Irrigation of Greenhouse Crops
Abstract
:1. Introduction
2. Background
2.1. Monitoring Irrigation in Greenhouse Crops
2.2. The Soil/Substrate Physical Properties and the Irrigation Dose
3. Open and Feed Forward Irrigation Control System
3.1. Time Clock Scheduling and the Accumulated Radiation Method
3.2. Crop Evapotranspiration and the Water Balance Method
4. Feedback Irrigation System
4.1. Soil/Substrate Monitoring
4.2. Plant Monitoring
5. Artificial Neural Networks and Fuzzy-Logic Control Systems
6. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Kittas, C.; Elvanidi, A.; Katsoulas, N.; Ferentinos, K.P.; Bartzanas, T. Reflectance indices for the detection of water stress in greenhouse tomato (Solanum lycopersicum). Acta Hortic. 2016, 1112, 63–70. [Google Scholar] [CrossRef]
- Fernandes, C.; Corá, J.; Araújo, J. Reference evapotranspiration estimation inside greenhouses. Sci. Agric. 2003, 60, 591–594. [Google Scholar] [CrossRef]
- Kitta, E.; Bartzanas, T.; Katsoulas, N.; Kittas, C. Benchmark irrigated under cover agriculture crops. Agric. Agric. Sci. Procedia 2015, 4, 348–355. [Google Scholar] [CrossRef]
- Levidow, L.; Zaccaria, D.; Maia, R.; Vivas, E.; Todorovic, M.; Scardigno, A. Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agric. Water Manag. 2014, 146, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Bonachela, S.; González, A.M.; Fernández, M.D. Irrigation scheduling of plastic greenhouse vegetable crops based on historical weather data. Irrig. Sci. 2006, 25, 53–62. [Google Scholar] [CrossRef]
- Lea-Cox, J.D.; Ross, D.S.; Teffeau, K.M. A Water and Nutrient Management Planning Process for Container Nursery and Greenhouse Production Systems in Maryland. J. Environ. Hortic. 2001, 19, 230–236. [Google Scholar]
- Cahn, M.D.; Johnson, L.F. New Approaches to Irrigation Scheduling of Vegetables. Horticulturae 2017, 3, 1–20. [Google Scholar] [CrossRef]
- Belayneh, B.E.; Lea-Cox, J.D.; Lichtenberg, E. Costs and benefits of implementing sensor-controlled irrigation in a commercial pot-in-pot container nursery. Horttechnology 2013, 23, 760–769. [Google Scholar] [CrossRef]
- Qiu, R.; Kang, S.; Du, T.; Tong, L.; Hao, X.; Chen, R.; Chen, J.; Li, F. Effect of convection on the Penman–Monteith model estimates of transpiration of hot pepper grown in solar greenhouse. Sci. Hortic. 2013, 160, 163–171. [Google Scholar] [CrossRef]
- Zimmermann, D.; Reus, R.; Westhoff, M.; Gessner, P.; Bauer, W.; Bamberg, E.; Bentrup, F.W.; Zimmermann, U. A novel, non-invasive, online-monitoring, versatile and easy plant-based probe for measuring leaf water status. J. Exp. Bot. 2008, 59, 3157–3167. [Google Scholar] [CrossRef] [Green Version]
- Bacci, L.; Battista, P.; Cardarelli, M.; Carmassi, G.; Rouphael, Y.; Incrocci, L.; Malorgio, F.; Pardossi, A.; Rapi, B.; Colla, G. Modelling Evapotranspiration of Container Crops for Irrigation Scheduling. In Evapotranspiration—From Measurements to Agricultural and Environmental Applications; Gerosa, G., Ed.; IntechOpen Limited: London, UK, 2011; pp. 263–282. ISBN 978-953-307-512-9. [Google Scholar]
- Van der Linden, A.M.A.; Hoogsteen, M.J.J.; Boesten, J.J.T.I.; Van Os, E.A.; Wipfler, E.L. Fate of Plant Protection Products in Soilless Cultivations after Drip Irrigation: Measured vs. Modelled Concentrations; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2016; pp. 2–61. [Google Scholar]
- Llorach-Massan, P.; Muñoz, P.; Riera, M.R.; Gabarrell, X.; Rieradevall, J.; Montero, J.I.; Villalba, G. N2O emissions from protected soilless crops for more precise food and urban agriculture life cycle assessments. J. Clean. Prod. 2017, 149, 1118–1126. [Google Scholar] [CrossRef]
- Kläring, H.K. Strategies to control water and nutrient supplies to greenhouse crops. A review. Agronomie 2001, 21, 311–321. [Google Scholar] [CrossRef]
- Schiattone, M.I.; Viggiani, R.; Di Venereb, D.; Sergiob, L.; Cantore, V.; Todorovic, M.; Perniola, M.; Candido, V. Impact of irrigation regime and nitrogen rate on yield, quality and water use efficiency of wild rocket under greenhouse conditions. Sci. Hortic. 2018, 229, 182–192. [Google Scholar] [CrossRef]
- Incrocci, L.; Marzialetti, P.; Incrocci, G.; Di Vita, A.; Balendonck, J.; Bibbiani, C.; Spagnol, S.; Pardossi, A. Substrate water status and evapotranspiration irrigation scheduling in heterogenous container nursery crops. Agric. Water Manag. 2014, 131, 30–40. [Google Scholar] [CrossRef]
- Fulcher, F.A.; Buxton, J.W.; Geneve, R.L. Developing a physiological-based, on-demand irrigation system for container production. Sci. Hortic. 2012, 138, 221–226. [Google Scholar] [CrossRef]
