Prospects of Nanotechnology in Improving the Productivity and Quality of Horticultural Crops
Abstract
:1. Introduction
2. Nanomaterials on Growth and Development of Horticultural Crops
2.1. Nanofertilizers
2.1.1. Macronutrient Nanofertilizers
2.1.2. Micronutrient Nanofertilizers
2.2. Nano-Plant Growth Stimulator
2.3. Nutrient Uptake and Subsequent Translocation in Plant
2.4. Nanopesticide
2.4.1. Nanoinsecticides
2.4.2. Nanofungicides
2.4.3. Nanonematicides
2.5. Enhancement of Shelf-Life of Horticultural Crops by Nanomaterials
2.5.1. Nanofilms/Coatings
2.5.2. Nanopackaging
2.5.3. Nanomaterials for Enhancing the Shelf-Life of Fruits
Silver (Ag) Nanoparticles
Hexanal
2.6. Enhancing the Vitality of Cut Flowers
2.7. Nanomaterials in Food Processing
2.8. Nanosensors in Precision Horticulture
3. Concluding Remarks and Prospect of Nanotechnology
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feynman, R.P. There’s plenty of room at the bottom. Eng. Sci. 1960, 23, 22–36. [Google Scholar]
- Curtis, J.; Greenberg, M.; Kester, J.; Phillips, S.; Krieger, G. Nanotechnology and nanotoxicology: A primer for clinicians. Toxico Rev. 2006, 25, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, D.; Singh, S.; Satnalika, N.; Khandelwal, A.; Jeon, S.-W. Nanotechnology, big things from a tiny world: A review. Adv. Electron. Electr. Engin. 2009, 2, 29–38. [Google Scholar]
- Servin, A.D.; White, J.C. Nanotechnology in agriculture: Next steps for understanding engineered nanoparticle exposure and risk. NanoImpact 2016, 1, 9–12. [Google Scholar] [CrossRef]
- Satalkar, P.; Elger, B.S.; Shaw, D.M. Defining nano, nanotechnology and nanomedicine: Why should it matter? Sci. Eng. Ethics. 2016, 22, 1255–1276. [Google Scholar] [CrossRef]
- Sia, P.D. Nanotechnology among innovation, health and risks. Procedia Soc. Behav. Sci. 2017, 237, 1076–1080. [Google Scholar] [CrossRef]
- Singh, A.; Prasad, S.M. Nanotechnology and its role in agro-ecosystem: A strategic perspective. Int. J. Environ. Sci. Technol. 2017, 14, 2277–2300. [Google Scholar] [CrossRef]
- Khan, J.H.; Lin, J.; Young, C.; Matsagar, B.M.; Wu, K.C.; Dhepe, P.L.; Islam, M.T.; Rahman, M.; Shrestha, L.K.; Alshehri, S.M.; et al. High surface area nanoporous carbon derived from Bangladeshi jute. Mater. Chem. Phys. 2018, 216, 491–495. [Google Scholar] [CrossRef]
- Purohit, R.; Mittal, A.; Dalela, S.; Warudkar, V.; Purohit, K.; Purohit, S. Social, environmental and ethical impacts of nanotechnology. Mater. Today Proc. 2017, 4, 5461–5467. [Google Scholar] [CrossRef]
- Jiang, B.; Li, C.; Dag, O.; Abe, H.; Takei, T.; Imai, T.; Hossain, M.S.A.; Islam, M.T.; Wood, K.; Henzie, J.; et al. Mesoporous metallic rhodium nanoparticles. Nat. Commun. 2017, 8, 15581. [Google Scholar] [CrossRef]
- Iqbal, M.; Li, C.; Jiang, B.; Hossain, M.S.A.; Islam, M.T.; Henzie, J.; Yamauchi, Y. Tethering mesoporous Pd nanoparticles to reduced graphene oxide sheets forms highly efficient electrooxidation catalysts. J. Mater. Chem. A. 2017, 5, 21249–21256. [Google Scholar] [CrossRef]
- Islam, M.T. Applications of nanomaterials for future food security: Challenges and prospects. Malay J. Halal. Res. 2019, 2, 6–9. [Google Scholar] [CrossRef]
- Hossain, A.; Kerry, R.G.; Farooq, M.; Abdullah, N.; Islam, M.T. Application of Nanotechnology for Sustainable Crop Production Systems. In Nanotechnology for Food, Agriculture, and Environment; Nanotechnology in the Life Sciences; Thangadurai, D., Sangeetha, J., Prasad, R., Eds.; Springer: Cham, Switzerland, 2020; pp. 135–159. [Google Scholar] [CrossRef]
- Maqbool, Q.; Barucca, G.; Sabbatini, S.; Parlapiano, M.; Ruello, M.L.; Tittarelli, F. Transformation of Industrial and Organic Waste into Titanium Doped Activated Carbon-Cellulose Nanocomposite for Rapid Removal of Organic Pollutants. J. Hazard. Mater. 2021, 423, 126958. [Google Scholar] [CrossRef] [PubMed]
- Handford, C.E.; Dean, M.; Spence, M.; Henchion, M.; Elliott, C.T.; Campbell, K. Awareness and attitudes towards the emerging use of nanotechnology in the agrifood sector. Food Control 2015, 57, 24–34. [Google Scholar] [CrossRef]
- Elnashaie, S.S.; Danafar, F.; Rafsanjani, H.H. Nanotechnology for Chemical Engineers. Nanotechnol. For. Chem. Eng. 2015, 1, 278. [Google Scholar]
- Duhan, J.S.; Kumar, R.; Kumar, N.; Kaur, P.; Nehra, K.; Duhan, S. Nanotechnology: The new perspective in precision agriculture. Biotechnol. Rep. 2017, 15, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Prasad, T.N.V.K.V.; Sudhakar, P.; Sreenivasulu, Y.; Latha, P.; Munaswamy, V.; Reddy, K.R.; Sreeprasad, T.S.; Sajanlal, P.R.; Pradeep, T. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J. Plant. Nutri. 2012, 35, 905–927. [Google Scholar] [CrossRef]
