Effects of Foliage Spraying with Sodium Bisulfite on the Photosynthesis of Orychophragmus violaceus
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Culture and Treatment
2.2. Gas Exchange Measurements
2.3. Chlorophyll-A Fluorescence (ChlF) Measurement
2.4. Chlorophyll and Carotene Content
2.5. Statistical Analysis
3. Results
3.1. Effects of Foliage Spraying of NaHSO3 on Gas Exchange of O. violaceus
3.2. Responses of Net Photosynthetic Rate of O. violaceus to Photosynthetically Active Radiation (PAR) and Intracellular CO2 Concentration (Ci) under Foliage Spraying of NaHSO3
3.3. Effects of Foliage Spraying of NaHSO3 on Chlorophyll Content in Leaves of O. violaceus
3.4. Effect of Foliage Spraying of NaHSO3 on Chlorophyll a Fluorescence Parameters of O. violaceus Leaves
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, Y.; Ji, H.B. Physiological responses and accumulation characteristics of turfgrasses exposed to potentially toxic elements. J. Environ. Manag. 2019, 246, 796–807. [Google Scholar] [CrossRef] [PubMed]
- Xing, D.K.; Wu, Y.Y.; Fu, W.G.; Li, Q.L.; Wu, Y.S. Regulated deficit irrigation scheduling of Orychophragmus violaceus based on photosynthetic physiological response traits. Trans. ASABE 2016, 59, 1853–1860. [Google Scholar]
- Bayat, L.; Askari, M.; Amini, F.; Zahedi, M. Effects of Rhizobium inoculation on Trifolium resupinatum antioxidant system under sulfur dioxide pollution. Biol. J. Microb. 2014, 2, 37–50. [Google Scholar]
- Katainen, H.S.; Mäkinen, E.; Jokinen, J.; Kellomäki, S. Effects of SO2 on the photosynthetic and respiration rates in scots pine seedlings. Environ. Pollut. 1987, 46, 241–251. [Google Scholar] [CrossRef]
- Tombuloglu, H.; Ablazov, A.; Filiz, E. Genome-wide analysis of response to low sulfur (LSU) genes in grass species and expression profiling of model grass species Brachypodium distachyon under S deficiency. Turk. J. Biol. 2016, 40, 934–943. [Google Scholar] [CrossRef]
- Yang, S.L.; Wang, J.; Cong, W.; Cai, Z.L.; Ouyang, F. Effects of bisulfite and sulfite on the microalga Botryococcus braunii. Enzym. Microb. Technol. 2004, 35, 46–50. [Google Scholar] [CrossRef]
- Kang, T.; Wu, H.D.; Lu, B.Y.; Luo, X.J.; Gong, C.M.; Bai, J. Low concentrations of glycine inhibit photorespiration and enhance the net rate of photosynthesis in Caragana korshinskii. Photosynthetica 2018, 56, 512–519. [Google Scholar] [CrossRef]
- Chen, G.K.; Wang, X.Y.; Kang, H.J.; Sun, J. Effect of different NaHSO3 concentrations on gas exchange and fluorescence parameters in beans and maize. J. Nucl. Agr. Sci. 2017, 31, 379–385. (In Chinese) [Google Scholar]
- Guo, Y.P.; Hu, M.J.; Zhou, H.F.; Zhang, L.C.; Su, J.H.; Wang, H.W.; Shen, Y.G. Different pathways are involved in the enhancement of photosynthetic rate by sodium bisulfite and benzyladenine, a case study with strawberry (Fragaria × Ananassa Duch) plants. Plant Growth Regul. 2006, 48, 65–72. [Google Scholar] [CrossRef]