- Daccache, A.; Ciurana, J.S.; Rodriguez Diaz, J.A.; Knox, J.W. Water and energy footprint of irrigated agriculture in the Mediterranean region. Environ. Res. Lett. 2014, 9, 1–12. [Google Scholar] [CrossRef]
- Egea, G.; Fernández, J.E.; Alcon, F. Financial assessment of adopting irrigation technology for plant-based regulated deficit irrigation scheduling in super high-density olive orchards. Agric. Water Manag. 2017, 187, 47–56. [Google Scholar] [CrossRef]
- Montesano, F.F.; Van Iersel, M.W.; Boari, F.; Cantore, V.; D’Amato, G.; Parente, A. Sensor-based irrigation management of soilless basil using a new smart irrigation system: Effects of set-point on plant physiological responses and crop performance. Agric. Water Manag. 2018, 203, 20–29. [Google Scholar] [CrossRef]
- Pawlowski, A.; Sánchez-Molina, J.A.; Guzmán, J.L.; Rodríguez, F.; Dormido, S. Evaluation of event-based irrigation system control scheme for tomato crops in greenhouses. Agric. Water Manag. 2017, 183, 16–25. [Google Scholar] [CrossRef]
- Sezen, S.M.; Celikel, G.; Yazar, A.; Tekin, S.; Kapur, B. Effect of irrigation management on yield and quality of tomatoes grown in different soilless media in a glasshouse. Sci. Res. Essays 2010, 5, 41–48. [Google Scholar]
- Zeng, C.Z.; Bie, Z.L.; Yuan, B.Z. Determination of optimum irrigation water amount for drip-irrigated muskmelon (Cucumis melo L.) in plastic greenhouse. Agric. Water Manag. 2009, 96, 595–602. [Google Scholar] [CrossRef]
- Putra, P.A.; Yuliando, H. Soilless Culture System to Support Water Use Efficiency and Product Quality: A Review. Agric. Agric. Sci. Procedia 2015, 3, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Montesano, F.F.; Serio, F.; Mininni, C.; Signore, A.; Parente, A.; Santamaria, P. Tensiometer-Based Irrigation Management of Subirrigated Soilless Tomato: Effects of Substrate Matric Potential Control on Crop Performance. Front. Plant Sci. 2015, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Van Os, E.A.; Gieling, T.H.; Ruijs, M.N.A. Equipment for hydroponic installations. In Hydroponic Production of Vegetables and Ornamental; Savvas, D., Passam, H., Eds.; Embryo Publications: Athens, Greece, 2002; pp. 104–140. ISBN 960-8002-12-5. [Google Scholar]
- Breś, W.; Kleiber, T.; Trelka, T. Quality of water used for drip irrigation and fertigation of horticultural plants. Folia Hortic. 2010, 22, 67–74. [Google Scholar] [CrossRef] [Green Version]
- Gallardo, M.; Thompson, R.B.; Fernández, M.D. Water requirements and irrigation management in Mediterranean greenhouses: The case of the southeast coast of Spain. In Good Agricultural Practices for Greenhouse Vegetable Crops; Plant Production and Protection Paper 217; FAO: Rome, Italy, 2013; pp. 109–136. [Google Scholar]
- Chamindu Deepagoda, T.K.K.; Chen Lopez, J.C.; Møldrup, P.; de Jonge, L.W.; Tuller, M. Integral parameters for characterizing water, energy, and aeration properties of soilless plant growth media. J. Hydrol. 2013, 502, 120–127. [Google Scholar] [CrossRef]
- Pardossi, A.; Carmassi, G.; Diara, C.; Incrocci, L.; Maggini, R.; Massa, D. Fertigation and Substrate Management in Closed Soilless Culture; University of Pisa, Dipartimento di Bioologia delle Piante Agrarrie (DBPA): Pisa, Italy, 2011; pp. 1–63. [Google Scholar]
- Maślanka, M.; Magdziarz, R. The influence of substrate type and chlormequat on the growth and flowering of marigold (Tagetes L.). Folia Hortic. 2017, 29, 189–198. [Google Scholar] [CrossRef]
- Raviv, M.; Lieth, J.M. Significance of Soilless Culture in Agriculture. In Soilless Culture. Theory and Practice; Raviv, M., Lieth, J.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 1–10. ISBN 978-0-444-52975-6. [Google Scholar]
- Raviv, M.; Blom, T.J. The effect of water availability and quality on photosynthesis and productivity of soilless-grown cut roses. Sci. Hortic. 2001, 88, 257–276. [Google Scholar] [CrossRef]
- Adams, P. Nutritional control in hydroponics. In Hydroponic Production of Vegetables and Ornamental; Savvas, D., Passam., H., Eds.; Embryo Publications: Athens, Greece, 2002; pp. 211–261. ISBN 960-8002-12-5. [Google Scholar]
- Asaduzzaman, Md.; Saifullah, Md.; Mollick, S.R.; Hossain, M.Md.; Halim, G.M.A.; Asao, T. Influence of Soilless Culture Substrate on Improvement of Yield and Produce Quality of Horticultural Crops. In Soilless Culture-Use of Substrates for the Quality Horticultural Crops; Asaduzzaman, Md., Ed.; IntechOpen Limited: London, UK, 2015; pp. 1–31. [Google Scholar]