- Suriyaprabha, R.; Karunakaran, G.; Yuvakkumar, R.; Prabu, P.; Rajendran, V.; Kannan, N. Growth and physiological responses of maize (Zea mays L.) to porous silica nanoparticles in soil. J. Nanopart. Res. 2012, 14, 1294–1296. [Google Scholar] [CrossRef]
- Wang, X.; Han, H.; Liu, X.; Gu, X.; Chen, K.; Lu, D. Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J. Nanopart Res. 2012, 14, 1–10. [Google Scholar] [CrossRef]
- Ghodake, G.; Seo, Y.D.; Park, D.; Lee, D.S. Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo. J. Nanoelect. Optoelect. 2010, 5, 157–160. [Google Scholar] [CrossRef]
- Mondal, A.; Basu, R.; Das, S.; Nandy, P. Beneficial role of carbon nanotubes on mustard plant growth: An agricultural prospect. J. Nanopart. Res. 2011, 13, 4519–4528. [Google Scholar] [CrossRef]
- Nair, R.; Varghese, S.H.; Nair, B.G.; Maekawa, T.; Yoshida, Y.; Kumar, D.S. Nanoparticulate material delivery to plants. Plant. Sci. 2010, 179, 154–163. [Google Scholar] [CrossRef]
- Khodakovskaya, M.V.; de Silva, K.; Biris, A.S.; Dervishi, E.; Villagarcia, H. Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano 2012, 6, 2128–2135. [Google Scholar] [CrossRef] [PubMed]
- Changmei, L.; Chaoying, Z.; Junqiang, W.; Guorong, W.; Mingxuan, T. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci. 2001, 21, 168–171. [Google Scholar]
- Zagzog, O.A.; Gad, M.M.; Hafez, N.K. Effect of nano-chitosan on vegetative growth, fruiting and resistance of malformation of mango. Trends Hortic Res. 2017, 7, 11–18. [Google Scholar]
- Zahedi, S.M.; Karimi, M.; da Silva, J.A.T. The use of nanotechnology to increase quality and yield of fruit crops. J. Sci. Food Agric. 2020, 100, 25–31. [Google Scholar] [CrossRef]
- Sabir, A.; Yazar, K.; Sabir, F.; Kara, Z.; Yazici, M.A.; Goksu, N. Vine growth, yield, berry quality attributes and leaf nutrient content of grapevines as influenced by seaweed extract (Ascophyllum nodosum) and nanosize fertilizer pulverizations. Sci. Hort. 2014, 175, 1–8. [Google Scholar] [CrossRef]
- Abdelaziz, F.H.; Akl, A.M.M.A.; Mohamed, A.Y.; Zakier, M.A. Response of keitte mango trees to spray boron prepared by nanotechnology technique. N. Y. Sci. J. 2019, 12, 48–55. [Google Scholar]
- Davarpanah, S.; Tehranifar, A.; Davarynejad, G.; Abadía, J.; Khorasani, R. Effects of foliar applications of zinc and boron nano-fertilizers on pomegranate (Punica granatum cv. Ardestani) fruit yield and quality. Sci. Hort. 2016, 210, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Bhardwaj, D.; Ansari, M.W.; Sahoo, R.K.; Tuteja, N. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell Fact. 2014, 13, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Dong, W.; Zhang, X.; Wang, H.; Dai, X.; Sun, X.; Qiu, W.; Yang, F. Effect of different fertilizer application on the soil fertility of paddy soils in red soil region of southern China. PLoS ONE 2012, 7, e44504. [Google Scholar] [CrossRef] [Green Version]
- Sidorowicz, A.; Maqbool, Q.; Nazar, M. Future of Nanofertilizer. In Nanotechnology for Agriculture: Crop Production & Protection; Panpatte, D., Jhala, Y., Eds.; Springer: Singapore, 2019; pp. 143–152. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Bindraban, P.S. Nano-fertilizers: New products for the industry? J. Agric. Food Chem. 2017, 66, 6462–6473. [Google Scholar] [CrossRef]
- Sempeho, S.I.; Kim, H.T.; Mubofu, E.; Hilonga, A. Meticulous overview on the controlled release fertilizers. Adv. Chem. 2014, 2014, 63071. [Google Scholar] [CrossRef]
- Zhao, L.; Lu, L.; Wang, A.; Zhang, H.; Huang, M.; Wu, H.; Xing, B.; Wang, Z.; Ji, R. Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance. J. Agric. Food Chem. 2020, 68, 1935–1947. [Google Scholar] [CrossRef]
- Ditta, A.; Arshad, M. Applications and perspectives of using nanomaterials for sustainable plant nutrition. Nanotechnol. Rev. 2016, 5, 209–229. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Lombi, E.; Zhao, F.J.; Kopittke, P.M. Nanotechnology: A new opportunity in plant sciences. Trends Plant. Sci. 2016, 21, 699–712. [Google Scholar] [CrossRef]
- Liu, R.; Lal, R. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci. Total Environ. 2015, 514, 131–139. [Google Scholar] [CrossRef]
- Monreal, C.M.; Derosa, M.; Mallubhotla, S.C.; Bindraban, P.S.; Dimkpa, C. Nanotechnologies for increasing the crop use efficiency of fertilizer-micronutrients. Biol. Fert. Soils. 2016, 52, 423–437. [Google Scholar] [CrossRef]
- Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants. New Phytol. 2007, 173, 677–702. [Google Scholar] [CrossRef]
- Zhao, L.; Peralta-Videa, J.R.; Rico, C.M.; Hernandez-Viezcas, J.A.; Sun, Y.; Niu, G.; Servin, L.; Nunez, J.E.; Duarte-Gardea, M.; Gardea-Torresdey, J.L. CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). J. Agric. Food Chem. 2014, 62, 2752–2759. [Google Scholar] [CrossRef]
