An Overview on the Use of Artificial Lighting for Sustainable Lettuce and Microgreens Production in an Indoor Vertical Farming System
Abstract
:1. Introduction
2. Soilless Farming Systems and Vertical Farms
2.1. Soilless Farming Systems
- Aquaponics
- Aeroponics
2.2. Vertical Farms
3. Lighting Systems in Vertical Farms
4. Microgreen Production in Vertical Farms
Effect of Light Spectrum on the Growth of Microgreens
5. Lettuce Production in Vertical Farms
5.1. Effect of Lighting on the Physiological Processes of Baby Leaf Lettuce Varieties
LED Lighting | Lighting Conditions | Effect on Plants | Reference |
---|---|---|---|
Continuous 12 h | Red: 41–100%; blue: 0–59%; PPFD: 171 µmol s−1 m−2 | More R produced higher biomass, but absence of B induced abnormal leaf shape and lower phenolics and antioxidant content. | [120] |
Continuous 16 h | Red/blue: 100, 12, 8, 4, 1, 0; PPFD: 150 µmol s−1 m−2 | R/B = 1 resulted in the best stomatal intensity and nitrate uptake, and R/B = 12 produced the highest shoot weight. | [121] |
Continuous 16, 18, 24 h | Red: 76%; green: 14%; blue: 4%; FR: 6%; PPFD: 120, 144, 150, 180, 216, 270 µmol s−1 m−2 | Higher DLI resulted in higher biomass, but photoperiods were more efficient compared to light intensity within the same DLI. | [84] |
Continuous and pulsing 16 h (2 Hz) | Red: 77.1%; green + yellow: 17.9%; blue: 5%; PPFD: 150 µmol s−1 m−2; natural light PPFD: 65 µmol s−1 m−2 | Pulsed LED produced better leaf performance index and energy efficiency. Significantly lower nitrate in continuous light. | [40] |
Continuous and pulsing 16 h (30 kHz, 10 kHz, 3 kHz, 1 kHz, 0.3 kHz) | Red: 70%; white: 20%; blue: 10%; 182–187 µmol s−1 m−2; natural light PPFD: 246 µmol s−1 m−2 | Pulsed LED produced better energy efficiency with the same production quantity and Fv/Fm. | [117] |
Continuous and pulsing 16 h (1 kHz, 0.5 kHz) | Red: 75%; green: 10%; blue: 15%; FR: 10% DLI 14.4 µmol m−2 day−1 | Pulsed LED produced better energy efficiency with the same production quantity. | [119] |
Continuous 16 h | Red: 50%, blue: 50%; red: 67%, far-red: 33%; blue: 59, green: 14%, far-red: 7%, white: 19%; red: 59, green: 14%, far-red: 7%, white: 19%; PPFD: 150 µmol s−1 m−2 | Application of wider spectra resulted in higher organic carbon content and total dry matter. | [28] |
Continuous 12, 16, 18, 24 h | Red: 88%; blue: 10%; FR: 2% DLI 13, 17, 19,5, 26 µmol m−2 day−1 | For optimal nitrate assimilation, lettuce required 300–400 µmol s−1 m−2 PPFD and 16–18 h photoperiod. Light intensity was more efficient than photoperiod and insufficient light quantity resulted in reduced biomass and increase in nitrate and nitrite contents. | [122] |
Continuous 16 h | Far-red: 10–30%, white 0–70%; PPFD: 400–550 µmol s−1 m−2 | Far-red photons (701–750 nm) alone have low efficiency but adding them to white light significantly increased gross photosynthesis. | [123] |
Continuous 18 h | Red/Blue: 100, 4, 1, 0.25, 0; UV: 5.1%, Blue: 20, Green: 26.1%, Red: 26.3%, FR: 22.6%; PPFD: 200 µmol s−1 m−2 | Application of wider spectra resulted higher fresh and dry biomass. | [124] |
5.2. Lighting Up the Cultivation of Baby Leaf Lettuce Varieties
6. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Despommier, D. The Vertical Farm: Controlled Environment Agriculture Carried out in Tall Buildings Would Create Greater Food Safety and Security for Large Urban Populations. J. Verbraucherschutz Und Leb. 2011, 6, 233–236. [Google Scholar] [CrossRef]
- Islam, R.; Siwar, C. The Analysis of Urban Agriculture Development in Malaysia. Adv. Environ. Biol. 2012, 6, 1068–1078. [Google Scholar]
- Al-Chalabi, M. Vertical Farming: Skyscraper Sustainability? Sustain. Cities Soc. 2015, 18, 74–77. [Google Scholar] [CrossRef]
- Kalantari, F.; Tahir, O.M.; Joni, R.A.; Fatemi, E. Opportunities and Challenges in Sustainability of Vertical Farming: A Review. J. Landsc. Ecol. 2018, 11, 35–60. [Google Scholar] [CrossRef]
- Abou-Hussein, S.D. Climate Change and Its Impact on the Productivity and Quality of Vegetable Crops (Review Article). J. Appl. Sci. Res. 2012, 8, 4359–4383. [Google Scholar]
- Lakhiar, I.A.; Yan, H.; Zhang, J.; Wang, G.; Deng, S.; Bao, R.; Zhang, C.; Syed, T.N.; Wang, B.; Zhou, R.; et al. Plastic Pollution in Agriculture as a Threat to Food Security, the Ecosystem, and the Environment: An Overview. Agronomy 2024, 14, 548. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Yan, H.; Zhang, C.; Wang, G.; He, B.; Hao, B.; Han, Y.; Wang, B.; Bao, R.; Syed, T.N.; et al. A Review of Precision Irrigation Water-Saving Technology under Changing Climate for Enhancing Water Use Efficiency, Crop Yield, and Environmental Footprints. Agriculture 2024, 14, 1141. [Google Scholar] [CrossRef]
- Fedoroff, N.V.; Battisti, D.S.; Beachy, R.N.; Cooper, P.J.M.; Fischhoff, D.A.; Hodges, C.N.; Knauf, V.C.; Lobell, D.; Mazur, B.J.; Molden, D.; et al. Radically Rethinking Agriculture for the 21st Century. Science (1979) 2010, 327, 833–834. [Google Scholar] [CrossRef]
- FAO Land Statistics and Indicators 2000–2021. FAOSTAT Analytical Brief Series 71, 14. 2023. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/5c8b2707-1bcf-4c29-90e2-3487e583f71e/content (accessed on 11 April 2024).