- Martínez-Gutiérrez, G.A.; Morales, I.; Aquino-Bolaños, T.; Escamirosa-Tinoco, C.; Hernández-Tolentino, M. Substrate volume and nursery times for earliness and yield of greenhouse tomato. Emirates J. Food Agric. 2016, 28, 897–902. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Rea, E.; Colla, G. The influence of irrigation system and nutrient solution concentration on potted geranium production under various conditions of radiation and temperature. Sci. Hortic. 2008, 118, 328–337. [Google Scholar] [CrossRef]
- Vox, G.; Teitel, M.; Pardossi, A.; Minuto, A.; Tinivella, F.; Schettini, E. Sustainable greenhouse systems. In Sustainable Agriculture: Technology, Planning and Management; Salazar, A., Rios, I., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2010; pp. 1–78. ISBN 978-1-60876-269-9. [Google Scholar]
- Warren, S.L.; Bilderback, T.E. More plant per gallon: Getting more out of your water. Horttechnology 2005, 15, 14–18. [Google Scholar] [CrossRef]
- Leteya, J.; Hoffmanb, G.J.; Hopmansc, J.W.; Grattanc, S.R.; Suarezd, D.; Corwind, D.L.; Ostera, J.D.; Wua, L.; Amrhein, C. Evaluation of soil salinity leaching requirement guidelines Agricultural Water Management Evaluation of soil salinity leaching requirement guidelines. Agric. Water Manag. 2011, 98, 502–506. [Google Scholar] [CrossRef]
- Baille, M.; Baille, A.; Laury, J.C. A simplified model for predicting evapotranspiration rate of nine ornamental species vs. climate factors and leaf area. Sci. Hortic. 1994, 59, 217–232. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Irrigation and Drainage Paper 29; FAO: Rome, Italy, 1985; pp. 1–131. ISBN 92-5-102263-1. [Google Scholar]
- Ben-Gal, A.; Ityel, E.; Dudley, L.; Cohen, S.; Yermiyahu, U.; Presnov, E.; Zigmond, L.; Shani, U. Effect of irrigation water salinity on transpiration and on leaching requirements: A case study for bell peppers. Agric. Water Manag. 2008, 95, 587–597. [Google Scholar] [CrossRef]
- Skaggs, R.K. Predicting drip irrigation use and adoption in a desert region. Agric. Water Manag. 2001, 51, 125–142. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Growth, yield, fruit quality and nutrient uptake of hydroponically cultivated zucchini squash as affected by irrigation systems and growing seasons. Sci. Hortic. 2005, 105, 177–195. [Google Scholar] [CrossRef]
- Harmanto; Salokhe, V.M.; Babel, M.S.; Tantau, H.J. Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment. Agric. Water Manag. 2005, 71, 225–242. [Google Scholar] [CrossRef]
- Bianchi, A.; Masseroni, D.; Thalheimer, M.; Medici, L.O.; Facchi, A. Field irrigation management through soil water potential measurements: A review. Ital. J. Agrometeorol. 2017, 2, 25–38. [Google Scholar]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Irrigation management techniques used in soilless cultivation. In Advances in Hydroponic Research; Webster, D.J., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2017; pp. 1–33. ISBN 978-1-53612-131-5. [Google Scholar]
- Baille, A. Water management in soilless cultivation in relation to inside and outside climatic conditions and type of substrate. Italus Hortus. 2001, 8, 16–22. [Google Scholar]
- Jones, H.G. Irrigation scheduling: Advantages and pitfalls of plant-based methods. J. Exp. Bot. 2004, 55, 2427–2436. [Google Scholar] [CrossRef]
- Katsoulas, N.; Elvanidi, A.; Ferentinos, K.P.; Kacira, M.; Bartzanas, T.; Kittas, C. Crop reflectance monitoring as a tool for water stress detection in greenhouses: A review. Biosyst. Eng. 2016, 151, 374–398. [Google Scholar] [CrossRef]
- Lizarraga, A.; Boesveld, H.; Huibers, F.; Robles, C. Evaluating irrigation scheduling of hydroponic tomato in Navarra, Spain. Irrig. Drain. 2003, 52, 177–188. [Google Scholar] [CrossRef]
- Silber, A.; Xu, G.; Levkovitch, I.; Soriano, S.; Bilu, A.; Wallach, R. High irrigation frequency: The effect on plant growth and on uptake of water and nutrients. Plant Soil 2003, 253, 466–477. [Google Scholar] [CrossRef]
- Beeson, R.C., Jr. Weighing lysimeter systems for quantifying water use and studies of controlled water stress for crops grown in low bulk density substrates. Agric. Water Manag. 2011, 98, 967–976. [Google Scholar] [CrossRef]
- Libardi, L.G.P.; de Faria, R.T.; Dalri, A.B.; de Souza Rolim, G.; Palaretti, L.F.; Coelho, A.P.; Martins, I.P. Evapotranspiration and cropcoefficient (Kc) of presprouted sugarcane plantlets for greenhouse irrigation management. Agric. Water Manag. 2019, 212, 306–316. [Google Scholar] [CrossRef]