- Zheng, L.; Hong, F.; Lu, S.; Liu, C. Effect of nano-TiO2 on strength of naturally aged seeds and growth of spinach. Biol. Trace Element Res. 2005, 104, 83–92. [Google Scholar] [CrossRef]
- Khan, M.; Siddiqui, Z.A. Zinc Oxide Nanoparticles for the Management of Ralstonia solanacearum, Phomopsis vexans and Meloidogyne incognita Incited Disease Complex of Eggplant. Indian Phytopath. 2018, 71, 355–364. [Google Scholar] [CrossRef]
- Tantawy, A.S.; Salama, Y.A.M.; El-Nemr, M.A.; Abdel-Mawgoud, A.M.R. Nano silicon application improves salinity tolerance of sweet pepper plants. Int. J. Chem. Tech. Res. 2015, 8, 11–17. [Google Scholar]
- Pullagurala, V.L.R.; Adisa, I.O.; Rawat, S.; Kalagara, S.; Hernandez-Viezcas, J.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. ZnO nanoparticles increase photosynthetic pigments and decrease lipid peroxidation in soil grown cilantro (Coriandrum sativum). Plant. Physiol. Biochem. 2018, 132, 120–127. [Google Scholar] [CrossRef]
- Ahmed, B.; Shahid, M.; Khan, M.S.; Musaarrat, J. Chromosomal aberrations, cell suppression and oxidative stress generation induced by metal oxide nanoparticles in onion (Allium cepa) bulb. Metallomics 2018, 10, 1315–1327. [Google Scholar] [CrossRef]
- Nair, P.M.G.; Chung, I.M. The responses of germinating seedlings of green peas to copper oxide nanoparticles. Biol. Plant. 2015, 59, 591–595. [Google Scholar] [CrossRef]
- Moghaddasi, S.; Fotovat, A.; Khoshgoftarmanesh, A.H.; Karimzadeh, F.; Khazaei, H.R.; Khorassani, R. Bioavailability of coated and uncoated ZnO nanoparticles to cucumber in soil with or without organic matter. Ecotoxicol. Environ. Saf. 2017, 144, 543–551. [Google Scholar] [CrossRef]
- Trujillo-Reyes, J.; Majumdar, S.; Botez, C.E.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Exposure studies of core–shell Fe/Fe3 O4 and Cu/CuO NPs to lettuce (Lactuca sativa) plants: Are they a potential physiological and nutritional hazard? J. Hazard. Mat. 2014, 267, 255–263. [Google Scholar] [CrossRef]
- Lucia, G.; Carmelina, S.; Simonetta, M.; Lorenza, B.; Eliana, T.; Stefania, B.; Simona, D.G.; Giovanna, S.; Luigi, S.T.; Monica, R.C. An integrated approach to highlight biological responses of Pisum sativum root to nano-TiO2 exposure in a biosolid-amended agricultural soil. Sci. Total Environ. 2019, 650, 2705–2716. [Google Scholar] [CrossRef]
- Musante, C.; White, J.C. Toxicity of silver and copper to Cucurbita pepo: Differential effects of nano and bulk-size particles. Environ. Toxicol. 2012, 27, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Hong, J.; Rico, C.; Zhao, L.; Adeleye, A.S.; Keller, A.A.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ. Sci. Process. Impact. 2015, 17, 177–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Lee, S.; Lee, I. Alteration of phytotoxicity and oxidant stress potential by metal oxide nanoparticles in Cucumis sativus. Water Air Soil. Pollut. 2012, 223, 2799–2806. [Google Scholar] [CrossRef]
- Atha, D.H.; Wang, H.; Petersen, E.J.; Cleveland, D.; Holbrook, R.D.; Jaruga, P.; Dizdaroglu, M.; Xing, B.; Nelson, B.C. Copper oxide nanoparticle mediated DNA damage in terrestrial plant models. Environ. Sci. Technol. 2012, 46, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, B.; Khan, M.S.; Musaarrat, J. Toxicity assessment of metal oxide nano-pollutants on tomato (Solanum lycopersicon): A study on growth dynamics and plant cell death. Environ. Pollut. 2018, 240, 802–816. [Google Scholar] [CrossRef] [PubMed]
- Alsaeedi, A.H.; El-Ramady, H.; Alshaal, T.; El-Garawani, M.; Elhawat, N.; Almohsen, M. Engineered silica nanoparticles alleviate the detrimental effects of Na₊ stress on germination and growth of common bean (Phaseolus vulgaris). Environ. Sci. Pollut. Res. 2017, 24, 21917–21928. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Singh, S.; Singh, S.; Srivastava, P.K.; Singh, V.P.; Singh, S.; Prasad, S.M.; Singh, P.K.; Dubey, N.K.; Pandey, A.C.; et al. Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings. Plant. Physiol. Biochem. 2017, 110, 167–177. [Google Scholar] [CrossRef]
- Tarafdar, J.C.; Raliya, R.; Mahawar, H.; Rathore, I. Development of zinc nano-fertilizer to enhance crop production in pearl millet (Pennisetum americanum). Agric. Res. 2014, 3, 257–262. [Google Scholar] [CrossRef]
- Vance, M.E.; Kuiken, T.; Vejerano, E.P.; McGinnis, S.P.; Hochella, M.F.; Hull, D.R. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilst. J. Nanotechnol. 2015, 6, 1769–1780. [Google Scholar] [CrossRef] [Green Version]