- The General Assembly of UN Draft Resolution Submitted by the Vice-Chair of the Committee. Ms. Farrah Brown (Jamaica), on the Basis of Informal Consultations on Draft Resolution A/C.2/68/L.21. 2013. Available online: https://www.fao.org/fileadmin/user_upload/GSP/docs/iys/World_Soil_Day_and_International_Year_of_Soils__UNGA_Resolution_Dec._2013.pdf (accessed on 18 August 2024).
- Gomiero, T. Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef]
- Broca, S. Food Insecurity, Poverty and Agriculture: A Concept Paper. Agric. Econ. Dev. Anal. Div. 2002, 2, 87. [Google Scholar]
- FAO; IFAD; UNICEF; WEP; WHO. The State of Food Security and Nutrition in the World 2023: Urbanization, Agrifood Systems Transformation and Healthy Diets across the Rural–Urban Continuum; FAO: Rome, Italy, 2023; ISBN 9789251372265. [Google Scholar]
- The State of Food Insecurity in the World Addressing Food Insecurity in Protracted Crises 2010 Key Messages; Food and Agriculture Organization of the United Nations: Remo, Italy, 2010; ISBN 9789251066102.
- Ivers, L.C.; Cullen, K.A. Food Insecurity: Special Considerations for Women. Am. J. Clin. Nutr. 2011, 94, 1740S–1744S. [Google Scholar] [CrossRef]
- Sardare, M.D.; Admane, S.V. A Review on Plant Without Soil-Hydroponics. Int. J. Res. Eng. Technol. 2013, 02, 299–304. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Gao, J.; Syed, T.N.; Ali Chandio, F.; Tunio, M.H.; Ahmad, F.; Ali Solangi, K. Overview of the Aeroponic Agriculture—An Emerging Technology for Global Food Security. Int. J. Agric. Biol. Eng. 2020, 13, 1–10. [Google Scholar] [CrossRef]
- Feltman, R. The Nine-Story Tokyo Office Building That’s Also a Farm. 2013. Available online: https://qz.com/115226/photos-the-nine-story-tokyo-office-building-thats-also-a-farm (accessed on 18 August 2024).
- Vertical Container Farms in Israel: Illuminating the Future of Hydroponic Agriculture Development. 2023. Available online: https://www.hydroponicsfactory.com/blog/vertical-container-farms-in-israel-illuminating-the-future-of-hydroponic-agriculture-development.html (accessed on 19 August 2024).
- Tyson, R.V.; Hochmuth, R.C.; Lamb, E.M.; Hochmuth, G.J.; Sweat, M.S. A Decade of Change in Florida’S Greenhouse Vegetable Industry: 1991–2001. Proc. Fla. State Hort. Soc. 2001, 114, 280–283. [Google Scholar]
- Touliatos, D.; Dodd, I.C.; Mcainsh, M. Vertical Farming Increases Lettuce Yield per Unit Area Compared to Conventional Horizontal Hydroponics. Food Energy Secur. 2016, 5, 184–191. [Google Scholar] [CrossRef]
- Resh, H.M. A Definitive Guidebook for the Advanced Home Gardener and the Commercial Hydroponic Grower; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2013; ISBN 9781439878675. [Google Scholar]
- van Delden, S.H.; SharathKumar, M.; Butturini, M.; Graamans, L.J.A.; Heuvelink, E.; Kacira, M.; Kaiser, E.; Klamer, R.S.; Klerkx, L.; Kootstra, G.; et al. Current Status and Future Challenges in Implementing and Upscaling Vertical Farming Systems. Nat. Food 2021, 2, 944–956. [Google Scholar] [CrossRef]
- Kozai, T.; Niu, G.; Takagaki, M. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Academic Press: Cambridge, MA, USA, 2015; pp. 1–405. [Google Scholar]
- Michell, K.A.; Isweiri, H.; Newman, S.E.; Bunning, M.; Bellows, L.L.; Dinges, M.M.; Grabos, L.E.; Rao, S.; Foster, M.T.; Heuberger, A.L.; et al. Microgreens: Consumer Sensory Perception and Acceptance of an Emerging Functional Food Crop. J. Food Sci. 2020, 85, 926–935. [Google Scholar] [CrossRef] [PubMed]
- Guffanti, D.; Cocetta, G.; Franchetti, B.M.; Ferrante, A. The Effect of Flushing on the Nitrate Content and Postharvest Quality of Lettuce (Lactuca sativa L. Var. Acephala) and Rocket (Eruca Sativa Mill.) Grown in a Vertical Farm. Horticulturae 2022, 8, 604. [Google Scholar] [CrossRef]
- Barbieri, F.; Barbi, S.; Bertacchini, A.; Montorsi, M. Combined Effects of Different LED Light Recipes and Slow-Release Fertilizers on Baby Leaf Lettuce Growth for Vertical Farming: Modeling through DoE. Appl. Sci. 2023, 13, 8687. [Google Scholar] [CrossRef]
- Boros, I.F.; Székely, G.; Balázs, L.; Csambalik, L.; Sipos, L. Effects of LED Lighting Environments on Lettuce (Lactuca sativa L.) in PFAL Systems—A Review. Sci. Hortic. 2023, 321, 112351. [Google Scholar] [CrossRef]