- Wang, L.; Ming, C.; Wei, L.; Gao, F.; Lv, Z.; Wang, Q.; Ma, W. Treatment with moderate concentrations of NaHSO3 enhances photobiological H production in the cyanobacterium Anabaena sp. strain PCC 7120. Int. J. Hydrogen Energy 2010, 35, 12777–12783. [Google Scholar] [CrossRef]
- Wang, H.; Mi, H.; Ye, J.; Deng, Y.; Shen, Y. Low concentrations of NaHSO3 increase cyclic photophosphorylation and photosynthesis in cyanobacterium Synechocystis PCC 6803. Photosynth. Res. 2003, 75, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.P.; Hu, M.J.; Zhou, H.F.; Zhang, L.C.; Su, J.H.; Wang, H.W.; Shen, Y.G. Low concentrations of NaHSO3 increase photosynthesis, biomass, and attenuate photoinhibition in Satsuma mandarin (Citrus unshiu Marc.) plants. Photosynthetica 2006, 44, 333–337. [Google Scholar] [CrossRef]
- Busch, F.A. Photorespiration in the context of Rubisco biochemistry, CO2 diffusion and metabolism. Plant J. 2020, 101, 919–939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veeranjaneyulu, K.; Charlebois, D.; Soukpoé-Kossi, C.N.; Leblanc, R.M. Sulfite inhibition of photochemical activity of intact pea leaves. Photosynth. Res. 1992, 34, 271–278. [Google Scholar] [CrossRef]
- Galina, B.; Dmiry, Y.; Albert, B.; Vladislav, G.; Lnna, G.K.; Aaron, F.; Rachel, A.; Robert, F.; Moshe, S. Sulfite oxidase activity is essential for normal sulfur, nitrogen and carbon metabolism in tomato leaves. Plants 2015, 4, 573–605. [Google Scholar]
- Queval, G.; Foyer, C.H. Redox regulation of photosynthetic gene expression. Philos. Trans. R. Soc. B 2012, 367, 3475–3485. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Yi, J.; Wang, L.; Huang, T.; Gao, F.; Wang, Q.; Ma, W. Light intensity is important for hydrogen production in NaHSO3 treated Chlamydomonas reinhardtii. Plant Cell Physiol. 2017, 58, 451–457. [Google Scholar]
- Lüttge, U.; Osmond, C.B.; Ball, E.; Brinckmann, E.; Kinze, G. Bisulfite compounds as metabolic inhibitors: Nonspecific effects on membranes. Plant Cell Physiol. 1972, 13, 505–514. [Google Scholar]
- Ye, Z.P. A review on modeling of responses of photosynthesis to light and CO2. Chin. J. Plant Ecol. 2010, 34, 727–740. (In Chinese) [Google Scholar]
- Wu, Y.Y.; Rao, S.; Zhang, K.Y.; Lu, Y.; Zhao, L.H.; Liang, Z. A Quantitative Method for Determining the Portion of Photorespiratory Pathway in Plants. China Patent 2016105277715, 13 February 2018. [Google Scholar]
- Wang, J.; Lu, W.; Yu, T.; Yang, Q. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of Lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front. Plant Sci. 2016, 7, 250. [Google Scholar]
- Herrmann, H.; Schwartz, J.M.; Johnson, G.N. From empirical to theoretical models of light response curves—Linking photosynthetic and metabolic acclimation. Photosynth. Res. 2020, 145, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Duan, M.; Yang, W.C.; Mao, X.M. Effects of water deficit on photosynthetic characteristics of spring wheat under plastic mulching and comparison of light response curve models. Trans. Chin. Soc. Agri. Mach. 2018, 49, 219–227. (In Chinese) [Google Scholar]
