Effects of ‘Candidatus’ Liberibacter Asiaticus on the Root System of Poncirus trifoliata Hybrids as a Rootstock for ‘Valencia’ Scion
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schäfer, G.; Bastianel, M.; Dornelles, A.L.C. Porta-enxertos utilizados na citricultura. Ciência Rural 2001, 31, 723–733. [Google Scholar] [CrossRef]
- Bastos, D.C.; Ferreira, E.A.; Passos, O.S.; Sá, J.F.D.; Ataíde, E.M.; Calgaro, M. Cultivares copa e porta-enxertos para a citricultura brasileira. Citric. Inf. Agropecuário 2014, 35, 36–45. [Google Scholar]
- Martínez-Cuenca, M.R.; Primo-Capella, A.; Forner-Giner, M.A. Influence of rootstock on citrus tree growth: Effects on photosynthesis and carbohydrate distribution, plant size, yield, fruit quality, and dwarfing genotypes. Plant Growth 2016, 16, 107. [Google Scholar] [CrossRef]
- Tietel, Z.; Srivastava, S.; Fait, A.; Tel-Zur, N.; Carmi, N.; Raveh, E. Impact of scion/rootstock reciprocal effects on metabolomics of fruit juice and phloem sap in grafted Citrus reticulata. PLoS ONE 2020, 15, e0227192. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.P.; Soares Filho, W.D.S.; Passos, O.S.; Scivittaro, W.B.; da Rocha, P.S.G. Porta-enxertos para citros. Embrapa Clima Temperado 2008, 226, 1–45. [Google Scholar]
- Pompeu Junior, J. Porta-enxertos. In Citricultura Brasileira; Rodriguez, O., Viégas, F., Pompeu, J., Jr., Amaro, A.A., Eds.; Fundação Cargill: Campinas, Brazil, 1991; Volume 1, pp. 265–280. [Google Scholar]
- Pompeu Junior, J. Porta-enxertos para citros potencialmente ananicantes. Laranjeira 2001, 22, 147–155. [Google Scholar]
- Carvalho, S.A.D.; Girardi, E.A.; Mourão Filho, F.d.A.A.; Ferrarezi, R.S.; Coletta Filho, H.D. Advances in citrus propagation in Brazil. Rev. Bras. Frutic. 2019, 41, e422. [Google Scholar] [CrossRef]
- Johnson, E.G.; Wu, J.; Bright, D.B.; Graham, J.H. Association of “Candidatus Liberibacter asiaticus” root infection, but not phloem plugging with root loss on huanglongbing-affected trees prior to appearance of foliar symptoms. Plant Pathol. 2014, 63, 290–298. [Google Scholar] [CrossRef]
- Dayse, D.; Santana-vieira, S.; Da Silva Gesteira, A.; Coelho Filho, M.A.; Gilberto, M.; Costa, C. Citrus responses and tolerance to drought. In Citrus Production; CRC Press: Boca Raton, FL, USA, 2022; pp. 139–147. [Google Scholar]
- Nehela, Y.; Killiny, N. Revisiting the complex pathosystem of huanglongbing: Deciphering the role of citrus metabolites in symptom development. Metabolites 2020, 10, 409. [Google Scholar] [CrossRef]
- Etxeberria, E.; Gonzalez, P.; Achor, D.; Albrigo, G. Anatomical distribution of abnormally high levels of starch in HLB-affected Valencia orange trees. Physiol. Mol. Plant Pathol. 2009, 74, 76–83. [Google Scholar] [CrossRef]
- Folimonova, S.Y.; Achor, D.S. Early events of citrus greening (huanglongbing) disease development at the ultrastructural level. Phytopathology 2010, 100, 949–958. [Google Scholar] [CrossRef]
- Whitaker, D.C.; Giurcanu, M.C.; Young, L.J.; Gonzalez, P.; Etxeberria, E.; Roberts, P.; Hendricks, K.; Roman, F. Starch content of citrus leaves permits diagnosis of Huanglongbing in the warm season but not cool season. Hortscience 2014, 49, 757–762. [Google Scholar] [CrossRef]
- Keeley, M.; Rowland, D.; Vincent, C. Citrus photosynthesis and morphology acclimate to phloem-affecting huanglongbing disease at the leaf and shoot levels. Physiol. Plant. 2022, 174, e13662. [Google Scholar] [CrossRef] [PubMed]