- López-Moreno, M.L.; Avilés, L.L.; Pérez, N.G.; Irizarry, B.Á.; Perales, O.; Cedeno-Mattei, Y.; Román, F. Effect of cobalt ferrite (CoFe2O4) nanoparticles on the growth and development of Lycopersicon lycopersicum (tomato plants). Sci. Total Environ. 2016, 550, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Hong, F.; Yang, F.; Liu, C.; Gao, Q.; Wan, Z.; Gu, F.; Wu, C.; Ma, Z.; Jhou, Z.; Yang, P. Influences of nanoTiO2 on the chloroplast aging of spinach under light. Biol. Trace Elem. Res. 2005, 104, 249–260. [Google Scholar] [CrossRef]
- Yang, F.; Hong, F.; You, W.; Liu, C.; Gao, F.; Wu, C.; Yang, P. Influences of nano anatase TiO2 on nitrogen metabolism of growing spinach. Biol. Trace Elem. Res. 2006, 110, 179–190. [Google Scholar] [CrossRef]
- Khodakovskaya, M.V.; Kim, B.S.; Kim, J.N.; Alimohammadi, M.; Dervishi, E.; Mustafa, T.; Cernigla, C.E. Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial Community. Small 2013, 9, 115–123. [Google Scholar] [CrossRef]
- Cańas, J.E.; Long, M.; Nations, S.; Vadan, R.; Dai, L.; Luo, M.; Olszyk, D. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ. Toxicol. Chem. 2008, 27, 1922–1931. [Google Scholar] [CrossRef]
- Torre-Roche, R.D.L.; Hawthorne, J.; Deng, Y.; Xing, B.; Cai, W.; Newman, L.A.; White, J.C. Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants. Environ. Sci. Technol. 2013, 47, 12539–12547. [Google Scholar] [CrossRef]
- Raliya, R.; Nair, R.; Chavalmane, S.; Wang, W.-N.; Biswas, P. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 2015, 7, 1584–1594. [Google Scholar] [CrossRef]
- Abd-Alla, M.H.; Nafady, N.A.; Khalaf, D.M. Assessment of silver nanoparticles contamination on faba bean-Rhizobium leguminosarum bv. viciae-Glomus aggregatum symbiosis: Implications for induction of autophagy process in root nodule. Agric. Ecosyst. Environ. 2016, 218, 163–177. [Google Scholar] [CrossRef]
- Zuverza-Mena, N.; Armendariz, R.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Effects of silver nanoparticles on radish sprouts: Root growth reduction and modifications in the nutritional value. Front. Plant. Sci. 2016, 7, 90. [Google Scholar] [CrossRef] [Green Version]
- Tarafdar, J.C. Nanoparticle Production, Characterization and its Application to Horticultural Crops; ICAR: Jodhpur, Rajasthan, 2015; pp. 222–229. [Google Scholar]
- Sharon, M.; Choudhary, A.K.; Kumar, R. Nanotechnology in agricultural diseases and food safety. J. Phytol. 2010, 2, 83–92. [Google Scholar]
- Huang, S.W.; Wang, L.; Liu, L.M.; Fu, Q.; Zhu, D.F. Nonchemical pest control in China rice: A review. Agron. Sustain. Dev. 2014, 34, 275–291. [Google Scholar] [CrossRef] [Green Version]
- Devendra, K.; Nisha, M.; Singh, S.R. Emerging technologies to enrich agricultural and horticultural crop quality and production. Ann. Hort. 2019, 12, 55–61. [Google Scholar]
- Vidyalakshmi, R.; Bhakyaraj, R.; Subhasree, R.S. Encapsulation “the future of probiotics”—A review. Adv. Biol. Res. 2009, 3, 96–103. [Google Scholar]
- Barik, T.K.; Sahu, B.; Swain, V. Nanosilica-from medicine to pest control. Parasitol. Res. 2008, 103, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Stadler, T.; Buteler, M.; Weaver, D.K. Novel use of nanostructured alumina as an insecticide. Pest. Manag. Sci. 2010, 66, 577–579. [Google Scholar] [CrossRef] [PubMed]
- Boehm, A.L.; Martinon, I.; Zerrouk, R.; Rump, E.; Fessi, H. Nanoprecipitation technique for the encapsulation of agrochemical active ingredients. J. Microencap. 2003, 20, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Elek, N.; Hoffman, R.; Raviv, U.; Resh, R.; Ishaaya, I.; Magdassi, S. Novaluron nanoparticles: Formation and potential use in controlling agricultural insect pests. Colloids Surf. A Physicochem. Eng. Asp. 2010, 372, 66–72. [Google Scholar] [CrossRef]
- Adak, T.; Kumar, J.; Dey, D.; Shakil, N.A.; Walia, S. Residue and bio-efficacy evaluation of controlled release formulations of imidacloprid against pests in soybean (Glycine max). J. Environ. Sci. Health B. 2012, 47, 226–231. [Google Scholar] [CrossRef]
- Bhagat, D.; Samanta, S.K.; Bhattacharyya, S. Efficient management of fruit pests by pheromone nanogels. Sci. Rep. 2013, 3, 1294. [Google Scholar] [CrossRef]
- Kumar, G.D.; Natarajan, N.; Nakkeeran, S. Antifungal activity of nanofungicide Trifloxystrobin 25% + Tebuconazole 50% against Macrophomina phaseolina. Afr. J. Microbiol. Res. 2016, 10, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Antonoglou, O.; Moustaka, J.; Adamakis, I.D.; Sperdouli, I.; Pantazaki, A.A.; Moustakas, M.; Dendrinou-Samara, C. Nanobrass CuZn nanoparticles as foliar spray non-phytotoxic fungicides. ACS Appl. Mater. Int. 2018, 10, 4450–4461. [Google Scholar] [CrossRef]
- Ntalli, N.G.; Caboni, P. Botanical nema ticides: A review. J. Agric. Food Chem. 2012, 60, 9929–9940. [Google Scholar] [CrossRef]