- Vera-Repulloa, J.A.; Ruiz-Pe˜nalverb, L.; Jiménez-Buendíaa, M.; Rosillob, J.J.; Molina-Martínez, J.M. Software for the automatic control of irrigation using weighing-drainage lysimeters. Agric. Water Manag. 2015, 151, 4–12. [Google Scholar] [CrossRef]
- Çakir, R.; Kanburoglu-Çebi, U.; Altintas, S.; Ozdemir, A. Irrigation scheduling and water use efficiency of cucumber grown as a spring-summer cycle crop in solar greenhouse. Agric. Water Manag. 2017, 180, 78–87. [Google Scholar] [CrossRef]
- Abou-Hadid, A.F.; El-Shinawy, M.Z.; El-Oksh, I.; Gomaa, H.; El-Beltagy, A.S. Studies on Water Consumption of Sweet Pepper Plant Under Plastic Houses. Acta Hortic. 1994, 366, 365–372. [Google Scholar] [CrossRef]
- Zhang, C.; Gao, H.; Deng, X.; Lu, Z.; Lei, Y.; Zhou, H. Design method and theoretical analysis for wheel-hub driving solar tractor. Emirates J. Food Agric. 2016, 28, 903–911. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Effect of irrigation frequency on growth and production of a cucumber crop under soilless culture. Emirates J. Food Agric. 2017, 29, 863–871. [Google Scholar] [CrossRef]
- Jovicich, E.; Cantliffe, D.J.; Stoffella, P.J.; Haman, D.Z. Bell pepper fruit yield and quality as influenced by solar radiation-based irrigation and container media in a passively ventilated greenhouse. HortScience 2007, 42, 642–652. [Google Scholar]
- Pardossi, A.; Incrocci, L.; Incrocci, G.; Fernando, M.; Bacci, L.; Rapi, B.; Marzialetti, P.; Hemming, J.; Balendonck, J. Root Zone Sensors for Irrigation Management in Intensive Agriculture. Sensors 2009, 9, 2809–2835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemali, K.S.; Montesano, F.; Dove, S.K.; Van Iersel, M.W. Calibration and performance of moisture sensors in soilless substrates: ECH2O and Theta probes. Sci. Hortic. 2007, 112, 227–234. [Google Scholar] [CrossRef]
- Murray, J.D.; Lea-Cox, J.D.; Ross, D.S. Time domain reflectometry accurately monitors and controls irrigation water applications in soilless substrates. Acta Hortic. 2004, 633, 75–82. [Google Scholar] [CrossRef]
- Mavrogianopoulos, G.N. Irrigation dose according to substrate characteristics, in hydroponic systems. Open Agric. 2015, 1, 1–6. [Google Scholar] [CrossRef]
- Dorai, M.; Papadopoulos, A.P.; Gosselin, A. Influence of electric conductivity management on greenhouse tomato yield and fruit quality. Agronomie 2001, 4, 367–383. [Google Scholar] [CrossRef]
- Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G. Response of Zucchini to the Electrical Conductivity of the Nutrient Solution in Hydroponic Cultivation. Agric. Agric. Sci. Procedia 2015, 4, 459–462. [Google Scholar] [CrossRef] [Green Version]
- White, S.; Raine, S.R. A Grower Guide to Plant Based Sensing for Irrigation Scheduling; National Centre for Engineering in Agriculture Publication 1001574/6; USQ: Toowoomba, Australia, 2008; pp. 1–52. [Google Scholar]
- Shin, J.H.; Son, J.E. Development of a real-time irrigation control system considering transpiration, substrate electrical conductivity, and drainage rate of nutrient solutions in soilless culture of paprika (Capsicum annuum L.). Eur. J. Hortic. Sci. 2015, 80, 271–279. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Dynamic assessment of whitewash shading and evaporative cooling on the greenhouse microclimate and cucumber growth in a Mediterranean climate. Ital. J. Agrometeorol. 2018, 2, 15–26. [Google Scholar]
- Prenger, J.J.; Ling, P.P.; Hansen, R.C.; Keener, H.H. Plant response-based irrigation in a greenhouse: System evaluation. Trans. ASAE Am. Soc. Agric. Eng. 2005, 48, 1175–1183. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Modelling transpiration of soilless greenhouse cucumber and its relationship with leaf temperature in a mediterranean climate. Emirates J. Food Agric. 2017, 29, 911–920. [Google Scholar] [CrossRef]
- De Swaef, T.; Steppe, K. Linking stem diameter variations to sap flow, turgor and water potential in tomato. Funct. Plant Biol. 2010, 37, 429–438. [Google Scholar] [CrossRef]
- Ehret, D.L.; Lau, A.; Bittman, S.; Lin, W.; Shelford, T. Automated monitoring of greenhouse crops. Agronomie 2001, 21, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Kim, S.; Kim, Y.; Choi, Y.; Seo, M. Infrared Estimation of Canopy Temperature as Crop Water Stress Indicator. Korean J. Soil Sci. Fertil. 2015, 48, 499–504. [Google Scholar] [CrossRef] [Green Version]
- Nuruddin, M.; Madramootoo, C.A.; Dodds, G.T. Effects of Water Stress at Different Growth Stages on Greenhouse Tomato Yield and Quality. HortScience 2003, 38, 1389–1393. [Google Scholar]