- Lee, M.J.; Son, K.H.; Oh, M.M. Increase in Biomass and Bioactive Compounds in Lettuce under Various Ratios of Red to Far-Red LED Light Supplemented with Blue LED Light. Hortic. Environ. Biotechnol. 2016, 57, 139–147. [Google Scholar] [CrossRef]
- Li, Q.; Kubota, C. Effects of Supplemental Light Quality on Growth and Phytochemicals of Baby Leaf Lettuce. Environ. Exp. Bot. 2009, 67, 59–64. [Google Scholar] [CrossRef]
- Park, Y.; Runkle, E.S. Far-Red Radiation Promotes Growth of Seedlings by Increasing Leaf Expansion and Whole-Plant Net Assimilation. Environ. Exp. Bot. 2017, 136, 41–49. [Google Scholar] [CrossRef]
- Baroli, I.; Price, G.D.; Badger, M.R.; Von Caemmerer, S. The Contribution of Photosynthesis to the Red Light Response of Stomatal Conductance. Plant Physiol. 2008, 146, 737–747. [Google Scholar] [CrossRef]
- Hogewoning, S.W.; Trouwborst, G.; Maljaars, H.; Poorter, H.; van Ieperen, W.; Harbinson, J. Blue Light Dose-Responses of Leaf Photosynthesis, Morphology, and Chemical Composition of Cucumis Sativus Grown under Different Combinations of Red and Blue Light. J. Exp. Bot. 2010, 61, 3107–3117. [Google Scholar] [CrossRef]
- Hosotani, S.; Yamauchi, S.; Kobayashi, H.; Fuji, S.; Koya, S.; Shimazaki, K.I.; Takemiya, A. A BLUS1 Kinase Signal and a Decrease in Intercellular CO2 Concentration Are Necessary for Stomatal Opening in Response to Blue Light. Plant Cell 2021, 33, 1813–1827. [Google Scholar] [CrossRef] [PubMed]
- Darko, E.; Heydarizadeh, P.; Schoefs, B.; Sabzalian, M.R. Photosynthesis under Artificial Light: The Shift in Primary and Secondary Metabolism. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2014, 369, 20130243. [Google Scholar] [CrossRef] [PubMed]
- Kozai, T.; Zhang, G. Some Aspects of the Light Environment. In LED Lighting Urban Agriculture; Kozai, T., Fujiwara, K., Runkle, E.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; pp. 49–55. [Google Scholar]
- Dutta, G.S. Light Emitting Diodes for Agriculture; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 9780123694010. [Google Scholar]
- Liu, X.Y.; Jiao, X.L.; Chang, T.T.; Guo, S.R.; Xu, Z.G. Photosynthesis and Leaf Development of Cherry Tomato Seedlings under Different LED-Based Blue and Red Photon Flux Ratios. Photosynthetica 2018, 56, 1212–1217. [Google Scholar] [CrossRef]
- Ali, A.; Santoro, P.; Ferrante, A.; Cocetta, G. Investigating Pulsed LED Effectiveness as an Alternative to Continuous LED through Morpho-Physiological Evaluation of Baby Leaf Lettuce (Lactuca sativa L. Var. Acephala). S. Afr. J. Bot. 2023, 160, 560–570. [Google Scholar] [CrossRef]
- Wojciechowska, R.; Kołton, A.; Długosz-Grochowska, O.; Żupnik, M.; Grzesiak, W. The Effect of LED Lighting on Photosynthetic Parameters and Weight of Lamb’s Lettuce (Valerianella Locusta). Folia Hortic. 2013, 25, 41–47. [Google Scholar] [CrossRef]
- Ying, Q.; Jones-Baumgardt, C.; Zheng, Y.; Bozzo, G. The Proportion of Blue Light from Light-Emitting Diodes Alters Microgreen Phytochemical Profiles in a Species-Specific Manner. HortScience 2021, 56, 13–20. [Google Scholar] [CrossRef]
- Putra, P.A.; Yuliando, H. Soilless Culture System to Support Water Use Efficiency and Product Quality: A Review. Agric. Agric. Sci. Procedia 2015, 3, 283–288. [Google Scholar] [CrossRef]
- Jensen, M.H. Hydroponics. HortScience 1997, 32, 1018–1021. [Google Scholar] [CrossRef]
- Schnitzler, W.H. Pest and Disease Management of Soilless Culture. Acta Hortic. 2004, 648, 191–203. [Google Scholar] [CrossRef]
- Ehret, D.; Alsanius, B.; Wohanka, W.; Menzies, J.; Utkhede, R.; Ehret, D.; Alsanius, B.; Wohanka, W.; Menzies, J.; Utkhede, R. Disinfestation of Recirculating Nutrient Solutions in Greenhouse Horticulture to Cite This Version: HAL Id: Hal-00886118 Disinfestation of Recirculating Nutrient Solutions in Greenhouse Horticulture. Agronomie 2001, 21, 323–339. [Google Scholar] [CrossRef]
- Van Os, E.A. Recent Advances in Soilless Culture in Europe. Acta Hortic. 2017, 1176, 1–8. [Google Scholar] [CrossRef]
- Vallance, J.; Franck, D.; Le Floch, G.; Guérin-Dubrana, L. Pathogenic and Beneficial Microorganisms in Soilless Cultures. Agron. Sustain. Dev. 2011, 31, 191–203. [Google Scholar] [CrossRef]
- Mohammed, S.B.; Sookoo, R. Nutrient Film Technique for Commercial Production. Agric. Sci. Res. J. 2016, 6, 269–274. [Google Scholar]