- Koh, E.J.; Zhou, L.; Williams, D.S. Callose deposition in the phloem plasmodesmata and inhibition of phloem transport in citrus leaves infected with “Candidatus Liberibacter asiaticus”. Protoplasma 2012, 249, 687–697. [Google Scholar] [CrossRef]
- Welker, S.; Pierre, M.; Santiago, J.P.; Dutt, M.; Vincent, C.; Levy, A. Phloem transport limitation in Huanglongbing affected sweet orange is dependent on phloem-limited bacteria and callose. Tree Physiol. 2021, 42, 379–390. [Google Scholar] [CrossRef]
- Balan, B.; Ibáñez, A.M.; Dandekar, A.M.; Caruso, T.; Martinelli, F. Identifying host molecular features strongly linked with responses to huanglongbing disease in citrus leaves. Front. Plant Sci. 2018, 9, 277. [Google Scholar] [CrossRef]
- Rao, M.J.; Ding, F.; Wang, N.; Deng, X.; Xu, Q. Metabolic mechanisms of host species against citrus Huanglongbing (Greening disease). Crit. Rev. Plant Sci. 2018, 37, 496–511. [Google Scholar] [CrossRef]
- Alves, M.N.; Lopes, S.A.; Raiol-Junior, L.L.; Wulff, N.A.; Girardi, E.A.; Ollitrault, P.; Peña, L. Resistance to ‘Candidatus Liberibacter asiaticus’, the Huanglongbing associated bacterium, in sexually and/or graft-compatible Citrus relatives. Front. Plant Sci. 2021, 11, 617664. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, U.; Bowman, K.D. Tolerance of trifoliate citrus rootstock hybrids to Candidatus Liberibacter asiaticus. Sci. Hortic. 2012, 147, 71–80. [Google Scholar] [CrossRef]
- Folimonova, S.Y.; Robertson, C.J.; Garnsey, S.M.; Gowda, S.; Dawson, W.O. Examination of the responses of different genotypes of citrus to huanglongbing (Citrus Greening) under different conditions. Phytopathology 2009, 99, 1346–1354. [Google Scholar] [CrossRef]
- Boava, L.P.; Sagawa, C.H.D.; Cristofani-Yaly, M.; Machado, M.A. Incidence of ’Candidatus Liberibacter asiaticus’-infected plants among citrandarins as rootstock and scion under field conditions. Phytopathology 2015, 105, 518–524. [Google Scholar] [CrossRef] [PubMed]
- Cavichioli, T.M.; Curtolo, M.; Cristofani-Yaly, M.; Rodrigues, J.; Coletta-Filho, H.D. Temporal analysis of Candidatus Liberibacter asiaticus in citrandarin genotypes indicates unstable infection. Agronomy 2022, 12, 2566. [Google Scholar] [CrossRef]
- Curtolo, M.; Pacheco, I.D.S.; Boava, L.P.; Takita, M.A.; Granato, L.M.; Galdeano, D.M.; De Souza, A.A.; Yaly, M.C.; Machado, M.A. Wide-ranging transcriptomic analysis of Poncirus trifoliata, Citrus sunki, Citrus sinensis and contrasting hybrids reveals HLB tolerance mechanisms. Sci. Rep. 2020, 10, 20865. [Google Scholar] [CrossRef] [PubMed]
- Soratto, T.A.T.; Curtolo, M.; Marengo, S.; Dezotti, A.L.; Lima, R.P.M.; Gazaffi, R.; Machado, M.A.; Cristofani-Yaly, M. QTL and eQTL mapping associated with host response to Candidatus Liberibacter asiaticus in citrandarins. Trop. Plant Pathol. 2020, 45, 626–645. [Google Scholar] [CrossRef]
- Dutt, M.; Mahmoud, L.M.; Grosser, J.W. Field performance of ‘Valencia’ sweet orange trees grafted onto pummelo interstocks and Swingle citrumelo rootstocks under Huanglongbing (HLB) endemic conditions. Horticulturae 2023, 9, 719. [Google Scholar] [CrossRef]
- Cristofani-Yaly, M.; (Centro APTA Citros Sylvio Moreira, Instituto Agronômico de Campinas, Cordeirópolis, SP, Brazil). Personal communication, 2022.
