCHI, Wilmington, USA) |
Authors and Time | Flow Rate (L/min) (Optimal Flow Rate) | Plant | Measurement for Plant Growth |
---|---|---|---|
Genuncio et al. (2000) [8] | 0.75, 1, 1.5 (1.5) | Lettuce | Fresh weight |
Tawaha et al. (2018) [9] | 10, 20, 30 (20) | Plant height, dry weight, fresh weight, number of leaves | |
Dalastra et al. (2020) [10] | 0.5, 1.0, 2.0, 4.0 (1.0) | Dry weight, fresh weight, nutrient accumulation | |
Khater et al. (2015) [14] | 1.0, 1.5, 2.0 (1.0) | Nutrient uptake, fresh weight, dry weight, N content | |
Nuwansi et al. (2016) [12] | 0.8, 2.4, 4.0 (0.8) | Spinach | Plant height, leaf length, yield, percentage of height gain |
Endut et al. (2009) [13] | 0.8, 1.6, 2.4, 3.2, 4.0 (1.6) | Plant height, growth rate | |
Hussain et al. (2015) [28] | 1.0, 1.5, 3.2 (1.5) | Plant height, percentage of height gain, yield | |
Soares et al. (2020) [11] | 1.5, 2.5 (1.5) | Cauliflower | Leaf area, number of leaves, plant height, shoot diameter |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baiyin, B.; Tagawa, K.; Yamada, M.; Wang, X.; Yamada, S.; Yamamoto, S.; Ibaraki, Y. Effect of the Flow Rate on Plant Growth and Flow Visualization of Nutrient Solution in Hydroponics. Horticulturae 2021, 7, 225. https://doi.org/10.3390/horticulturae7080225
Baiyin B, Tagawa K, Yamada M, Wang X, Yamada S, Yamamoto S, Ibaraki Y. Effect of the Flow Rate on Plant Growth and Flow Visualization of Nutrient Solution in Hydroponics. Horticulturae. 2021; 7(8):225. https://doi.org/10.3390/horticulturae7080225
Chicago/Turabian StyleBaiyin, Bateer, Kotaro Tagawa, Mina Yamada, Xinyan Wang, Satoshi Yamada, Sadahiro Yamamoto, and Yasuomi Ibaraki. 2021. "Effect of the Flow Rate on Plant Growth and Flow Visualization of Nutrient Solution in Hydroponics" Horticulturae 7, no. 8: 225. https://doi.org/10.3390/horticulturae7080225
APA StyleBaiyin, B., Tagawa, K., Yamada, M., Wang, X., Yamada, S., Yamamoto, S., & Ibaraki, Y. (2021). Effect of the Flow Rate on Plant Growth and Flow Visualization of Nutrient Solution in Hydroponics. Horticulturae, 7(8), 225. https://doi.org/10.3390/horticulturae7080225