- Alomran, A.M.; Louki, I.I.; Aly, A.A.; Nadeem, M.E. Impact of deficit irrigation on soil salinity and cucumber yield under greenhouse condition in an arid environment. J. Agric. Sci. Technol. 2013, 15, 1247–1259. [Google Scholar]
- Saleh, S.; Liu, G.; Liu, M.; Ji, Y.; He, H.; Gruda, N. Effect of Irrigation on Growth, Yield, and Chemical Composition of Two Green Bean Cultivars. Horticulturae 2018, 4, 1–10. [Google Scholar] [CrossRef]
- Saha, U.K.; Papadopoulos, A.P.; Hao, X.; Khosla, S. Irrigation strategies for greenhouse tomato production on rockwool. HortScience 2008, 43, 484–493. [Google Scholar]
- Zegbe, J.A.; Behboudian, M.H.; Clothier, B.E. Yield and fruit quality in processing tomato under partial rootzone drying. Eur. J. Hortic. Sci. 2006, 71, 252–258. [Google Scholar]
- Schrӧder, F.G.; Lieth, J.H. Irrigation control in hydroponics. In Hydroponic Production of Vegetables and Ornamentals; Savvas, D., Passam, H., Eds.; Embryo Publications: Athens, Greece, 2002; pp. 263–297. ISBN 960-8002-12-5. [Google Scholar]
- Katsoulas, N.; Kittas, C.; Dimokas, G.; Lykas, C. Effect of irrigation frequency on rose flower production and quality. Biosyst. Eng. 2006, 93, 237–244. [Google Scholar] [CrossRef]
- Pires, R.C.M.; Furlani, P.R.; Ribeiro, R.V.; Bodine, J.; Décio, S.; Emílio, L.; André, L.; Torre Neto, A. Irrigation frequency and substrate volume effects in the growth and yield of tomato plants under greenhouse conditions. Sci. Agric. 2011, 68, 400–405. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Ortega, W.M.; Martinez, V.; Rivero, R.M.; Camara-Zapata, J.M.; Mestre, T.; Garcia-Sanchez, F. Use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes. Agric. Water Manag. 2016, 183, 158–168. [Google Scholar] [CrossRef]
- Tsirogiannis, I.; Katsoulas, N.; Kittas, C. Effect of irrigation scheduling on gerbera flower yield and quality. HortScience 2010, 45, 265–270. [Google Scholar]
- Romero, R.; Muriel, J.L.; García, I.; Muñoz de la Peña, D. Research on automatic irrigation control: State of the art and recent results. Agric. Water Manag. 2012, 114, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Challa, H.; Bakker, J.C. Crop growth. In Greenhouse Climate Control: An Integrated Approach; Bakker, J.C., Bot, G.P.A., Challa, H., Van de Braak, N.J., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 1995; pp. 15–97. ISBN 978-90-74134-17-0. [Google Scholar]
- Lea-Cox, J.D.; Bauerle, W.L.; Van Iersel, M.W.; Kantor, G.F.; Bauerle, T.L.; Lichtenberg, E.; King, D.M.; Crawford, L. Advancing wireless sensor networks for irrigation management of ornamental crops: An overview. Horttechnology 2013, 23, 717–724. [Google Scholar] [CrossRef]
- Shelford, T.J.; Lau, A.K.; Ehret, D.L.; Chieng, S.T. Comparison of a new plant-based irrigation control method with light-based irrigation control for greenhouse tomato production. Can. Biosyst. Eng. 2004, 4, 1–6. [Google Scholar]
- Raju, K.S.; Kumar, D.N. Multicriterion decision making in irrigation planning. Irrig. Drain. 2005, 54, 455–465. [Google Scholar] [CrossRef]
- Londra, P.A. Simultaneous determination of water retention curve and unsaturated hydraulic conductivity of substrates using a steady-state laboratory method. HortScience 2010, 45, 1106–1112. [Google Scholar]
- Bougoul, S.; Boulard, T. Water dynamics in two rockwool slab growing substrates of contrasting densities. Sci. Hortic. 2006, 107, 399–404. [Google Scholar] [CrossRef]
- Schindler, U.; Müller, L.; Eulenstein, F. Hydraulic Performance of Horticultural Substrates-1. Method for Measuring the Hydraulic Quality Indicators. Horticulturae 2017, 3, 1–7. [Google Scholar] [CrossRef]
- Altland, J.E.; Owen, J.S.; Fonteno, W.C. Developing Moisture Characteristic Curves and Their Descriptive Functions at Low Tensions for Soilless Substrates. J. Amer. Soc. Hortic. Sci. 2010, 135, 563–567. [Google Scholar]
- Fields, J.S.; Fonteno, W.C.; Jackson, B.E.; Heitman, J.L.; Owen, J.S. Hydrophysical properties, moisture retention, and drainage profiles of wood and traditional components for greenhouse substrates. HortScience 2014, 49, 827–832. [Google Scholar]
- De Pascale, S.; Barbieri, G.; Rouphael, Y.; Gallardo, M.; Orsini, F.; Pardossi, A. Irrigation management: Challenges and opportunities. In Good Agricultural Practices for Greenhouse VEGETABLE production in the South East European Countries for Greenhouse Vegetable; Plant Production and Protection Paper 230; FAO: Rome, Italy, 2013; pp. 79–105. [Google Scholar]