- Bernardi, A.C.D.C.; Carmello, Q.A.D.C.; De Carvalho, S.A. Desenvolvimento de mudas de citros cultivadas em vaso em resposta à adubação NPK. Sci. Agric. 2000, 57, 733–738. [Google Scholar] [CrossRef]
- Li, W.; Hartung, J.S.; Levy, L. Quantitative real-time PCR for detection and identification of Candidatus Liberibacter species associated with citrus huanglongbing. J. Microbiol. Methods 2006, 66, 104–115. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.G.; Thompson, W.F. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4325. [Google Scholar] [CrossRef] [PubMed]
- Ward, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s Hierarchical Clustering Method: Clustering criterion and agglomerative algorithm. arXiv 2011, arXiv:1111.6285. [Google Scholar]
- Westbrook, C.J.; Hall, D.G.; Stover, E.; Duan, Y.P.; Lee, R.F. Colonization of citrus and citrus-related germplasm by Diaphorina citri (Hemiptera: Psyllidae). HortScience 2011, 46, 997–1005. [Google Scholar] [CrossRef]
- Graham, J.H.; Johnson, E.G.; Gottwald, T.R.; Irey, M.S. Presymptomatic fibrous root decline in citrus trees caused by huanglongbing and potential interaction with Phytophthora spp. Plant Dis. 2013, 97, 1195–1199. [Google Scholar] [CrossRef] [PubMed]
- Hayat, F.; Li, J.; Iqbal, S.; Peng, Y.; Hong, L.; Balal, R.M.; Khan, M.N.; Nawaz, M.A.; Khan, U.; Farhan, M.A.; et al. A Mini Review of citrus rootstocks and their role in high-density orchards. Plants 2022, 11, 2876. [Google Scholar] [CrossRef]
- Castellano-Hinojosa, A.; Meyering, B.; Nuzzo, A.; Strauss, S.L.; Albrecht, U. Effect of plant biostimulants on root and plant health and the rhizosphere microbiome of citrus trees in huanglongbing-endemic conditions. Trees-Struct. Funct. 2021, 35, 1525–1539. [Google Scholar] [CrossRef]
- Pitino, M.; Sturgeon, K.; Dorado, C.; Cano, L.M.; Manthey, J.A.; Shatters, R.G., Jr.; Rossi, L. Quercus leaf extracts display curative effects against Candidatus Liberibacter asiaticus that restore leaf physiological parameters in HLB-affected citrus trees. Plant Physiol. Biochem. 2020, 148, 70–79. [Google Scholar] [CrossRef]
- Zhang, M.; Powell, C.A.; Zhou, L.; He, Z.; Stover, E.; Duan, Y. Chemical compounds effective against the citrus Huanglongbing bacterium ‘Candidatus Liberibacter asiaticus’ in planta. Phytopathology 2011, 101, 1097–1103. [Google Scholar] [CrossRef] [PubMed]
Treatments | Diameter of the Main Stem (mm) | Root System Volume (cm3) | Root System Dry Weight (g) | CT Values 1 | ||||
---|---|---|---|---|---|---|---|---|
Infected | Healthy | Infected | Healthy | Infected | Healthy | Scion | Roots | |
T1 | 19.5 ± 2.1 a | 21.0 ± 1.8 a | 222.5 ± 36.5 a | 381.5 ± 95.5 * a | 154.1 ± 18.3 a | 238.5 ± 6.9 * a | 19.0 ± 2.6 a | 37.4 ± 0.9 a |
T2 | 18.1 ± 1.8 a | 20.5 ± 1.5 * a | 154.5 ± 48.8 b | 509.5 ± 3.2 * a | 86.8 ± 18.5 b | 243.0 ± 4.3 * a | 19.3 ± 0.7 a | 31.3 ± 0.5 b |
T3 | 16.9 ± 3.2 b | 20.5 ± 0.5 * a | 163.7 ± 38.5 b | 364.5 ± 10.8 * a | 72.8 ± 12.5 b | 218.8 ± 8.9 * a | 22.7 ± 4.3 a | 27.9 ± 0.9 c |
T4 | 14.4 ± 1.9 b | 16.2 ± 0.5 * b | 106.5 ± 46.7 b | 307.0 ± 15.7 * a | 63.2 ± 11.6 b | 129.1 ± 7.5 * b | 15.9 ± 0.4 a | 30.5 ± 1.4 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cavichioli, T.M.; Curtolo, M.; Cristofani-Yaly, M.; Rodrigues, J.; Coletta-Filho, H.D. Effects of ‘Candidatus’ Liberibacter Asiaticus on the Root System of Poncirus trifoliata Hybrids as a Rootstock for ‘Valencia’ Scion. Horticulturae 2024, 10, 942. https://doi.org/10.3390/horticulturae10090942
Cavichioli TM, Curtolo M, Cristofani-Yaly M, Rodrigues J, Coletta-Filho HD. Effects of ‘Candidatus’ Liberibacter Asiaticus on the Root System of Poncirus trifoliata Hybrids as a Rootstock for ‘Valencia’ Scion. Horticulturae. 2024; 10(9):942. https://doi.org/10.3390/horticulturae10090942
Chicago/Turabian StyleCavichioli, Thaís Magni, Maiara Curtolo, Mariangela Cristofani-Yaly, Josiane Rodrigues, and Helvécio Della Coletta-Filho. 2024. "Effects of ‘Candidatus’ Liberibacter Asiaticus on the Root System of Poncirus trifoliata Hybrids as a Rootstock for ‘Valencia’ Scion" Horticulturae 10, no. 9: 942. https://doi.org/10.3390/horticulturae10090942
APA StyleCavichioli, T. M., Curtolo, M., Cristofani-Yaly, M., Rodrigues, J., & Coletta-Filho, H. D. (2024). Effects of ‘Candidatus’ Liberibacter Asiaticus on the Root System of Poncirus trifoliata Hybrids as a Rootstock for ‘Valencia’ Scion. Horticulturae, 10(9), 942. https://doi.org/10.3390/horticulturae10090942