- Sánchez-Moreno, S.; Alonso-Prados, E.; Alonso-Prados, J.L.; García-Baudín, J.M. Multivariate analysis of toxicological and environmental properties of soil nematicides. Pest. Manag. Sci. 2019, 65, 82–92. [Google Scholar] [CrossRef]
- Cromwell, W.A.; Yang, J.; Starr, J.L.; Jo, Y.K. Nematicidal effects of silver nanoparticles on root-knot nematode in bermudagrass. J. Nematol. 2014, 46, 261–266. [Google Scholar]
- Abdellatif, K.F.; Abdelfattah, R.H.; El-Ansary, M.S.M. Green nanoparticles engineering on root-knot nematode infecting eggplants and their effect on plant DNA modification. Iran. J. Biotechnol. 2016, 14, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Dubey, P.K.; Shukla, R.N.; Srivastava, G.; Mishra, A.A.; Pandey, A. Study on Quality Parameters and Storage Stability of Mango Coated with Developed Nanocomposite Edible Film. Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2899–2935. [Google Scholar] [CrossRef]
- Mannozzi, C.; Tylewicz, U.; Chinnici, F.; Siroli, L.; Rocculi, P.; Dalla Rosa, M.; Romany, S. Effects of chitosan-based coatings enriched with procyanidin by-product on quality of fresh blueberries during storage. Food Chem. 2018, 251, 18–24. [Google Scholar] [CrossRef]
- Silva, G.M.C.; Silva, W.B.; Medeiros, D.B.; Salvador, A.R.; Cordeiro, M.H.M.; da Silva, N.M.; Santana, D.B.; Mizobutsi, G.P. The chitosan affects severely the carbon metabolism in mango (Mangifera indica L. cv. Palmer) fruit during storage. Food Chem. 2017, 237, 372–378. [Google Scholar] [CrossRef]
- Pornchan, J.; Pranee, R.; Teerada, W.; Kanogwan, S. Influence of chitosan coating combined with spermidine on anthracnose disease and qualities of “Nam Dok Mai” mango after harvest. Sci. Hort. 2017, 224, 180–187. [Google Scholar] [CrossRef]
- Silva, W.B.; Silva, G.M.C.; Santana, D.B.; Salvador, A.R.; Medeiros, D.B.; Belghith, I.; da Silva, N.M.; Cordeiro, M.H.M.; Misobutsi, G.P. Chitosan delays ripening and ROS production in guava (Psidium guajava L.) fruit. Food Chem. 2018, 242, 232–238. [Google Scholar] [CrossRef]
- Shen, Y.; Yang, H. Effect of preharvest chitosan-g-salicylic acid treatment on postharvest table grape quality, shelf life, and resistance to Botrytis cinerea-induced spoilage. Sci. Hort. 2017, 224, 367–373. [Google Scholar] [CrossRef]
- Shahbazi, Y. Application of carboxymethyl cellulose and chitosan coatings containing Mentha spicata essential oil in fresh strawberries. Int. J. Biol. Macromol. 2018, 112, 264–272. [Google Scholar] [CrossRef]
- Guerra, I.C.D.; Oliveira, P.D.L.; Lúcio, A.S.S.C.; Tavares, J.F.; Barbosa-Filho, J.M.; Madruga, M.S.; Souza, E.L.D. Coatings comprising chitosan and Mentha piperita L. or Mentha × villosa Huds essential oils to prevent common postharvest mould infections and maintain the quality of cherry tomato fruit. Int. J. Food Microb. 2015, 214, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Migliori, C.A.; Salvati, L.; Di Cesare, L.F.; Lo Scalzo, R.; Parisi, M. Effects of preharvest applications of natural antimicrobial products on tomato fruit decay and quality during long-term storage. Sci. Hort. 2017, 222, 193–202. [Google Scholar] [CrossRef]
- Li, X.; Li, W.; Jiang, Y.; Ding, Y.; Yun, J.; Tang, Y.; Zhang, P. Effect of nano-ZnO-coated active packaging on quality of fresh-cut ‘fuji’ apple. Int. J. Food Sci. Technol. 2011, 46, 1947–1955. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, M.; Bhandari, B.; Kachele, R. ZnO nanoparticles combined radio-frequency heating: A novel method to control microorganism and improve product quality of prepared carrots. Inno. Food Sci. Emerg. Technol. 2017, 44, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Grumezescu, A. Nanotechnology in the agri-food industry. In Emulsions; Elsevier: Amsterdam, The Netherlands, 2016; Volume 3, p. 768. ISBN 978-0-12-804306-6. [Google Scholar]
- Islam, M.S.; Akter, N.; Rahman, M.M.; Shi, C.; Islam, M.T.; Zeng, H.; Azam, M.S. Mussel-inspired immobilization of silver nanoparticles toward antimicrobial cellulose paper. ACS Sustain. Chem. Eng. 2018, 6, 9178–9188. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, S.J.; Choi, D.S.; Hur, S.J. Current topics in active and intelligent food packaging for the preservation of fresh foods. J. Sci. Food Agric. 2015, 95, 2799–2810. [Google Scholar] [CrossRef]
- Hu, A.W.; Fu, Z.H. Nanotechnology and its application in packaging and packaging machinery. Pack Eng. 2003, 24, 22–24. [Google Scholar]
- Echegoyen, Y. Nano-developments for food packaging and labelling applications. In Nanotechnologies in Food and Agriculture; Rai, M., Riberio, C., Mattoso, L., Duran, N., Eds.; Springer: Cham, Switzerland, 2015; pp. 141–160. [Google Scholar] [CrossRef]