- Sharma, N.; Acharya, S.; Kumar, K.; Singh, N.; Chaurasia, O.P. Hydroponics as an Advanced Technique for Vegetable Production: An Overview. J. Soil. Water Conserv. 2018, 17, 364. [Google Scholar] [CrossRef]
- Sulma, V.; Gimenes, R.; Erlaine, B. Economic Viabilility for Deploying Hydroponic System in Emerging Countries: A Differentiated Risk Adjustment Proposal. Land Use Policy 2019, 1, 357–369. [Google Scholar] [CrossRef]
- Khatri, L.; Kunwar, A.; Bist, D.R. Hydroponics: Advantages and Challenges in Soilless Farming. Big Data Agric. (BDA) 2024, 6, 81–88. [Google Scholar]
- Tran, Q.D.; Galiana, E.; Thomen, P.; Cohen, C.; Orange, F.; Peruani, F.; Noblin, X. Coordination of Two Opposite Flagella Allows High-Speed Swimming and Active Turning of Individual Zoospores. eLife 2022, 11, 71227. [Google Scholar] [CrossRef]
- Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A.; Lovatelli, A. Small Scale Aquaponic Food Production: Integrated Fish and Plant Farming; Food and Agriculture Organization of the United Nations: Remo, Italy, 2014; ISBN 978-92-5-108532-5. [Google Scholar]
- Rosberg, A.K. Dynamics of Root Microorganisms in Closed Hydroponic Cropping Systems; Department of Biosystems and Technology, Swedish University of Agricultural Sciences: Uppsala, Sweden, 2014; ISBN 9789157680501. [Google Scholar]
- Favrin, R.J. Pythium Spp. Associated with Crown Rot of Cucumbers in British Columbia Greenhouses. Plant Dis. 1988, 72, 683. [Google Scholar] [CrossRef]
- Orlikowski, L.B.; Treder, W.; Ptaszek, M. Necessity of Disinfecting Water for Crop Irrigation. Infrastruct. Ecol. Rural Areas 2017, 4, 1387–1400. [Google Scholar]
- Deniel, F.; Vallance, J.; Barbier, G.; Quillec, S.L.; Benhamou, N.; Rey, P. Control of Pythium Spp. Root Colonization in Tomato Soilless Culture through Chlorination of Water Storage Tank. Acta Hortic. 2011, 893, 1293–1300. [Google Scholar] [CrossRef]
- Sela Saldinger, S.; Rodov, V.; Kenigsbuch, D.; Bar-Tal, A. Hydroponic Agriculture and Microbial Safety of Vegetables: Promises, Challenges, and Solutions. Horticulturae 2023, 9, 51. [Google Scholar] [CrossRef]
- Riggio, G.M.; Wang, Q.; Kniel, K.E.; Gibson, K.E. Microgreens—A Review of Food Safety Considerations along the Farm to Fork Continuum. Int. J. Food Microbiol. 2019, 290, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.K.; Ko, E.Y.; Keum, Y.S. Minimally Processed Ready-to-Eat Baby-Leaf Vegetables: Production, Processing, Storage, Microbial Safety, and Nutritional Potential. Food Rev. Int. 2017, 33, 644–663. Available online: https://www.researchgate.net/deref/http%3A%2F%2Fdx.doi.org%2F10.1080%2F87559129.2016.1204614?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicG9zaXRpb24iOiJwYWdlQ29udGVudCJ9fQ (accessed on 28 August 2024).
- Love, D.C.; Fry, J.P.; Genello, L.; Hill, E.S.; Frederick, J.A.; Li, X.; Semmens, K. An International Survey of Aquaponics Practitioners. PLoS ONE 2014, 9, 102662. [Google Scholar] [CrossRef]
- Calone, R.; Pennisi, G.; Morgenstern, R.; Sanyé-Mengual, E.; Lorleberg, W.; Dapprich, P.; Winkler, P.; Orsini, F.; Gianquinto, G. Improving Water Management in European Catfish Recirculating Aquaculture Systems through Catfish-Lettuce Aquaponics. Sci. Total Environ. 2019, 687, 759–767. [Google Scholar] [CrossRef]
- Endo, M. Aquaponics in Plant Factory. In Plant Factory Using Artifical Light; Anpo, M., Fukuda, H., Wada, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 339–352. ISBN 9780128139738. [Google Scholar]
- Eldridge, B.M.; Manzoni, L.R.; Graham, C.A.; Rodgers, B.; Farmer, J.R.; Dodd, A.N. Getting to the Roots of Aeroponic Indoor Farming. New Phytol. 2020, 228, 1183–1192. [Google Scholar] [CrossRef]
- Kozai, T.; Niu, G.; Takagaki, M. Plant Factory; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128166918. [Google Scholar]
- Anpo, M.; Fukuda, H.; Wada, T. (Eds.) Plant Factory Using Artificial Light; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9785984520973. [Google Scholar]
- Graamans, L.; Baeza, E.; van den Dobbelsteen, A.; Tsafaras, I.; Stanghellini, C. Plant Factories versus Greenhouses: Comparison of Resource Use Efficiency. Agric. Syst. 2018, 160, 31–43. [Google Scholar] [CrossRef]
- Ragaveena, S.; Shirly Edward, A.; Surendran, U. Smart Controlled Environment Agriculture Methods: A Holistic Review. Rev. Environ. Sci. Biotechnol. 2021, 20, 887–913. [Google Scholar] [CrossRef]