- Raviv, M.; Wallach, R.; Silber, A.; Medina, S.; Krasnovsky, A. The effect of hydraulic characteristics of volcanic materials on yield of roses grown in soilless culture. J. Am. Soc. Hortic. Sci. 1999, 124, 205–209. [Google Scholar]
- Hosseini, S.M.M.M.; Ganjian, N.; Pisheh, Y.P. Estimation of the water retention curve for unsaturated clay. Can. J. Soil Sci. 2011, 91, 543–549. [Google Scholar] [CrossRef]
- Bilderback, T.E.; Warren, S.L.; Owen, J.S.; Albano, J.P. Healthy Substrates Need Physicals Too! Horttechnology 2005, 15, 747–751. [Google Scholar] [CrossRef]
- Nowak, J.S. Changes of Physical Properties in Rockwool and Glasswool Slabs During Hydroponic Cultivation of Roses. J. Fruit Ornam. Plant Res. 2010, 18, 349–360. [Google Scholar]
- Jones, H.G.; Tardieu, F. Modelling water relations of horticultural crops: A review. Sci. Hortic. 1998, 74, 21–46. [Google Scholar] [CrossRef]
- De Jong van Lier, Q. Field capacity, a valid upper limit of crop available water? Agric. Water Manag. 2017, 193, 214–220. [Google Scholar] [CrossRef]
- Snyder, R.L. Irrigation Scheduling: Water Balance Method; University of California, Department of Land, Air and Water Resources Atmospheric Science Davis: Berkeley, CA, USA, 2014; pp. 1–39. [Google Scholar]
- Greenwood, D.J.; Zhang, K.; Hilton, H.W.; Thompson, A.J. Opportunities for improving irrigation efficiency with quantitative models, soil water sensors and wireless technology. J. Agric. Sci. 2010, 148, 1–16. [Google Scholar] [CrossRef]
- Carmassi, G.; Bacci, L.; Bronzini, M.; Incrocci, L.; Maggini, R.; Bellocchi, G.; Massa, D.; Pardossi, A. Modelling transpiration of greenhouse gerbera (Gerbera jamesonii H. Bolus) grown in substrate with saline water in a Mediterranean climate. Sci. Hortic. 2013, 156, 9–18. [Google Scholar] [CrossRef]
- Medrano, E.; Lorenzo, P.; Sánchez-Guerrero, M.C.; Montero, J.I. Evaluation and modelling of greenhouse cucumber-crop transpiration under high and low radiation conditions. Sci. Hortic. 2005, 105, 163–175. [Google Scholar] [CrossRef]
- Andrew, L.; Enthoven, N.; Kaarsemaker, R. Best Practice Guidelines for Greenhouse Water Management; GRODAN & Priva: Roermond, The Netherlands, 2016; pp. 1–38. [Google Scholar]
- Kittas, C. Solar radiation of a greenhouse as a tool to its irrigation control. Int. J. Energy Res. 1990, 14, 881–892. [Google Scholar] [CrossRef]
- Zhang, Z.K.; Liu, S.Q.; Liu, S.H.; Huang, Z.J. Estimation of Cucumber Evapotranspiration in Solar Greenhouse in Northeast China. Agric. Sci. China 2010, 9, 512–518. [Google Scholar] [CrossRef]
- Shin, J.H.; Park, J.S.; Son, J.E. Estimating the actual transpiration rate with compensated levels of accumulated radiation for the efficient irrigation of soilless cultures of paprika plants. Agric. Water Manag. 2014, 135, 9–18. [Google Scholar] [CrossRef]
- Lee, A. Reducing or eliminating fruit physiological disorders with correct root zone management. Practical Hydroponics & Greenhouses, May/June 2010; 53–59. [Google Scholar]
- Katsoulas, N.; Kittas, C. Greenhouse Crop Transpiration Modelling. In Evapotranspiration—From Measurements to Agricultural and Environmental Applications; Gerosa, G., Ed.; IntechOpen Limited: London, UK, 2011; pp. 311–328. ISBN 978-953-307-512-9. [Google Scholar]
- Lovelli, S.; Perniola, M.; Arcieri, M.; Rivelli, R.; Di Tommaso, T. Water use assessment in muskmelon by the Penman-Monteith ‘one-step’ approach. Agric. Water Manag. 2008, 95, 1153–1160. [Google Scholar] [CrossRef]
- Morille, B.; Migeon, C.; Bournet, P.E. Is the Penman-Monteith model adapted to predict crop transpiration under greenhouse conditions? Application to a New Guinea Impatiens crop. Sci. Hortic. 2013, 152, 80–91. [Google Scholar] [CrossRef]
- Fazlil Ilahi, W.F. Evapotranspiration Models in Greenhouse. Master’s Thesis, Irrigation and Water Engineering Group, Wageningen University, Wageningen, The Netherlands, 2009; pp. 1–52. [Google Scholar]
- Simba, F.M. A Flexible Plant Based Irrigation Control for Greenhouse Crops. A Thesis submitted in partial fulfillment for the requirements of the Master of Science, University of Zimbabwe, Harare, Zimbabwe, 2010. [Google Scholar]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper, 56; FAO: Rome, Italy, 1998; pp. 1–289. [Google Scholar]
- Abdel-Razzak, H.; Wahb-Allah, M.; Ibrahim, A.; Alenazi, M.; Alsadon, A. Response of cherry tomato to irrigation levels and fruit pruning under greenhouse conditions. J. Agric. Sci. Technol. 2016, 18, 1091–1103. [Google Scholar]