- Kuswandi, B. Environmental friendly food nano-packaging. Environ. Chem Lett. 2017, 15, 205–221. [Google Scholar] [CrossRef]
- Kasaai, M.R. Nanosized particles of silica and its derivatives for applications in various branches of food and nutrition sectors. J. Nanotechnol. 2015, 2015, 852394. [Google Scholar] [CrossRef] [Green Version]
- Sidorowicz, A.; Szymański, T.; Rybka, J.D. Photodegradation of Biohazardous Dye Brilliant Blue R Using Organometallic Silver Nanoparticles Synthesized through a Green Chemistry Method. Biology 2021, 10, 784. [Google Scholar] [CrossRef]
- Chaudhry, Q.; Scotter, M.; Blackburn, J.; Ross, B.; Boxall, A.; Castle, L.; Aitken, R.; Watkins, R. Applications and implications of nanotechnologies in food sector. Food Addit. Contam. 2008, 25, 241–258. [Google Scholar] [CrossRef]
- Jin, T.; Sun, D.; Su, J.Y.; Zhang, H.; Sue, H.J. Antimicrobial efcacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella enteritidis and Escherichia coli. J. Food Sci. 2009, 74, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Momin, J.K.; Joshi, B.H. Nanotechnology in foods. In Nanotechnologies in Food and Agriculture; Rai, M., Riberio, C., Mattoso, L., Duran, N., Eds.; Springer: Cham, Switzerland, 2015; pp. 3–24. [Google Scholar] [CrossRef]
- Song, H.; Yuan, W.; Jin, P.; Wang, W.; Wang, X.; Yang, L.; Zhang, Y. Effects of chitosan/nano-silica on postharvest quality and antioxidant capacity of loquat fruit during cold storage. Post Biol. Technol. 2016, 119, 41–48. [Google Scholar] [CrossRef]
- Li, D.; Ye, Q.; Jiang, L.; Luo, Z. Effects of nano-TiO2-LDPE packaging on postharvest quality and antioxidant capacity of strawberry (Fragaria ananassa Duch.) stored at refrigeration temperature. J. Sci. Food Agric. 2017, 97, 1116–1123. [Google Scholar] [CrossRef]
- Wang, K.; Jin, P.; Shang, H.; Li, H.; Xu, F.; Hu, Q.; Zheng, Y. A combination of hot air treatment and nano-packing reduces fruit decay and maintains quality in postharvest Chinese bayberries. J. Sci. Food Agric. 2010, 90, 2427–2432. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajadi, M.S.; Atarod, M.; Sajjadi, M.; Isaabadi, Z. Types of Nanostructures, in an introduction to green nanotechnology, interface science and technology. Elsevier Sci. Publ. Amst. 2019, 28, 29–80. [Google Scholar] [CrossRef]
- Gudadhe, J.A.; Yadav, A.; Gade, A.; Marcato, P.D.; Duran, N.; Rai, M. Preparation of an agar-silver nanoparticles (A-AgNp) flm for increasing the shelf-life of fruits. IET Nanobiotechnol. 2014, 8, 190–195. [Google Scholar] [CrossRef]
- Chowdappa, P.; Gowda, S.; Chethana, C.S.; Madhura, S. Antifungal activity of chitosan-silver nanoparticle composite against Colletotrichum gloeosporioides associated with mango anthracnose. Afr J. Microbiol. Res. 2014, 8, 1803–1812. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Shukla, A.; Baul, P.P.; Mitra, A.; Halder, D. Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packa Shel Life 2018, 16, 178–184. [Google Scholar] [CrossRef]
- Bhople, S.; Gaikwad, S.; Deshmukh, S.; Bonde, S.; Gade, A.; Sen, S.; Brezinska, A.; Dahm, H.; Rai, M. Myxobacteria-mediated synthesis of silver nanoparticles and their impregnation in wrapping paper used for enhancing shelf life of apples. IET Nanobiotechnol. 2016, 10, 389–394. [Google Scholar] [CrossRef]
- Seethapathy, P.; Gurudevan, T.; Subramanian, K.S.; Kuppusamy, P. Bacterial antagonists and hexanal-induced systemic resistance of mango fruits against Lasiodiplodia theobromae causing stem-end rot. J. Plant. Interact. 2016, 11, 158–166. [Google Scholar] [CrossRef]
- Jincy, M.; Djanaguiraman, M.; Jeyakumar, P.; Subramanian, K.S.; Jayasankar, S.; Paliyath, G. Inhibition of phospholipase D enzyme activity through hexanal leads to delayed mango (Mangifera indica L.) fruit ripening through changes in oxidants and antioxidant enzymes activity. Sci. Hort. 2017, 218, 316–325. [Google Scholar] [CrossRef]
- Solgi, M.; Kafi, M.; Taghavi, T.S.; Naderi, R. Essential oils and silver nanoparticles (SNP) as novel agents to extend vase-life of gerbera (Gerbera jamesonii cv. “Dune”) flowers. Post Biol. Technol. 2009, 53, 155–158. [Google Scholar] [CrossRef]
- Lü, P.; He, S.; Li, H.; Cao, J.; Xu, H. Effects of nano-silver treatment on vase life of cut rose cv. Movie Star flowers. J. Sci. Food Agric. Environ. 2010, 8, 1118–1122. [Google Scholar]
- Witte, Y.D.; Harkema, H.; Doorn, W.G. Effect of antimicrobial compounds on cut Gerbera flowers: Poor relation between stem bending and numbers of bacteria in the vase water. Post Biol. Technol. 2014, 91, 78–83. [Google Scholar] [CrossRef]
- Lü, P.; Cao, J.; He, S.; Liu, J.; Li, H.; Cheng, G.; Ding, Y.; Joyce, D.C. Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers. Postharvest Biol. Technol. 2010, 57, 196–202. [Google Scholar] [CrossRef]