- Jovicich, E.; Cantliffe, D.J.; Stoffella, P.J. “Spanish” Pepper Trellis System and High Plant Density Can Increase Fruit Yield, Fruit Quality, and Reduce Labor in a Hydroponic, Passive-Ventilated Greenhouse. In Proceedings of the Acta Horticulturae; International Society for Horticultural Science (ISHS), Leuven, Belgium, 30 September 2003; pp. 255–262. [Google Scholar]
- Sharma, S.; Dhingra, P.; Koranne, S. Microgreens: Exciting New Food for 21st Century. Ecol. Environ. Conserv. 2020, 26, S248–S251. [Google Scholar]
- Orsini, F.; Pennisi, G.; Zulfiqar, F.; Gianquinto, G. Sustainable Use of Resources in Plant Factories with Artificial Lighting (PFALs). Eur. J. Hortic. Sci. 2020, 85, 297–309. [Google Scholar] [CrossRef]
- Ooshima, T.; Hagiya, K.; Yamaguchi, T.; Endo, T. Commercialization of LED Used Plant. Nishimatsu Constr. Ind. Tech. Rep. 2010, 36, 1–6. [Google Scholar]
- Kozai, T. Plant Factory in Japan-Current Situation and Perspectives. Chron. Hortic. 2007, 53, 8–11. [Google Scholar]
- Polycarpou, P.; Neokleous, D.; Chimonidou, D.; Papadopoulos, I. A Closed System for Soil Less Culture Adapted to the Cyprus Conditions. Non-Conv. Water Use 2005, 241, 237–241. [Google Scholar]
- Kikuchi, Y.; Kanematsu, Y.; Yoshikawa, N.; Okubo, T.; Takagaki, M. Environmental and Resource Use Analysis of Plant Factories with Energy Technology Options: A Case Study in Japan. J. Clean. Prod. 2018, 186, 703–717. [Google Scholar] [CrossRef]
- Choubchilangroudi, A.; Zarei, A. Investigation the Effectiveness of Light Reflectors in Transmitting Sunlight into the Vertical Farm Depth to Reduce Electricity Consumption. Clean. Eng. Technol. 2022, 7, 100421. [Google Scholar] [CrossRef]
- Specht, K.; Siebert, R.; Hartmann, I.; Freisinger, U.B.; Sawicka, M.; Werner, A.; Thomaier, S.; Henckel, D.; Walk, H.; Dierich, A. Urban Agriculture of the Future: An Overview of Sustainability Aspects of Food Production in and on Buildings. Agric. Hum. Values 2014, 31, 33–51. [Google Scholar] [CrossRef]
- Caplow, T. Building Integrated Agriculture: Philosophy and Practice. In Urban Futures 2030; Heinrich Böll Stiftung, Publication Series of Ecology 2009; ISBN 9783869280080. Available online: https://www.researchgate.net/publication/312442295_Building_integrated_agriculture_philosophy_and_practice_Urban_Futures_2030 (accessed on 28 August 2024).
- Cathey, H.; Campbell, L. Light and Lighting Systems for Horticultural Plants. In Horticultural Reviews; American Society for Horticultural Science. 2011, Volume 2, pp. 491–537, ISBN 9781118060759. Available online: https://www.researchgate.net/publication/230215879_Light_and_Lighting_Systems_for_Horticultural_Plants (accessed on 28 August 2024).
- Cocetta, G.; Casciani, D.; Bulgari, R.; Musante, F.; Kołton, A.; Rossi, M.; Ferrante, A. Light Use Efficiency for Vegetables Production in Protected and Indoor Environments. Eur. Phys. J. Plus 2017, 132, 43. [Google Scholar] [CrossRef]
- Bantis, F.; Smirnakou, S.; Ouzounis, T.; Koukounaras, A.; Ntagkas, N.; Radoglou, K. Current Status and Recent Achievements in the Field of Horticulture with the Use of Light-Emitting Diodes (LEDs). Sci. Hortic. 2018, 235, 437–451. [Google Scholar] [CrossRef]
- Kozai, T. Resource Use Efficiency of Closed Plant Production System with Artificial Light: Concept, Estimation and Application to Plant Factory. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2013, 89, 447–461. [Google Scholar] [CrossRef] [PubMed]
- Kelly, N.; Choe, D.; Meng, Q.; Runkle, E.S. Promotion of Lettuce Growth under an Increasing Daily Light Integral Depends on the Combination of the Photosynthetic Photon Flux Density and Photoperiod. Sci. Hortic. 2020, 272, 109565. [Google Scholar] [CrossRef]
- Martin, M.; Orsini, F. Life Cycle Assessment of Indoor Vertical Farms. In Advances in Plant Factories: New Technologies in Indoor Vertical Farming; Kozai, T., Hayashi, E., Eds.; Burleigh Dodds Science Publishing: London, UK, 2023; pp. 75–96. [Google Scholar] [CrossRef]
- Martin, M.; Elnour, M.; Siñol, A.C. Environmental Life Cycle Assessment of a Large-Scale Commercial Vertical Farm. Sustain. Prod. Consum. 2023, 40, 182–193. [Google Scholar] [CrossRef]