- Ren, B.; Li, J.; Tong, X.J.; Mei, Y.M.; Meng, P.; Zhang, J.S. Simulation on photosynthetic-CO2 response of quercus variabilis and Robinia pseudoacacia in the southern foot of the Taihang Mountain, China. Chin. J. Appl. Ecol. 2018, 29, 1–10. (In Chinese) [Google Scholar]
- Kramer, D.M.; Johnson, G.; Kiirats, O.; Edwards, G.E. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth. Res. 2004, 79, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Zai, X.M.; Zhu, S.N.; Qin, P.; Wang, X.Y.; Luo, F.X. Effect of Glomus mosseae on chlorophyll content, chlorophyll fluorescence parameters, and chloroplast ultrastructure of beach plum (Prunus maritima) under NaCl stress. Photosynthetica 2012, 50, 323–328. [Google Scholar] [CrossRef]
- Hu, H.; Wang, L.H.; Wang, Q.Q.; Jiao, L.Y.; Hua, W.Q.; Zhou, Q.; Huang, X.H. Photosynthesis, chlorophyll fluorescence characteristics and chlorophyll content of soybean seedlings under combined stress of bisphenol A and cadmium. Environ. Toxicol. Chem. 2014, 33, 2455–2462. [Google Scholar] [CrossRef] [PubMed]
- Anjum, N.A.; Gill, R.; Kaushik, M.; Hasanuzzaman, M.; Pereira, E.; Tuteja, N.; Gill, S.S. ATP-sulfurylase, sulfur-compounds and plant stress tolerance. Front. Plant Sci. 2015, 6, 210. [Google Scholar] [CrossRef] [Green Version]
- Stanislav, K.; Mario, M.; Hideki, T. Sulfur nutrition: Impacts on plant development, metabolism, and stress responses. J. Exp. Bot. 2019, 70, 4069–4073. [Google Scholar]
- Brychkova, G.; Grishkevich, V.; Fluhr, R.; Sagi, M. An essential role for tomato sulfite oxidase and enzymes of the sulfite network in maintaining leaf sulfite homeostasis. Plant Physiol. 2013, 161, 148–164. [Google Scholar] [CrossRef] [Green Version]
- Krzysztof, Z. Encyclopedia of Lipidomics, 1st ed.; Springer: Dordrecht, The Netherlands, 2017; pp. 1–4. [Google Scholar]
- Masuda, T. Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. Photosynth. Res. 2008, 96, 121–143. [Google Scholar] [CrossRef]
- Chen, Y.; Jin, J.H.; Jiang, Q.S.; Yu, C.L.; Chen, J.; Xu, L.G.; Jiang, D.A. Sodium bisulfite enhances photosynthesis in rice by inducing Rubisco activase gene expression. Photosynthetica 2014, 52, 475–478. [Google Scholar] [CrossRef]
- Portis, A.R. Rubisco activase—Rubisco’s catalytic chaperone. Photosynth. Res. 2003, 75, 11–27. [Google Scholar] [CrossRef]
- Wang, H.W.; Wei, J.M.; Shen, Y.G. Spraying low concentration sodium bisulfite can promote the photosynthetic phosphorylation and photosynthesis of wheat leaves. Sci. Bull. 2000, 45, 394–398. (In Chinese) [Google Scholar] [CrossRef]
- Li, J.; Liu, X.L.; Zhang, C.L.; Guan, C.Y.; Dai, L.L.; Zhang, Y.L.; Tan, L.T.; Ma, N.; Yuan, Z.J. Effects of NaHSO3 on photosynthetic characteristics and nitrogen metabolism of rapeseed seedlings. Chin. J. Oil Crop Sci. 2014, 36, 761–769. (In Chinese) [Google Scholar]