- Amingad, V.; Sreenivas, K.N.; Fakrudin, B.; Seetharamu, G.K.; Shankarappa, T.H.; Sangama; Venugopalan, R. Comparison of silver nanoparticles and other metal nanoparticles on postharvest attributes and bacterial load in cut roses var. Taj Mahal. Int. J. Pure Appl. Biosci. 2017, 5, 579–584. [Google Scholar] [CrossRef]
- Li, H.; Huang, X.; Li, J.; Liu, J.; Joyce, D.; He, S. Efficacy of nano-silver in alleviating bacteria-related blockage in cut rose cv. Movie Star stems. Postharvest Biol. Technol. 2012, 74, 36–41. [Google Scholar] [CrossRef]
- Alekasir, K.; Hassani, R.N.; Azar, A.M. Effects of silver nanoparticles (SNPs) pulsing treatment and sucrose holding on flower and leaf senescence of cut rose. J. Ornamen Plants. 2017, 7, 103–113. [Google Scholar]
- Zhang, M.; Gao, B.; Chen, J.; Li, Y.; Creamer, A.E.; Chen, H. Slow-release fertilizer encapsulated by graphene oxide films. Chem. Eng. J. 2014, 255, 107–113. [Google Scholar] [CrossRef]
- Neethirajan, S.; Jayas, D.S. Nanotechnology for the Food and Bioprocessing Industries. Food Biol. Technol. 2011, 4, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Sekhon, B.S. Food nanotechnology—An overview. Nanotechnol. Sci. Appl. 2010, 3, 1–15. [Google Scholar] [PubMed]
- Thomas, K.; Sayre, P. Research strategies for safety evaluation of nanomaterials, part I: Evaluating the human health implications of exposure to nanoscale materials. Toxicol. Sci. 2005, 87, 316–321. [Google Scholar] [CrossRef] [Green Version]
- Klaine, J.S.; Alvarez, P.J.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.; Mclaughlin, M.J.; Lead, J.R. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol Chem. 2008, 27, 1825–1851. [Google Scholar] [CrossRef]
- Abbas, K.; Saleh, A.M.; Mohamed, A.; MohdAzhan, N. The recent advances in the nanotechnology and its applications in food processing: A review. J. Food Agric. Environ. 2009, 7, 14–17. [Google Scholar]
- Liu, X.; Wang, J.-H.; Yuan, J.-P. Pharmacological and antitumor activities of ganoderma spores processed by top-down approaches. J. NanoSci. Nanotechnol. 2005, 5, 2001–2013. [Google Scholar] [CrossRef]
- Oberdorster, G.; Stone, V.; Donaldson, K. Toxicology of nanoparticles: A historical perspective. Nanotoxicology 2007, 1, 2–25. [Google Scholar] [CrossRef]
- Kang, S.; Pinault, M.; Pfefferle, L.D.; Elimelech, M. Singlewalled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 2007, 23, 8670–8673. [Google Scholar] [CrossRef]
- Scoville, S. Implications of Nanotechnology Safety of Sensors on Homeland Security Industries. Nanotechnol. Saf. 2013, 175–194. [Google Scholar] [CrossRef]
- Márquez, F.; Morant, C. Nanomaterials for sensor applications. Soft Nanosci. Lett. Sci. Res. 2015, 5, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Hoque, M.I.U.; Chowdhury, A.N.; Islam, M.T.; Firoz, S.H.; Luba, U.; Alowasheeir, A.; Rahman, M.M.; Rehman, A.U.; Ahmad, S.H.A.; Holze, R.; et al. Fabrication of highly and poorly oxidized silver oxide/silver/tin(IV) oxide nanocomposites and their comparative anti-pathogenic properties towards hazardous food pathogens. J. Hazard. Mater. 2021, 408, 124896. [Google Scholar] [CrossRef] [PubMed]
Micronutrients Delivered as Nanoparticles | Dose Used (mg/L) | Crops | Effect on Plant Growth and Development | Reference |
---|---|---|---|---|
Zinc (Zn) | 1000 1000 1 100, 200, 500 0–400 5, 10, 20 500 | Cucumber Spinach Tomato, eggplant Chilli pepper Coriander Onion Garden pea | Root tip deformation and growth inhibition. Reduces plant growth Reduces fungal disease. Improves germination. Improves pigment contents and defense responses Inhibits root growth. Decreases chlorophyll and H2O2 contents. | [42] [43] [44] [45] [46] [47] [48] |
Iron (Fe) | 50–2000 | Cucumber | Enhances biomass production and activities of antioxidant enzymes in dose-depended manners. | [49] |
10 and 20 | Lettuce | Reduces chlorophyll contents and growth but increases activities of the antioxidant enzyme. | [50] | |
30 to 60 | Garden pea | Improves seed mass and chlorophyll content. | [51] | |
Copper (Cu) | 0, 100, and 500 | Squash | Increases ionic Cu in media treated with bulk Cu compared to nCu. | [52] |
130, 660 | Lettuce | Increases shoot and root length ratio. | [53] | |
0, 10, 20 | Lettuce | Negatively influences on nutrient content, water content, seedlings growth and dry biomass. | [50] | |
0–1000 | Cucumber | Reduces growth and increases antioxidant enzymes. | [54] | |
10–1000 | Radish, grasses | Causes of DNA damage and growth inhibition. | [55] | |
50–500 | Tomato | Improves fruit firmness and antioxidant content. | [56] | |
100, 250, 500 | Bean | Causes of growth inhibition and nutrition imbalance. | [57] | |