- Yano, A.; Kadowaki, M.; Furue, A.; Tamaki, N.; Tanaka, T.; Hiraki, E.; Kato, Y.; Ishizu, F.; Noda, S. Shading and Electrical Features of a Photovoltaic Array Mounted inside the Roof of an East-West Oriented Greenhouse. Biosyst. Eng. 2010, 106, 367–377. [Google Scholar] [CrossRef]
- Ureña-Sánchez, R.; Callejón-Ferre, Á.J.; Pérez-Alonso, J.; Carreño-Ortega, Á. Greenhouse Tomato Production with Electricity Generation by Roof-Mounted Flexible Solar Panels. Sci. Agric. 2012, 69, 233–239. [Google Scholar] [CrossRef]
- Kavga, A.; Strati, I.F.; Sinanoglou, V.J.; Fotakis, C.; Sotiroudis, G.; Christodoulou, P.; Zoumpoulakis, P. Evaluating the Experimental Cultivation of Peppers in Low-Energy-Demand Greenhouses. An. Interdiscip. Study. J. Sci. Food Agric. 2019, 99, 781–789. [Google Scholar] [CrossRef] [PubMed]
- Despommier, D. Farming up the City: The Rise of Urban Vertical Farms. Trends Biotechnol. 2013, 31, 388–389. [Google Scholar] [CrossRef]
- Baselice, A.; Colantuoni, F.; Lass, D.A.; Nardone, G.; Stasi, A. Trends in EU Consumers’ Attitude towards Fresh-Cut Fruit and Vegetables. Food Qual. Prefer. 2017, 59, 87–96. [Google Scholar] [CrossRef]
- Sharma, S.; Shree, B.; Sharma, D.; Kumar, S.; Kumar, V.; Sharma, R.; Saini, R. Vegetable Microgreens: The Gleam of next Generation Super Foods, Their Genetic Enhancement, Health Benefits and Processing Approaches. Food Res. Int. 2022, 155, 111038. [Google Scholar] [CrossRef]
- Harakotr, B.; Srijunteuk, S.; Rithichai, P.; Tabunhan, S. Effects of Light-Emitting Diode Light Irradiance Levels on Yield, Antioxidants and Antioxidant Capacities of Indigenous Vegetable Microgreens. Sci. Technol. Asia 2019, 24, 59–66. [Google Scholar] [CrossRef]
- Di Gioia, F.; De Bellis, P.; Mininni, C.; Santamaria, P.; Serio, F. Physicochemical, Agronomical and Microbiological Evaluation of Alternative Growing Media for the Production of Rapini (Brassica rapa L.) Microgreens. J. Sci. Food Agric. 2017, 97, 1212–1219. [Google Scholar] [CrossRef] [PubMed]
- Ying, Q.; Kong, Y.; Zheng, Y. Applying Blue Light Alone, or in Combination with Far-Red Light, during Nighttime Increases Elongation without Compromising Yield and Quality of Indoor-Grown Microgreens. HortScience 2020, 55, 876–881. [Google Scholar] [CrossRef]
- Choe, U.; Yu, L.L.; Wang, T.T.Y. The Science behind Microgreens as an Exciting New Food for the 21st Century. J. Agric. Food Chem. 2018, 66, 11519–11530. [Google Scholar] [CrossRef]
- Sun, J.; Kou, L.; Geng, P.; Huang, H.; Yang, T.; Luo, Y.; Chen, P. Metabolomic Assessment Reveals an Elevated Level of Glucosinolate Content in CaCl₂ Treated Broccoli Microgreens. J. Agric. Food Chem. 2015, 63, 1863–1868. [Google Scholar] [CrossRef]
- Lu, Y.; Dong, W.; Alcazar, J.; Yang, T.; Luo, Y.; Wang, Q.; Chen, P. Effect of Preharvest CaCl2 Spray and Postharvest UV-B Radiation on Storage Quality of Broccoli Microgreens, a Richer Source of Glucosinolates. J. Food Compos. Anal. 2018, 67, 55–62. [Google Scholar] [CrossRef]
- Manjula, D. Ghoora Effect of Packaging and Coating Technique on Postharvest Quality and Shelf Life of Raphanus sativus L. and Hibiscus sabdariffa L. microgreens. Foods 2020, 9, 653. [Google Scholar]
- Xiao, Z.; Lester, G.E.; Luo, Y.; Wang, Q. Assessment of Vitamin and Carotenoid Concentrations of Emerging Food Products: Edible Microgreens. J. Agric. Food Chem. 2012, 60, 7644–7651. [Google Scholar] [CrossRef] [PubMed]
- Bergquist, S.Å.M.; Gertsson, U.E.; Olsson, M.E. Influence of Growth Stage and Postharvest Storage on Ascorbic Acid and Carotenoid Content and Visual Quality of Baby Spinach (Spinacia oleracea L.). J. Sci. Food Agric. 2006, 86, 346–355. [Google Scholar] [CrossRef]
- Kou, L.; Yang, T.; Liu, X.; Luo, Y. Effects of Pre- and Postharvest Calcium Treatments on Shelf Life and Postharvest Quality of Broccoli Microgreens. HortScience 2015, 50, 1801–1808. [Google Scholar] [CrossRef]
- Berba, K.J.; Uchanski, M.E. Post-Harvest Physiology of Microgreens. J. Young Investig. 2012, 24, 1–5. [Google Scholar]
- Di Gioia, F.; Renna, M.; Santamaria, P. Sprouts, Microgreens and “Baby Leaf” Vegetables. In Minimally Processed Refrigerated Fruits and Vegetables; Yildiz, F., Wiley, R.C., Eds.; Springer: Boston, MA, USA, 2017; pp. 403–432. ISBN 978-1-4939-7018-6. [Google Scholar]
- Du, M.; Xiao, Z.; Luo, Y. Advances and Emerging Trends in Cultivation Substrates for Growing Sprouts and Microgreens toward Safe and Sustainable Agriculture. Curr. Opin. Food Sci. 2022, 46, 100863. [Google Scholar] [CrossRef]