- Sunil, B.; Saini, D.; Bapatla, R.B.; Aswani, V.; Raghavendra, A.S. Photorespiration is complemented by cyclic electron flow and the alternative oxidase pathway to optimize photosynthesis and protect against abiotic stress. Photosynth. Res. 2019, 139, 67–69. [Google Scholar] [CrossRef]
- Aliyev, J.A. Photosynthesis, photorespiration and productivity of wheat and soybean genotypes. Physiol. Plant. 2012, 145, 369–383. [Google Scholar] [CrossRef] [PubMed]
- Matthew, H.; James, H.; Mcelwain, J.C. Differences in the response sensitivity of stomatal index to atmospheric CO2 among four genera of Cupressaceae conifers. Ann. Bot. Lond. 2010, 3, 411–418. [Google Scholar]
- Hu, H.; Boisson-Dernier, A.; Israelsson-Nordström, M.; Böhmer, M.; Xue, S.; Ries, A.; Godoski, J.; Kuhn, M.J.; Schroeder, I.J. Carbonic anhydrases are upstream regulators of CO2 controlled stomatal movements in guard cells. Nat. Cell Biol. 2010, 12, 87–93. [Google Scholar] [CrossRef] [Green Version]
- Hao, J.J.; Huang, C.H.; Lu, H.; Yu, Y. Influence of K+, Na+ and HCO3- on photosynthesis of soybean seedlings. Soybean Sci. 2012, 31, 436–439. (In Chinese) [Google Scholar]
- Yarmolinsky, D.; Brychkova, G.; Fluhr, R.; Sagi, M. Sulfite reductase protects plants against sulfite toxicity. Plant Physiol. 2013, 161, 725–743. [Google Scholar] [CrossRef] [Green Version]
- Hänsch, R.; Mendel, R.R. Sulfite oxidation in plant peroxisomes. Photosynth. Res. 2005, 86, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.; Li, X.; Fan, B.; Ran, Z.; Ma, W. A stepwise NaHSO3 addition mode greatly improves H2 photoproduction in Chlamydomonas reinhardtii. Front. Plant Sci. 2018, 9, 1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Golan, A.; Whitaker, J.R. Effect of ascorbic acid, sodium bisulfite, and thiol compounds on mushroom polyphenol oxidase. J. Agr. Food Chem. 1984, 32, 1003–1009. [Google Scholar] [CrossRef]
- Lin, Z.F.; Liu, N.; Chen, S.W.; Lin, G.Z.; Mo, H. Bisulfite (HSO3) hydroponics induced oxidative stress and its effect on nutrient element compositions in rice seedlings. Bot. Stud. 2011, 52, 173–181. [Google Scholar]
- Liu, X.; Li, M.L.; Li, J.M.; Su, C.L.; Lian, S.; Zhang, H.B.; Li, Y.X.; Ge, K.; Li, L. AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought. Sci. Rep. 2018, 8, 139–158. [Google Scholar] [CrossRef] [Green Version]
- Ghassemi-Golezani, K.; Hosseinzadeh-Mahootchi, A.; Farhangi-Abriz, S. Chlorophyll a fluorescence of safflower affected by salt stress and hormonal treatments. SN Appl. Sci. 2020, 2, 121–158. [Google Scholar] [CrossRef]
CK | NS1 | NS2 | NS3 | NS4 | |
---|---|---|---|---|---|
Amax | 11.33 ± 0.26 a | 12.53 ± 2.27 a | 11.66 ± 1.46 a | 13.06 ± 0.57 a | 8.61 ± 1.05 a |
α | 0.062 ± 0.00 a | 0.055 ± 0.01 a | 0.058 ± 0.01 b | 0.058 ± 0.00 ab | 0.049 ± 0.00 b |