100–500 | Garden pea | Reduces the growth of plants, enhances the production of ROS and the peroxidation of lipid. | [58] |
Nanoparticles | Dose (mg/L) | Crop | Effect on Plant Growth and Development | Reference |
---|---|---|---|---|
CeO2 | 125 to 4000 | Cucumber | Negative impacts at the molecular and biochemical levels in plants. | [61] |
TiO2 | 1000 to 2000 | Spinach | Promotes growth and photosynthesis. | [62,63] |
Carbon nanotubes (MWCNT) | 10–40 | Tomato | Enhances germination and growth rate but inhibits elongation of root in tomato. | [64,65] |
Carbon nanotubes (MWCNT) | 10–40 | Onion and cucumber | Enhances elongation of root. | [65] |
Carbon nanotubes (MWCNT) | 0, 500, 1000 or 5000 | Zucchini, tomato, corn, soybean | Reduces biomass in corn and soybean (500 mg/kg), but the development of tomato and zucchini unaffected. | [66] |
Fe3O4 | 0.67 | Lettuce, spinach, radish, cucumber, tomato, peppers | Inhibits seed germination. | [66] |
ZnO | 100–1000 | Garden pea | No effect on seed germination but affects nodulation and root length | [67] |
Ag | 800 | Faba bean | Declines germination | [68,69] |
Ag | 0, 125, 250, 500 | Radish | No effect on germination |
Nanofilm/Coating Component | Beneficial Effect on Fruit | Fruit | Reference |
---|---|---|---|
Chitosan/procyanidin | Decreases mould and yeast growth, preserve firmness and increases the activity of antioxidants. | Blueberry | [88] |
Chitosan | Delays senescence process, loss of water and firmness of fruits. | Mango | [89] |
Chitosan/spermidine | Induces the defensive mechanism against anthracnose pathogen, and improves firmness and delays deterioration of fruit. | Mango | [90] |
Chitosan | Reduces weight loss, respiratory rate, antioxidant process, and enhances firmness. | Guava | [91] |
Chitosan, chitosan/chitosan-g-salicylic acid and salicylic acid | Enhances the activities of the enzymes such as chitinase, lyase, and glucanase. Decreases respiration rate, weight loss and decay incidence. | Grape | [92] |
Chitosan-carboxymethyl cellulose/Mentha spicata essential oil | The coating is effective as an antimicrobial agent. Positively influences titratable acidity, weight loss, water vapour resistance, pH, and respiration rate. | Strawberries | [93] |
Chitosan/Mentha × villosa Huds. essential oils or Mentha piperita L. | Inhibits spore germination and mycelial growth. Sensory and physicochemical properties are unaffected during storage. | Cherry tomato | [94] |
Chitosan vs. propolis vs. thyme essential oil | Retains total carotenoids and flavonols (by chitosan), total soluble sugar (by thyme and chitosan), and total terpenes and organic acids (by propolis). Chitosan alone performed the best. | Tomato | [95] |
Nano-ZnO | Nano-packaging enhances the storage time of fresh-cut apples by 6 days. | Apple | [96] |
Nano-ZnO | Nano-ZnO reduces microbial spoilage during storage and significantly increased the shelf life. | Carrot | [97] |
Nano-Technique | Example and Composition | Effects of the Technique on Food Processing | Reference |
---|---|---|---|
Nanoencapsulation | Nano-capsules |
| [128] |
Nano-liposomes |
| [129] | |
Nano-emulsions | Colloidosomes |
| [130] |
Nano-cochleate |
| [131] | |
Daily Boost |
| [132] | |
Nano-emulsions |
| [133] | |
Brominated vegetable oil, ester gum, dammar gum and sucrose-acetate isobutyrate |
| [134] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, R.A.; Siddiqui, M.N.; Skalicky, M.; Brestic, M.; Hossain, A.; Kayesh, E.; Popov, M.; Hejnak, V.; Gupta, D.R.; Mahmud, N.U.; et al. Prospects of Nanotechnology in Improving the Productivity and Quality of Horticultural Crops. Horticulturae 2021, 7, 332. https://doi.org/10.3390/horticulturae7100332
Rana RA, Siddiqui MN, Skalicky M, Brestic M, Hossain A, Kayesh E, Popov M, Hejnak V, Gupta DR, Mahmud NU, et al. Prospects of Nanotechnology in Improving the Productivity and Quality of Horticultural Crops. Horticulturae. 2021; 7(10):332. https://doi.org/10.3390/horticulturae7100332
Chicago/Turabian StyleRana, Ruhul Amin, Md. Nurealam Siddiqui, Milan Skalicky, Marian Brestic, Akbar Hossain, Emrul Kayesh, Marek Popov, Vaclav Hejnak, Dipali Rani Gupta, Nur Uddin Mahmud, and et al. 2021. "Prospects of Nanotechnology in Improving the Productivity and Quality of Horticultural Crops" Horticulturae 7, no. 10: 332. https://doi.org/10.3390/horticulturae7100332
APA StyleRana, R. A., Siddiqui, M. N., Skalicky, M., Brestic, M., Hossain, A., Kayesh, E., Popov, M., Hejnak, V., Gupta, D. R., Mahmud, N. U., & Islam, T. (2021). Prospects of Nanotechnology in Improving the Productivity and Quality of Horticultural Crops. Horticulturae, 7(10), 332. https://doi.org/10.3390/horticulturae7100332