- Wong, C.E.; Teo, Z.W.N.; Shen, L.; Yu, H. Seeing the Lights for Leafy Greens in Indoor Vertical Farming. Trends Food Sci. Technol. 2020, 106, 48–63. [Google Scholar] [CrossRef]
- Swartz, T.E.; Corchnoy, S.B.; Christie, J.M.; Lewis, J.W.; Szundi, I.; Briggs, W.R.; Bogomolni, R.A. The Photocycle of a Flavin-Binding Domain of the Blue Light Photoreceptor Phototropin. J. Biol. Chem. 2001, 276, 36493–36500. [Google Scholar] [CrossRef]
- Eguchi, T.; Hernández, R.; Kubota, C. End-of-Day Far-Red Lighting Combined with Blue-Rich Light Environment to Mitigate Intumescence Injury of Two Interspecific Tomato Rootstocks. Acta Hortic. 2016, 1134, 163–170. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, Z.; Ager, E.; Kong, L.; Tan, L. Nutritional Quality and Health Benefits of Microgreens, a Crop of Modern Agriculture. J. Future Foods 2021, 1, 58–66. [Google Scholar] [CrossRef]
- Davis, P.A.; Burns, C. Photobiology in Protected Horticulture. Food Energy Secur. 2016, 5, 223–238. [Google Scholar] [CrossRef]
- Wilson, P.E.; Morrison, S.C.; Hedges, L.J.; Kerkhofs, N.S.; Lister, C.E. Phenolics Contribute Significantly to Higher Antioxidant Activity of Red Lettuce Compared to Green Lettuce. In Proceedings of the XXII International Conference on Polyphenols, Helsinki, Finland, 25–28 August 2004. [Google Scholar]
- Turkmen, N.; Poyrazoglu, E.S.; Sari, F.; Sedat Velioglu, Y. Effects of Cooking Methods on Chlorophylls, Pheophytins and Colour of Selected Green Vegetables. Int. J. Food Sci. Technol. 2006, 41, 281–288. [Google Scholar] [CrossRef]
- Nicolle, C.; Carnat, A.; Fraisse, D.; Lamaison, J.L.; Rock, E.; Michel, H.; Amoureux, P.; Remesy, C. Characterisation and Variation of Antioxidant Micronutrients in Lettuce (Lactuca sativa Folium). J. Sci. Food Agric. 2004, 84, 2061–2069. [Google Scholar] [CrossRef]
- Mou, B. Genetic Variation of Beta-Carotene and Lutein Contents in Lettuce. J. Am. Soc. Hortic. Sci. 2005, 130, 870–876. [Google Scholar] [CrossRef]
- Viršile, A.; Brazaityte, A.; Sirtautas, R.; Duchovskis, P. Light Spectral Effects on Phenolic Compounds in Perilla Frutescens Leaves as Related to the Leaf Age, Color and Duration of Exposure. Acta Hortic. 2017, 1170, 981–988. [Google Scholar] [CrossRef]
- Signore, A.; Bell, L.; Santamaria, P.; Wagstaff, C.; Van Labeke, M.C. Red Light Is Effective in Reducing Nitrate Concentration in Rocket by Increasing Nitrate Reductase Activity, and Contributes to Increased Total Glucosinolates Content. Front. Plant Sci. 2020, 11, 604. [Google Scholar] [CrossRef]
- Son, K.H.; Lee, S.R.; Oh, M.M. Comparison of Lettuce Growth under Continuous and Pulsed Irradiation Using Light-Emitting Diodes. Hortic. Sci. Technol. 2018, 36, 542–551. [Google Scholar] [CrossRef]
- Kozai, T.; Oki, H.; Fujiwara, K. Photosynthetic Characteristics of Cymbidium Plantlet in Vitro. Plant Cell Tissue Organ. Cult. 1990, 22, 205–211. [Google Scholar] [CrossRef]
- Miliauskienė, J.; Karlicek, R.F.; Kolmos, E. Effect of Multispectral Pulsed Light-Emitting Diodes on the Growth, Photosynthetic and Antioxidant Response of Baby Leaf Lettuce (Lactuca sativa L.). Plants 2021, 10, 762. [Google Scholar] [CrossRef] [PubMed]
- Son, K.H.; Oh, M.M. Leaf Shape, Growth, and Antioxidant Phenolic Compounds of Two Lettuce Cultivars Grown under Various Combinations of Blue and Red Light-Emitting Diodes. HortScience 2013, 48, 988–995. [Google Scholar] [CrossRef]
- Wang, J.; Lu, W.; Tong, Y.; Yang, Q. Leaf Morphology, Photosynthetic Performance, Chlorophyll Fluorescence, Stomatal Development of Lettuce (Lactuca sativa L.) Exposed to Different Ratios of Red Light to Blue Light. Front. Plant Sci. 2016, 7, 250. [Google Scholar] [CrossRef]
- Viršilė, A.; Brazaitytė, A.; Vaštakaitė-Kairienė, V.; Miliauskienė, J.; Jankauskienė, J.; Novičkovas, A.; Samuolienė, G. Lighting Intensity and Photoperiod Serves Tailoring Nitrate Assimilation Indices in Red and Green Baby Leaf Lettuce. J. Sci. Food Agric. 2019, 99, 6608–6619. [Google Scholar] [CrossRef]
- Zhen, S.; Bugbee, B. Far-Red Photons Have Equivalent Efficiency to Traditional Photosynthetic Photons: Implications for Redefining Photosynthetically Active Radiation. Plant Cell Environ. 2020, 43, 1259–1272. [Google Scholar] [CrossRef]