CE | 0.052 ± 0.00 b | 0.078 ± 0.00 ab | 0.0745 ± 0.00 ab | 0.107 ± 0.02 a | 0.059 ± 0.01 b |
Bmax | 34.92 ± 4.03 ab | 28.14 ± 2.35 b | 40.19 ± 1.28 a | 41.02 ± 0.51 a | 33.31 ± 1.46 ab |
LSP | 314.28 ± 8.87 a | 370.24 ± 35.24 a | 327.22 ± 35.43 a | 344.00 ± 7.09 a | 287.31 ± 8.75 a |
LCP | 14.09 ± 0.59 ab | 17.78 ± 2.74 a | 14.12 ± 1.62 ab | 9.88 ± 0.41 b | 3.37 ± 0.54 c |
CSP | 1410.10 ± 75.77 a | 919.69 ± 12.95 b | 1203.71 ± 27.46 ab | 1110.06 ± 249.37 ab | 1292.54 ± 109.82 ab |
CCP | 52.97 ± 7.49 a | 42.63 ± 0.23 a | 51.64 ± 3.32 a | 49.83 ± 8.29 a | 54.78 ± 5.08 a |
Treatment | Chlorophyll a /(mg·g−1FW) | Chlorophyll b /(mg·g−1FW) | Chlorophyll(a + b)/(mg·g−1FW) | Chlorophyll a/b | Carotenoid /(mg·g−1FW) |
---|---|---|---|---|---|
CK | 0.812 ± 0.026 b | 0.323 ± 0.019 b | 1.135 ± 0.041 b | 2.525 ± 0.104 a | 0.141 ± 0.008 a |
NS1 | 1.074 ± 0.046 a | 0.445 ± 0.040 a | 1.582 ± 0.074 a | 2.459 ± 0.182 a | 0.173 ± 0.018 a |
NS2 | 1.099 ± 0.069 a | 0.440 ± 0.022 a | 1.540 ± 0.120 a | 2.526 ± 0.059 a | 0.159 ± 0.019 a |
NS3 | 1.134 ± 0.076 a | 0.440 ± 0.048 a | 1.574 ± 0.261 a | 2.648 ± 0.182 a | 0.177 ± 0.014 a |
NS4 | 1.038 ± 0.049 a | 0.394 ± 0.013 ab | 1.432 ± 0.122 a | 2.632 ± 0.061 a | 0.157 ± 0.009 a |
Treatment | YII | YNPQ | YNO | NPQ | qP | ETR |
---|---|---|---|---|---|---|
CK | 0.39 ± 0.015 bc | 0.43 ± 0.014 a | 0.18 ± 0.021 a | 0.46 ± 0.021 a | 0.70 ± 0.020 bc | 23.49 ± 1.064 ab |
NS1 | 0.39 ± 0.033 bc | 0.43 ± 0.038 a | 0.18 ± 0.198 a | 0.45 ± 0.057 a | 0.72 ± 0.037 abc | 21.91 ± 1.844 bc |
NS2 | 0.45 ± 0.021 ab | 0.36 ± 0.017 b | 0.19 ± 0.020 a | 0.34 ± 0.020 b | 0.83 ± 0.061 a | 25.31 ± 1.165 ab |
NS3 | 0.46 ± 0.06 a | 0.36 ± 0.01 b | 0.18 ± 0.016 a | 0.38 ± 0.016 ab | 0.80 ± 0.010 ab | 26.09 ± 0.337 a |
NS4 | 0.34 ± 0.008 c | 0.47 ± 0.004 a | 0.19 ± 0.024 a | 0.48 ± 0.024 a | 0.63 ± 0.030 c | 19.05 ± 0.447 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Wu, Y.; Xing, D.; Zhang, K.; Xie, J.; Yu, R.; Chen, T.; Duan, R. Effects of Foliage Spraying with Sodium Bisulfite on the Photosynthesis of Orychophragmus violaceus. Horticulturae 2021, 7, 137. https://doi.org/10.3390/horticulturae7060137
Li Z, Wu Y, Xing D, Zhang K, Xie J, Yu R, Chen T, Duan R. Effects of Foliage Spraying with Sodium Bisulfite on the Photosynthesis of Orychophragmus violaceus. Horticulturae. 2021; 7(6):137. https://doi.org/10.3390/horticulturae7060137
Chicago/Turabian StyleLi, Zhongying, Yanyou Wu, Deke Xing, Kaiyan Zhang, Jinjin Xie, Rui Yu, Tian Chen, and Rongrong Duan. 2021. "Effects of Foliage Spraying with Sodium Bisulfite on the Photosynthesis of Orychophragmus violaceus" Horticulturae 7, no. 6: 137. https://doi.org/10.3390/horticulturae7060137
APA StyleLi, Z., Wu, Y., Xing, D., Zhang, K., Xie, J., Yu, R., Chen, T., & Duan, R. (2021). Effects of Foliage Spraying with Sodium Bisulfite on the Photosynthesis of Orychophragmus violaceus. Horticulturae, 7(6), 137. https://doi.org/10.3390/horticulturae7060137