- Fernández, M.D.; Bonachela, S.; Orgaz, F.; Thompson, R.; López, J.C.; Granados, M.R.; Gallardo, M.; Fereres, E. Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig. Sci. 2010, 28, 497–509. [Google Scholar] [CrossRef] [Green Version]
- Markou, M.; Papadavid, G. Norm input -output data for the main crop and livestock enterprises of Cyprus. Agric. Econ. 2007, 46, 0379–0827. [Google Scholar]
- Christou, A.; Dalias, P.; Neocleous, D. Spatial and temporal variations in evapotranspiration and net water requirements of typical Mediterranean crops on the island of Cyprus. J. Agric. Sci. 2017, 1, 1188–1197. [Google Scholar] [CrossRef]
- Liu, H.J.; Cohen, S.; Tanny, J.; Lemcoff, J.H.; Huang, G. Estimation of banana (Musa sp.) plant transpiration using a standard 20 cm pan in a greenhouse. Irrig. Drain. Syst. 2008, 22, 311–323. [Google Scholar] [CrossRef]
- Blanco, F.F.; Folegatti, M.V. Evaluation of evaporation measuring-equipments for estimating evapotranspiration within a greenhouse evapotranspiranspiration greenhouse. Revista Brasileira de Engenharia Agrícola e Ambiental. 2004, 8, 184–188. [Google Scholar] [CrossRef]
- Sabeh, N.C. Evaluating and minimizing water use by greenhouse evaporative cooling systems in a semi-arid climate. In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy; University of Arizona: Tucson, AZ, USA, 2007. [Google Scholar]
- Seginer, I.; Kantz, D.; Levav, N.; Peiper, U.M. Night-time transpiration in greenhouses. Sci. Hortic. 1990, 41, 265–276. [Google Scholar] [CrossRef]
- Mao, X.; Liu, M.; Wang, X.; Liu, C.; Hou, Z.; Shi, J. Effects of deficit irrigation on yield and water use of greenhouse grown cucumber in the North China Plain. Agric. Water Manag. 2003, 61, 219–228. [Google Scholar] [CrossRef]
- Thompson, R.B.; Gallardo, M.; Valdez, L.C.; Fernández, M.D. Using plant water status to define threshold values for irrigation management of vegetable crops using soil moisture sensors. Agric. Water Manag. 2007, 88, 147–158. [Google Scholar] [CrossRef]
- Buttaroa, D.; Santamariab, P.; Signoreb, A.; Cantorea, V.; Boari, F.; Montesano, F.F.; Parente, A. Irrigation Management of Greenhouse Tomato and Cucumber Using Tensiometer: Effects on Yield, Quality and Water Use. Agric. Agric. Sci. Procedia 2015, 4, 440–444. [Google Scholar] [CrossRef] [Green Version]
- Contreras, J.I.; Alonso, F.; Cánovas, G.; Baeza, R. Irrigation management of greenhouse zucchini with different soil matric potential level. Agronomic and environmental effects. Agric. Water Manag. 2017, 183, 26–34. [Google Scholar] [CrossRef]
- Depardieu, C.; Prémont, V.; Boily, C.; Caron, J. Sawdust and bark-based substrates for soilless strawberry production: Irrigation and electrical conductivity management. PLoS ONE. 2016, 11, e0154104. [Google Scholar] [CrossRef] [PubMed]
- Gurovich, L.A.; Ton, Y.; Vergara, L.M. Irrigation scheduling of avocado using phytomonitoring techniques. Cienc. E Investig. Agrar. 2006, 33, 117–124. [Google Scholar]
- Seelig, H.-D.; Stoner, R.J.; Linden, J.C. Irrigation control of cowpea plants using the measurement of leaf thickness under greenhouse conditions. Irrig. Sci. 2012, 30, 247–257. [Google Scholar] [CrossRef]
- Sarlikioti, V.; Meinen, E.; Marcelis, L.F.M. Crop Reflectance as a tool for the online monitoring of LAI and PAR interception in two different greenhouse Crops. Biosyst. Eng. 2011, 108, 114–120. [Google Scholar] [CrossRef]
- Ozcep, F.; Yıldırım, E.; Tezel, O.; Asci, M.; Karabulut, S. Correlation between electrical resistivity and soil-water content based artificial intelligent techniques. Int. J. Phys. Sci. 2010, 5, 47–56. [Google Scholar]
- Morimoto, T.; Hashimoto, Y. An Intelligent Control Technique Based on Fuzzy Controls, Neural Networks and Genetic Algorithms for Greenhouse Automation. IFAC Artif. Intell. Agnculture 1998, 31, 61–66. [Google Scholar] [CrossRef]
- Mohapatra, A.G.; Lenka, S.K. Neural Network Pattern Classification and Weather Dependent Fuzzy Logic Model for Irrigation Control in WSN Based Precision Agriculture. Phys. Procedia 2016, 78, 499–506. [Google Scholar] [CrossRef] [Green Version]
- Saylan, L.; Kimura, R.; Caldag, B.; Akalas, N. Modeling of Soil Water Content for Vegetated Surface by Artificial Neural Network and Adaptive Neuro-Fuzzy Inference System. Ital. J. Agrometeorol. 2017, 22, 37–44. [Google Scholar]
- Pérez-Castro, A.; Sánchez-Molina, J.A.; Castilla, M.; Sánchez-Moreno, J.; Moreno-Úbeda, J.C.; Magán, J.J. cFertigUAL: A fertigation management app for greenhouse vegetable crops. Agric. Water Manag. 2017, 183, 186–193. [Google Scholar] [CrossRef]