- Spalholz, H.; Perkins-Veazie, P.; Hernández, R. Impact of Sun-Simulated White Light and Varied Blue:Red Spectrums on the Growth, Morphology, Development, and Phytochemical Content of Green- and Red-Leaf Lettuce at Different Growth Stages. Sci. Hortic. 2020, 264, 109195. [Google Scholar] [CrossRef]
- Cossu, M.; Tiloca, M.T.; Cossu, A.; Deligios, P.A.; Pala, T.; Ledda, L. Increasing the Agricultural Sustainability of Closed Agrivoltaic Systems with the Integration of Vertical Farming: A Case Study on Baby-Leaf Lettuce. Appl. Energy 2023, 344, 121278. [Google Scholar] [CrossRef]
- Kim, H.H.; Goins, G.D.; Wheeler, R.M.; Sager, J.C. Green-Light Supplementation for Enhanced Lettuce Growth under Red-and Blue-Light-Emitting Diodes. HortScience 2004, 39, 1617–1622. [Google Scholar] [CrossRef]
- Snowden, M.C.; Cope, K.R.; Bugbee, B. Sensitivity of Seven Diverse Species to Blue and Green Light: Interactions with Photon Flux. PLoS ONE 2016, 11, e0163121. [Google Scholar] [CrossRef] [PubMed]
- Samuolienė, G.; Viršilė, A.; Haimi, P.; Miliauskienė, J. Photoresponse to Different Lighting Strategies during Red Leaf Lettuce Growth. J. Photochem. Photobiol. B 2020, 202, 111726. [Google Scholar] [CrossRef]
- Frutos-Totosa, A.; Hernández-Adasme, C.; Martínez, V.; Mestre, T.; Díaz-Mula, H.M.; Botella, M.A.; Flores, P.; Martínez-Moreno, A. Light Spectrum Effects on Rocket and Lamb’s Lettuce Cultivated in a Vertical Indoor Farming System. Sci. Hortic. 2023, 321, 112221. [Google Scholar] [CrossRef]
- Proietti, S.; Moscatello, S.; Riccio, F.; Downey, P.; Battistelli, A. Continuous Lighting Promotes Plant Growth, Light Conversion Efficiency, and Nutritional Quality of Eruca Vesicaria (L.) Cav. in Controlled Environment With Minor Effects Due to Light Quality. Front. Plant Sci. 2021, 12, 730119. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Kalantari, F.; Ting, K.C.; Thorp, K.R.; Hameed, I.A.; Weltzien, C.; Ahmad, D.; Shad, Z. Advances in Greenhouse Automation and Controlled Environment Agriculture: A Transition to Plant Factories and Urban Agriculture. Int. J. Agric. Biol. Eng. 2018, 11, 1–22. [Google Scholar] [CrossRef]
- Jin, W.; Formiga Lopez, D.; Heuvelink, E.; Marcelis, L.F.M. Light Use Efficiency of Lettuce Cultivation in Vertical Farms Compared with Greenhouse and Field. Food Energy Secur. 2023, 12, 391. [Google Scholar] [CrossRef]
- Carotti, L.; Pistillo, A.; Zauli, I.; Meneghello, D.; Martin, M.; Pennisi, G.; Gianquinto, G.; Orsini, F. Improving Water Use Efficiency in Vertical Farming: Effects of Growing Systems, Far-Red Radiation and Planting Density on Lettuce Cultivation. Agric. Water Manag. 2023, 285, 108365. [Google Scholar] [CrossRef]
- Li, Q.; Li, X.; Tang, B.; Gu, M. Growth Responses and Root Characteristics of Lettuce Grown in Aeroponics, Hydroponics, and Substrate Culture. Horticulturae 2018, 4, 35. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, Y.; Zhang, Y.; Bian, Z.; Fanourakis, D.; Yang, Q.; Li, T. Morphological and Physiological Properties of Indoor Cultivated Lettuce in Response to Additional Far-Red Light. Sci. Hortic. 2019, 257, 108725. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budavári, N.; Pék, Z.; Helyes, L.; Takács, S.; Nemeskéri, E. An Overview on the Use of Artificial Lighting for Sustainable Lettuce and Microgreens Production in an Indoor Vertical Farming System. Horticulturae 2024, 10, 938. https://doi.org/10.3390/horticulturae10090938
Budavári N, Pék Z, Helyes L, Takács S, Nemeskéri E. An Overview on the Use of Artificial Lighting for Sustainable Lettuce and Microgreens Production in an Indoor Vertical Farming System. Horticulturae. 2024; 10(9):938. https://doi.org/10.3390/horticulturae10090938
Chicago/Turabian StyleBudavári, Noémi, Zoltán Pék, Lajos Helyes, Sándor Takács, and Eszter Nemeskéri. 2024. "An Overview on the Use of Artificial Lighting for Sustainable Lettuce and Microgreens Production in an Indoor Vertical Farming System" Horticulturae 10, no. 9: 938. https://doi.org/10.3390/horticulturae10090938
APA StyleBudavári, N., Pék, Z., Helyes, L., Takács, S., & Nemeskéri, E. (2024). An Overview on the Use of Artificial Lighting for Sustainable Lettuce and Microgreens Production in an Indoor Vertical Farming System. Horticulturae, 10(9), 938. https://doi.org/10.3390/horticulturae10090938