- Sánchez-Molina, J.A.; Rodríguez, F.; Guzmán, J.L.; Ramírez-Arias, J.A. Water content virtual sensor for tomatoes in coconut coir substrate for irrigation control design. Agric. Water Manag. 2015, 151, 114–125. [Google Scholar] [CrossRef]
- Ben Ali, R.; Bouadila, S.; Mami, A. Development of a Fuzzy Logic Controller applied to an agricultural greenhouse experimentally validated. Appl. Therm. Eng. 2018, 141, 798–810. [Google Scholar] [CrossRef]
- Guirado-Clavijo, R.; Sanchez-Molina, J.A.; Wang, H.; Bienvenido, F. Conceptual Data Model for IoT in a Chain-Integrated Greenhouse Production: Case of the Tomato Production in Almeria (Spain). IFAC-PapersOnLine 2018, 51, 102–107. [Google Scholar] [CrossRef]
- Rodríguez, F.; Castilla, M.; Sánchez, J.A.; Pawlowski, A. Semi-virtual Plant for the Modeling Control and Supervision of batch-processes. An example of a greenhouse irrigation system. IFAC-PapersOnLine 2015, 48, 123–128. [Google Scholar] [CrossRef]
Scheduling Irrigation | Based on | Method/Device Use | Decisions Made | Reference |
---|---|---|---|---|
Time clock based | Time | Irrigation controllers | Irrigation frequency | [52,53] |
Climate monitoring | Evapotranspiration | Lysimeters | Determine evapotranspiration (ETC) | [54,55,56] |
Class A Pan | Determine reference evapotranspiration (ETO) | [57,58] | ||
Reduce Class A Pan | Determine reference evapotranspiration (ETO) | [2,59] | ||
Atmometer | Determine reference evapotranspiration (ETO) | [15] | ||
Evapotranspiration models | Crop water used | [9,41] | ||
Solar radiation | Pyranometer | Irrigation frequency | [60,61] | |
Soil or substrate monitoring | Water potential | Tensiometer | Irrigation frequency/dose mainly for soil cultivations | [62] |
Electrical resistance sensor (e.g., gypsum blocks) | Irrigation frequency for soil | [62] | ||
Volumetric water content | Dielectric sensor (e.g., time domain reflectometry, frequency domain) | Irrigation frequency for soilless and soil cultivations | [62,63,64] | |
Electrical conductivity | Electrical conductivity sensor | Irrigation frequency for soilless cultivation | [65,66,67] | |
Physical properties | Mathematic formula | Irrigation dose/frequency for soilless and soil cultivations | [23,51,65,68] | |
Percentage of drainage | Mathematic formula, weighting devices | Irrigation volume and frequency based on trial and error for soilless | [69,70] | |
Phyto-sensing | Leaf water potential | Pressure chamber | Irrigation timing | [33] |
Stomata resistance | Diffusion porometer | Irrigation timing | [33] | |
Canopy temperature | Infrared thermometry | Irrigation timing | [33,71,72] | |
Flow on water in the stem | Heat balance sap flow sensor | Irrigation timing/detect water shortages | [33,73,74] | |
Changes in stem diameter | Dentrometer | Irrigation timing | [33] | |
Crop reflectance | Sensing system equipment and plant reflectance indices (e.g., photochemical reflectance index, normalized difference vegetation index) | Detect water stress | [51,75] |
Common Name | Field Capacity | Wilting Point | Available Water |
---|---|---|---|
Sandy soils | 0.06–0.20 | 0.02–0.08 | 0.04–0.12 |
Loamy soils | 0.23–0.27 | 0.10–0.12 | 0.13–0.15 |
Clayey soils | 0.28–0.40 | 0.13–0.25 | 0.15–0.18 |
Crop | J | F | M | A | M | J | J | A | S | O | N | D | Total |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tomato | 42 | 60 | 85 | 120 | 180 | 168 | 12 | 40 | 36 | 743 | |||
Cucumber | 42 | 48 | 72 | 120 | 208 | 40 | 36 | 566 | |||||
French bean | 42 | 48 | 84 | 140 | 70 | 24 | 28 | 436 | |||||
Aubergines | 12 | 24 | 40 | 60 | 76 | 100 | 68 | 380 | |||||
Pepper | 12 | 24 | 40 | 60 | 76 | 100 | 112 | 424 | |||||
Watermelon | 10 | 20 | 32 | 48 | 84 | 28 | 222 | ||||||
Sweet melon | 10 | 20 | 32 | 48 | 84 | 28 | 222 | ||||||
Zucchini | 12 | 24 | 50 | 78 | 136 | 88 | 388 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolaou, G.; Neocleous, D.; Katsoulas, N.; Kittas, C. Irrigation of Greenhouse Crops. Horticulturae 2019, 5, 7. https://doi.org/10.3390/horticulturae5010007
Nikolaou G, Neocleous D, Katsoulas N, Kittas C. Irrigation of Greenhouse Crops. Horticulturae. 2019; 5(1):7. https://doi.org/10.3390/horticulturae5010007
Chicago/Turabian StyleNikolaou, Georgios, Damianos Neocleous, Nikolaos Katsoulas, and Constantinos Kittas. 2019. "Irrigation of Greenhouse Crops" Horticulturae 5, no. 1: 7. https://doi.org/10.3390/horticulturae5010007
APA StyleNikolaou, G., Neocleous, D., Katsoulas, N., & Kittas, C. (2019). Irrigation of Greenhouse Crops. Horticulturae, 5(1), 7. https://doi.org/10.3390/horticulturae5010007